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Chapter 1Introdution and motivation
Topology optimization is nowadays a fertile area of researh onerned withthe topial issue of de�ning the best design that solves an assigned phys-ial problem with presribed performane requirements or other kind ofrestraints. This general onept may be applied to di�erent pratial on-texts and industrial appliations, where, already in an early stage of thedesign proess, questions as �nding an optimal lay-out topology in termsof stati or dynami sti�ness, ost, assigned strutural performanes and soon must be a�ordably answered. Sine the pioneering paper [13℄ where thetopology optimization onept was introdued as an innovative and pow-erful approah to strutural design, many steps have been taken in severaldiretions. The legalization of one of the most used material interpolationlaws, the SIMP (Solid Isotropi Material with Penalization) approah [15℄,from the standpoint of onstitutive theory appears to be a key step towardthe aeptane of topology optimization within the designers ommunity.Furthermore, a few reent results on the existene and uniqueness of thesolution to the optimal design problem have provided the entire formula-1



2 Topology optimization using mixed �nite elementstion with a sound mathematial basis [98℄. Topology optimization may beonsidered as a mature disipline espeially from the point of view of theappliations, sine new grounds have been explored, moving from the orig-inal �eld of strutural design towards new branhes as material design ormultiphysis problems, even if many of the early topis remain quite atualand still open, in view of innovative a�ordable solutions.This development, ahieved over more than twenty years of researh andappliations, is not only made of advanes in mathematis, tehnology andmaterial mehanis, but is also due to the e�orts made within the �eld of theso alled omputational sienes. Many interests have been in fat diretedtowards this topi with the aim of providing numerial instruments ableto solve the omputational di�ulties onerned with the optimal topologyformulations and to suessfully menage large�sale problems. An extensiveliterature has been produed regarding minimizer algorithms used to solvethe optimum problem, i.e. CONLIN [49℄ or MMA [137℄, or referring to thesolution of the numerial instabilities suh as the hekerboard phenomenon[130℄. One of the ruial aspets of the more ommonly used solving me-thodologies onerns the �nite element approah. Most of the works referto the adoption of displaement�based �nite element methods, while notso many other disretization strategies have been so far investigated, withthe exeption of the interests reently direted to non�onforming �nite el-ements [65℄ or displaement�pressure disretizations [129℄.Within suh a senario, the aim of this work is to propose alternative for-mulations for topology optimization by distribution of isotropi material,relying on bidimensional mixed �nite element shemes and exploiting the



Chapter 1: Introdution and motivation 3bene�ts that these methods may provide on several topis of the optimaldesign disipline.The variational priniple of Hellinger�Reissner is herein used and two dualformulations presented and disretized. The �rst one is simpler and useslassial polynomial �nite elements to approximate a regular displaement�eld and a pieewise disontinuous stress �eld. Conversely, the dual formu-lation, often referred to as truly�mixed in the literature [21℄, interpolates dis-plaements with disontinuous funtions while regular ones are used for thestresses. The adoption of these �nite element tehniques within a topologyoptimization framework has diret onsequenes on the numerial stabilityand on onvergene features of the method. These issues are �rstly inves-tigated with speial regard to the hekerboard problem and the adopteddisretizations for the density �eld. Exept for this tehnial aspet, mixedshemes have two important properties that may be usefully exploited in atopology optimization ontext, i.e.:
• the auray in the evaluation of stresses, due to the additional dis-retization of the stress �eld, that does not all for any post-proessingtehnique typial of displaement-based �nite elements;
• the apability of passing the inf-sup ondition, for the �truly�mixed�formulation, even in the ase of inompressible material, feature thatis not shared by ommonly used displaement-based disretizations.In the present work the �rst feature is exploited to deal with the still openproblem of �nding the optimal topology with loal stress onstraints on ma-terial strength [46℄. Managing this topi the so�alled singularity problem[117℄, a numerial trouble that often prevents form onvergene to expeted



4 Topology optimization using mixed �nite elementsglobal minima, is also faed and a novel methodology, referred to as qp�approah, is presented and analyzed within the proposed formulations withthe aim of providing an alternative solution to the problem.The seond of the above two main features is onversely exploited in thesequel to �nd optimal designs for inompressible materials, providing thenumerial robustness needed to handle the inompressibility property withinan optimization ontext. Sine these materials have reently been used indi�erent appliations mainly onerned with vibration issues and aseismidesign, alternative topology optimization formulations are presented andtested not only in a stati framework but also within eigenvalue�based me-thodologies for dynami design. The apability of the truly�mixed methodto pass the inf�sup ondition even in presene of inompressible materialis moreover used to model �uid phases with the aim of solving pressure�load problems, moving from the approah reently proposed in [129℄. Theauray in the evaluation of the stress �eld is exploited in this ontextto propose an alternative methodology against the ahievement of �nal de-signs that present avities whose boundaries are ated upon by hydrostatipressure. This kind of topologies may be in fat of no pratial use withinertain appliations.The outline of the work is as follows. Chapter 2 introdues the basi on-epts of the topology optimization disipline, presenting the state of theart in terms of methods and appliations further dealt with, in the sequelof the work. Chapter 3, after a �rst insight on fundamentals of the �-nite element method, is mainly onerned with theoretial and numerialissues related to mixed �nite elements, deriving both the ontinuous and



Chapter 1: Introdution and motivation 5the disrete forms of the dual formulations that desend from the varia-tional priniple of Hellinger�Reissner. Chapter 4 takles the hekerboardproblem and other numerial issues related to the adoption of the intro-dued mixed �nite elements formulations along with alternative hoiesin terms of density disretizations. In this regard, preliminary optimiza-tions that maximize the sti�ness of the strutures are performed, aordingto the lassial framework of topology optimization for minimum ompli-ane. Chapter 5 and Chapter 6 are onerned with the researh of optimaltopology with loal stress onstraints. The �rst of the two hapters refersto the singularity problem, presenting the qp�approah, its features and nu-merial omparisons with respet to the lassial ε�relaxation [35℄, that isthe traditional methodology applied to overome the numerial di�ultiesrelated to the arising of the stress singularity phenomenon at zero density.The seond one is mainly onerned with the implementation of stress on-straints that exploit both the mixed �nite element disretizations withina minimum ompliane optimization framework. Di�erent optimal designsahieved with and without stress onstraints are presented and analyzedfrom the point of view of their mehanial behavior. Peuliar attentionis moreover paid in this ontext to the topologies obtained by means ofthe truly-mixed disretization in omparison with those found by the dualmixed setting. Chapter 7 presents the topology optimization of inompres-sible media for maximum sti�ness, along with the numerial di�ulties thatmay be enountered in the researh of pure 0�1 designs under plane strainonditions. Relevant material interpolation strategies are introdued andtested to solve this problem. Furthermore, di�erent families of designs arepresented, omparing plane strain and plane stress onditions for ases of



6 Topology optimization using mixed �nite elementsompressible and inompressible material design, thus pointing out peuliarmehanial di�erenes related to the inompressibility feature. Chapter 8exploits the apability of handling topology optimization of inompressiblematerials to propose alternative eigenvalue�based formulations that may beused to deal, within a simpli�ed setting, with typial aseismi isolationsproblems, as the preliminary design of bi�material aseismi bearing deviesfor whih a suitable multi�phase material interpolation is derived. Chapter9 implements the truly�mixed disretization within the approah originallyintrodued in [129℄ that is based on the modeling of a phase of �uid mate-rial in order to ope with pressure�load problems. An alternative tehnique,exploiting the imposition of stress onstraints on the inompressible phase,is herein proposed and tested to avoid the ahievement of �nal designs thatpresent undesired avities �lled with �uids. Chapter 10 summarizes thework, pointing out the main issues and results disussed in the previoushapters and presenting ideas for future developments.



Chapter 10Conlusions
The work has addressed the issue of introduing and exploiting the adop-tion of mixed �nite elements for plane linear elasti problems within theframework of topology optimization by distribution of isotropi material.As detailed in Chapter 2, the topology disipline is a relatively reent butwell�established researh �eld that provides designers with numerial pro-edures having the aim of ahieving optimal designs for several appliations.A ruial aspet of the methodology relies on the hoie of the �nite ele-ments shemes used in the disretization of the �elds involved in the solutionof the elastiity equation. With respet to this subjet, most of the tradi-tional approahes rely on lassial displaement�based tehniques and notso many alternatives have been so far investigated.To this purpose, Chapter 3 has introdued the variational priniple ofHellinger�Reissner that has been herein exploited to derive two dual weakformulations of the elastiity problem. The �rst one uses lassial poly-nomial �nite elements to approximate a regular displaement �eld and apieewise disontinuous stress �eld. The seond one, often referred to as353



354 Topology optimization using mixed �nite elementstruly�mixed, onversely interpolates displaements with disontinuous fun-tions while stresses with regular ones. Both the formulations have beenimplemented in disretized forms, having the aim of pointing out the mainbene�ts of the mixed approah with respet to lassial displaement�based�nite elements. The independent interpolation of stresses, aording to thedegree of approximation of the adopted shape funtions, provides in fat aninreased auray in the evaluation of the relevant stress �eld but also ofthe displaement one. Furthermore, a few mixed approximations are able topass the inf�sup ondition even in ase of inompressible material thus pro-viding a robust analysis tool that does not enounter the well�known lokingphenomenon. Both these advantages are shared by the herein implementeddisretization of the truly�mixed formulation, based on the Johnson Merieromposite triangle.Within a topology optimization framework, the oupling of displaement(and stress) approximations with density interpolation shemes may ge-nerate or resolve numerial instabilities of the proedure. Chapter 4 hasaddressed this topi, presenting and investigating the dual frameworks thatexploit the above ited mixed �nite element shemes. While the �rst one hasshown features that are similar to equivalent displaement�based approah,the truly�mixed setting has not experiened the well�known hekerboardproblem, when oupled with an element�based disretization. However, notto inrease the omputational burden tied to the adoption of mixed shemes,the nodal�based density setting has been shown to be an a�ordable hoiefor the appropriate desription of the layout of �nal designs, exploitingmoreover peuliar bene�ts on the issue of length sale ontrol. Withinthe lassial framework of topology optimization for minimum ompliane



Chapter 10: Conlusions 355problem the truly�mixed sheme has shown an high auray of the ahievedresults and robustness against instabilities.The numerial assessment of these basi features has therefore allowed theextension of the mixed optimization framework towards the exploitation ofthe bene�ts peuliar to the �nite element shemes, in order to deal withstress�onstrained problems and topology optimization involving inom-pressible media.Preliminarily to the former issue, Chapter 5 has addressed the deliateonvergene di�ulty that a�ets stress onstraints imposition, i.e. thesingularity phenomenon. For the solution, an alternative method, alled
qp�approah, has been herein introdued and ompared to the lassial
ε�relaxation. Among its features, the peuliar advantage onsists in thesmoothness of the manipulation introdued on onstraints equations, thatimproves onvergene features and does not involve full density range, thuseventually allowing for non�iterative design proedures.The methodology has been largely exploited in Chapter 6, where the mini-mum ompliane setting based on mixed �nite elements has been applied inonjuntion with a set of loal stress onstraints. The investigations havepointed out the remarkable di�erenes that may be found omparing designsahieved with and without the inlusion of stress onstraints. Peuliar at-tention has been paid to the desription of the implemented imposition ofthe loal stress requirements, that gain in auray and numerial tratabil-ity due to the independent interpolation of the stress �eld. A suitable me-thodology has been furthermore developed in order to exploit the aurayand fast onvergene of JM�based approah in stress onstraints enfore-ment, without paying the expeted inrease in terms of omputational ost.



356 Topology optimization using mixed �nite elementsThe methodology, that involves only the average degrees of freedom of theadopted truly�mixed disretization, has been shown to produe feasible re-sults that exhibit an improved mehanial behavior with respet to the onesahieved by the dual less aurate approximation.To exploit the apability of JM disretization to robustly deal with theinompressibility feature, Chapter 7 has straightforwardly extended the mi-nimum ompliane truly�mixed framework to the optimization of suh kindof materials. Within this lass of problems, lassial interpolation laws thatdo not penalize the inompressibility feature in the low density range maygenerate �nal designs where undesired grey regions takes full advantage ofthis property, under plane strain onditions. An alternative penalizationlaw for sti�ness has been therefore proposed and tested to assess its apa-bility for ahieving pure 0�1 designs. Furthermore, several examples havebeen studied under plane strain and plane stress onditions, for ases ofompressible and inompressible material. This omparative investigationhas mainly pointed out that remarkably di�erent designs may be ahievedwithin the plane strain inompressible ase. Under these onditions thematerial tends to assume in fat a layout that e�iently exploits the sig-ni�ant inrease in the volumetri sti�ness, when ated upon by isotropistress states.Classial frameworks for the maximization of the �rst eigenvalue have beenaddressed in Chapter 8, in order to provide optimization tehniques for in-ompressible media also within a dynami setting. The problem of loalizedmodes has been �rstly takled by means of the introdution of an alternativemass interpolation, that assures an appropriate mass�to�sti�ness ratio allover the density range. Having the aim of dealing with the preliminary de-



Chapter 10: Conlusions 357sign of isolation devies, whose manufaturing involves inompressible ma-terials as rubber�likes ones, a novel eigenvalue�based formulation has beenfurthermore proposed, based on the ahievement of the maximal vertialsti�ness with additional requirements on the horizontal dynami �exibility.The above methodology has been applied to the simpli�ed design of deviesmade of both steel and rubber�like material, relying on an alternative bi�phase material law.The apability of handling inompressible media has been furthermore ex-ploited in Chapter 9 to perform the topology optimization for pressure�loadproblems basing on a method that involves the presene of a �uid phase. Tothis purpose an alternative �bi�material with void� interpolation has beenintrodued and the robustness of the JM element in the evaluation of bothdisplaements and stresses has been herein used to ope with the problemof �lled avities, i.e. the arising of internal holes whose boundaries are atedupon by hydrostati pressure. The imposition of a set of suitable pressureonstraints has shown in fat to be able to overome this possible problemwithout resorting to more demanding traditional proedures.The above appliations have outlined that mixed methods, with peu-liar referene to the truly�mixed formulation, may be usefully exploited intopology optimization. The auray in the imposition of stress�onstraintsand the robust handling of inompressible materials are in fat peuliar be-ne�ts to the introdued formulations with respet to traditional displaement�based shemes.A possible drawbak of the method is tied to the inreased omputationalburden related to the independent interpolation of stresses. To this pur-



358 Topology optimization using mixed �nite elementspose suitable algorithms and implementation tehniques have been adoptedthroughout the work to redue the CPU�times. The most demanding pro-edure enountered in the simulations was not however tied to the �niteelement sheme, but, rather, to the loal imposition of stress onstraintswithin the minimization proedure. A possible way out to the problem ouldonsist in the adoption of adaptive meshing tehniques [150℄ in the topologyoptimization framework. This is expeted to allow a �ner disretization ofthe zones that experienes the higher stress onentration and, at the sametime, a remarkable redution in the overall number of loal onstraints.The peuliar bene�ts of the mixed methods have been exploited and investi-gated in this work within a linear elasti bidimensional ontext. Challengingdevelopments of the presented proedures inlude therefore the extension togeometrial and onstitutive non�linearities along with the implementationof three�dimensional approahes. While the latter argument is mainly on-erned with the remarkable inrease in the number of unknowns expetedin 3D problems, the former is in fat very triky to be dealt with, beauseof the omplexity of more subtle numerial and omputational issues withrespet to both the optimization framework and the �nite element shemes.The main di�ulty is maybe the setting of a�ordable sensitivities om-putations in the non�linear framework, as pioneered in the already itedworks by [28℄ and [125℄. Furthermore, additional stability issues of mixed�nite elements in large strain analysis for rubber�like solids have to be dealtwith, onerning the deliate disretization of the inremental version of theHellinger�Reissner variational priniple, see i.e. [92℄.Reent ontributions have outlined peuliar bene�ts that may be derivedfrom the assumption of linear elasti model embedded in the optimization



Chapter 10: Conlusions 359proedures that are alternative to the lassial Cauhy setting. Topology in-vestigations have been already performed basing on the miro�polar Cosseratsolid [113℄, but also other multi��eld theories [32℄ should be investigatedfor strutural purposes, as miro�raked models [85℄. An alternative wayto ope with fratured media involves non�linear proedures that handlerak propagation taking full advantage from the well�suited nature of thedisretizing �elds within the truly�mixed approah. Disontinuity of dis-plaements and regularity of stress �uxes seem ideally tailored to deal withohesive frature models, as mentioned in Setion 3.8.3. Having the aimof exploiting these features in optimal design proedures, urrent investi-gation is mainly onerned with the assessment of the numerial setting ofthis analysis instrument [26℄, also inluding stohasti e�ets [23℄.
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