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Il dottorato di ricerca in Ingegneria Civile dell'Università degli Studi di Pavia 
è stato istituito nell'anno accademico 1994/95 (X ciclo). Il corso consente al 
dottorando di scegliere tra quattro curricula: Idraulico, Sanitario, Sismico e 
Strutturale. Egli svolge la propria attività di ricerca presso il Dipartimento di 
Ingegneria Idraulica e Ambientale per i primi due curricula, quello di 
Meccanica Strutturale per i rimanenti. Durante i primi due anni sono previsti 
almeno sei corsi. Il Collegio dei Docenti, composto da professori dei due 
Dipartimenti (e da esterni cooptati in mancanza di competenze interne), 
organizza i corsi con lo scopo di fornire allo studente di dottorato opportunità di 
approfondimento su alcune delle discipline di base. Corsi e seminari vengono 
tenuti da docenti di Università nazionali ed estere. Il Collegio dei Docenti, cui 
spetta la pianificazione della didattica, si è orientato ad attivare ad anni alterni 
corsi comuni sui seguenti temi: 
 

- Meccanica dei solidi e dei fluidi. 
 

- Metodi numerici per la meccanica dei solidi e dei fluidi. 
 

- Rischio strutturale e ambientale. 
 

- Metodi sperimentali per la meccanica dei solidi e dei fluidi. 
 

- Intelligenza artificiale. 
 

più corsi specifici di indirizzo. Al termine dei corsi del primo anno il Collegio 
dei Docenti assegna al dottorando un tema di ricerca da sviluppare sotto forma 
di tesina entro la fine del secondo anno; il tema, non necessariamente legato 
all'argomento della tesi finale, è di norma coerente con il curriculum, scelto dal 
dottorando. All'inizio del secondo anno il dottorando discute con il 
Coordinatore l'argomento della tesi di dottorato, la cui assegnazione definitiva 
viene deliberata dal Collegio dei Docenti. Alla fine di ogni anno i dottorandi 
devono presentare una relazione particolareggiata sull'attività svolta. Sulla base 
di tale relazione il Collegio dei Docenti, "previa valutazione della assiduità e 
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dell'operosità dimostrata dall'iscritto", ne propone al Rettore l'esclusione dal 
corso o il passaggio all'anno successivo. Il dottorando può svolgere attività di 
ricerca sia di tipo teorico che sperimentale, grazie ai laboratori di cui entrambi i 
Dipartimenti dispongono, nonché al Laboratorio Numerico di Ingegneria delle 
Infrastrutture. Il "Laboratorio didattico sperimentale" del Dipartimento di 
Meccanica Strutturale offre: 
 

- una tavola vibrante che consente di effettuare prove dinamiche su 
prototipi strutturali; 
 

- opportuni sensori e un sistema di acquisizione dati per la misura della 
risposta strutturale; 
 

- strumentazione per la progettazione di sistemi di controllo attivo e loro 
verifica sperimentale; 
 

- strumentazione per la caratterizzazione dei materiali, attraverso prove 
statiche e dinamiche. 

 
Il laboratorio del Dipartimento di Ingegneria Idraulica e Ambientale dispone di: 

 
- un circuito in pressione per effettuare simulazioni di moto vario; 

 
- un tunnel idrodinamico per lo studio di problemi di cavitazione; 

 
- canalette per lo studio delle correnti a pelo libero. 

 
The Graduate School of Civil Engineering at the University of Pavia was 
established in the Academic Year of 1994/95 (X cycle). The School allows the 
student to select one of the four offered curricula: Hydraulics, Environment, 
Seismic engineering and Structural Mechanics. Each student develops his 
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research activity either at the Department of Hydraulics and Environmental 
Engineering or at the Department of Structural Mechanics. During the first two 
years, a minimum of six courses must be selected and their examinations 
successfully passed. The Faculty, made by Professors of the two Departments or 
by internationally recognized scientists, organizes courses and provides the 
student with opportunities to enlarge his basic knowledge. Courses and 
seminars are held by University Professors from all over the country and 
abroad. The Faculty starts up in alternate years common courses, on the 
following subjects: 
 

- solid and fluid mechanics, 
 

- numerical methods for solid and fluid mechanics, 
 

- structural and environmental risk, 
 

- experimental methods for solid and fluid mechanics, 
 

- artificial intelligence. 
 
More specific courses are devoted to students of the single curricula. At the end 
of each course, for the first year the Faculty assigns the student a research 
argument to develop, in the form of report, by the end of the second year; the 
topic, not necessarily part of the final doctorate thesis, should be consistent with 
the curriculum selected by the student. At the beginning of the second year the 
student discusses with his Coordinator the subject of the thesis and, eventually, 
the Faculty assigns it to the student. At the end of every year, the student has to 
present a complete report on his research activity, on the basis of which the 
Faculty proposes to the Rector his admission to the next academic year or to the 
final examination. The student is supposed to develop either theoretical or 
experimental research activities, and therefore has access to the Department 
Experimental Laboratories, even to the Numerical Laboratory of Infrastructure 
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Engineering. The Experimental Teaching Laboratory of the Department of 
Structural Mechanics offers: 

 
- a shaking table which permits one to conduct dynamic tests on 

structural prototypes; 
 

- sensors and acquisition data system for the structural response 
measurements; 
 

- instrumentation for the design of active control system and their 
experimental checks; 
 

- an universal testing machine for material characterization through static 
and dynamic tests. 

 
The Department of Hydraulics and Environmental Engineering offers: 

 
- a pressure circuit simulating various movements; 

 
- a hydrodynamic tunnel studying cavitation problems; 

 
- micro-channels studying free currents. 
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INTRODUCTION AND MAIN MOTIVATION 
 
Wind effects on cable-supported bridges are studied, with a particular 

attention to response, stability and control problems. 
The steadily growing demand for lighter and longer bridge designs is 

presently catching the attention of the scientific community. To this regards, 
realistically predicting the wind-excited response of cable-supported bridges, 
with a particular attention to stability problems, is mandatory for developing 
new challenging designs. In the meanwhile, there often exists the need of 
suppressing undesired levels of wind-excited vibrations which may affect either 
the deck or the cables (especially in stayed configurations) of these structures.  

The work is organized into three parts: basic aspects of cable-supported 
bridges (part 1), fundamental aspects (part 2) and advanced aspects (part 3) of 
the dynamic behavior of cable-supported bridges when subjected to wind 
excitation. Two case studies are mainly considered within the thesis: the Tsing 
Ma Bridge and the New Carquinez Bridge, which are described in Appendix A. 
A brief outline of the thesis is given below. 

 
Part 1: Basic aspects of cable-supported bridges 
 

Chapter 0 introduces the basic aspects of cable-supported bridges using a 
multilayered approach which relies on the decomposition of the structural 
system at different scales. A particular attention is devoted to wind excitation. 

Chapter 1 deals with numerical modeling of bridges, at the macro-level 
scale, in the framework of the finite element method. Particularly, three 
hierarchical macro-level models of the Tsing Ma Bridge, Hong Kong, are 
developed with the purpose of finding a sort of “minimal” model which is 
capable to catch the main dynamic features of the system (linear normal modes 
and stress-stiffening effects) with a reasonable computational expense.  

Chapter 2 is devoted to the efficient simulation of the multivariate 
stochastic wind field, which is essential for nonlinear wind-excited response 
analysis. Indeed, dealing with a complex structure makes it mandatory to reduce 
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the computational expense required by wind simulations. To this end a 
comparative study between three relevant methods available in the literature is 
proposed. 
 
Part 2: Fundamental aspects of the dynamics of cable-supported bridges 
 

The models developed in Chapters 1 and 2 are utilized in Chapter 3 to 
investigate the buffeting response of the Tsing Ma Bridge. The problem is 
attacked, in the time domain, by means of two classic formulations. The results 
emphasize that the predicted wind-excited response of the bridge could strongly 
differ depending on the way in which unsteady phenomena are modeled.  

One of the main questions arising when reading Chapter 3 concerns the level 
of accuracy that can be achieved when numerically predicting the buffeting 
response of a long-span bridge. The purpose of Chapter 4 is to give an answer 
to such a question. Referring to the New Carquinez Bridge, California, 
structural identification and FE model updating via a suitable optimization 
technique are addressed at first. Afterwards, the buffeting response of the bridge 
is simulated in the time domain. The comparison with the field measurements 
validates the adopted numerical procedure.  

Chapter 5 deals with time domain aeroelastic stability analysis of bridges. 
Although most of the approaches currently available for predicting the onset of 
the flutter instability of bridges have been known since the 1940s (most of them 
have been borrowed from aerospace engineering), a well-established unified 
theoretical framework to treat this problem is yet to come. Within this field, the 
representation of self-excited loads via indicial functions has numerous 
advantages if compared to frequency domain approaches. To this regards, two 
main contributions are given. The former concerns the identification of the 
indicial functions from flutter derivatives via evolutionary algorithms. The latter 
consists of a manipulation of the governing equations which allows to eliminate 
integral terms thus trivializing the time domain aeroelastic stability analysis.  

Chapter 6 analyzes the effects of nonlinearities, atmospheric turbulence and 
experimental uncertainties in bridge aeroelasticity. Within this field, geometric 
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nonlinearities and wind velocity fluctuations are seen to have nontrivial effects 
on the critic and postcritic behavior of the system. Moreover, the data scattering 
which is encountered in wind tunnel tests often leads to large uncertainties on 
the outcomes. This entails that the predictions of the onset of the aeroelastic 
instability must be treated from a probabilistic point of view, as one discusses 
through MonteCarlo simulations. 
 
Part 3: Advanced aspects of the dynamics of cable-supported bridges 
 

The suppression of structural aeroelastic instabilities via the use of single 
(TMD) and multiple tuned mass dampers (MTMD) is addressed in Chapter 7. 
The case of cable galloping is preliminary stressed. Afterwards, the flutter 
instability of a bridge deck is considered as a more complex and demanding 
case, in which mistuning effects may become unsustainable and make the single 
TMD solution completely unfeasible. A MTMD is conceived to enlarge the 
robustness against detuning effects and its effectiveness is analytically studied. 

Chapter 8 focuses on the problem of reducing undesired levels of vibrations 
in stay cables via structural control policies. Substructure analytical models of 
the cables are adopted in the analysis. At a first stage of investigation, the 
effectiveness of an active state controller is studied in the nonlinear regime via 
analytical/numerical analysis. The main limitation of the active strategy is 
represented by the need of tracking the state of the system which, in the 
nonlinear regime, could entail serious difficulties. In order to circumvent this 
drawback, an innovative hybrid strategy combining a distributed passive 
solution and an open-loop semi-active actuation is proposed and its 
effectiveness is investigated via experimental tests and numerical simulations. 

Chapter 9 is devoted to the relevant problem of state reconstruction in the 
nonlinear dynamics of cables. The problem is theoretically solved by 
introducing a suitable state observer, capable to handle a large class of 
nonlinearities. After discussing the observability conditions of the system, the 
feasibility of the adopted observer is investigated and its application to the 
active control strategy proposed in Chapter 8 is finally discussed. 
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Abstract 
 

Challenging bridge designs are opening today numerous tasks, which mainly 
stand in the fields of bridge aeroelasticity and structural control. The thesis 
focuses on the wind-excited response of cable-supported bridges, with a 
particular attention to stability problems, and addresses two control priorities 
arising within this context: flutter suppression and cable vibration mitigation. 

The numerical modeling of bridges at the macro-level scale and the efficient 
simulation of the multivariate stochastic wind field are examined in detail in the 
first three chapters.  

Afterwards, the roles of different formulations to predict the buffeting 
response of cable-supported bridges are discussed. A particular care is devoted 
to structural model updating and to the agreement between measured and 
simulated buffeting responses. Frequency domain and time domain 
formulations for predicting the onset of the flutter instability of cable-supported 
bridges are then treated in detail. Structural nonlinearities and atmospheric 
turbulence are taken into account in the analysis as they are seen to have 
nontrivial effects on the critic and postcritic behaviors of the system. An effort 
is finally made to quantify the uncertainty of the predicted flutter velocity when 
accounting for the large experimental data scattering usually existing in wind 
tunnel tests.  

The final part of the thesis is entirely devoted to flutter suppression in bridge 
decks and vibration mitigation in cable stays. Namely, controlling cable 
galloping and bridge flutter via the use of single and multiple tuned mass 
dampers is the first topic under investigation. Afterwards, the problem of cable 
vibration control is studied. To this end, two different policies are proposed and 
investigated both theoretically and experimentally. The problem of state 
reconstruction in the nonlinear regime, arising when designing an active state 
controller for cable dynamics, is finally studied. 
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OUTLINE OF THE THESIS 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Part I: introduce the main numeric tools for bridge modeling 
and wind simulation 

Part II: study the wind-excited response of bridges and its 
stability 

Chapter 3: Use the models developed in Chapters 1-2 to analyze the 
relevance of unsteady aerodynamics in the buffeting response of cable-
supported bridges 

Chapter 4: Establish and validate a framework for predicting the 
buffeting response of cable-supported bridges with the aid of output only 
system identification and model updating 

R
esponse

Chapter 5: Formulate the flutter problem of bridge decks in the form of 
the trivial stability analysis of analytic autonomous systems using 
indicial functions 

Chapter 6: Analyze the effects of structural nonlinearities, 
atmospheric turbulence and experimental uncertainties on the 
aeroelastic stability of bridge decks 

Stability

Part III: address control priorities: flutter suppression and 
cable vibration mitigation 

Chapter 7: Study the use of multiple tuned mass dampers to suppress 
the flutter instability of bridge decks 

Chapter 8: Study an active state control strategy to suppress nonlinear 
vibrations in cable stays. Propose and analyze experimentally an 
alternative hybrid strategy combining an open loop actuation and the 
use of smart materials. 
Chapter 9: State the observability conditions for cable dynamics and 
solve the relevant problem of state reconstruction in the nonlinear 
regime. 

C
ontrol

Chapter 1: From complex to simplified numeric models of suspension 
bridges in view of nonlinear wind response analysis 

Chapter 2: Compare efficiency and accuracy of Gaussian wind 
simulation methods in the case of large dimensional domains 

M
odels
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 Complementary Part 

Chapter 3 

Chapter 1 

Chapter 4 

Chapter 5 

Bridge dynamics 

Chapter 7 

Cable dynamics 

Chapter 8 

Chapter 6 

Chapter 9 

Appendix C 

Chapter 7 

Appendix B 

Wind simulation 

Chapter 2 

Appendix A: Present the two case study bridges: the Tsing Ma Bridge 
and the New Carquinez Bridge A

ppendices

Appendix B: Report static and modal results using the simplified 
models of suspension bridges presented in Chapter 1  

Appendix C: Introduce the basic notions for modeling the nonlinear 
dynamics of cables. Present and identify the experimental model of 
suspended cable adopted in Chapter 8 to analyze the proposed control 
strategy  

Chapter 1 

Chapter 2 

Modeling 
issues 

Chapter 3 

Chapter 4 

Response 
problems 

Chapter 5 

Chapter 6 

Stability 
problems 

Chapter 7 

Chapter 7 

Chapter 8 

Control 
problems 

Chapter 9 Appendix B 

Appendix C 
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Chapter 0 
 
 
 

BASIC ASPECTS OF CABLE-SUPPORTED 
BRIDGES 
 
 
 

Abstract 
The basic notions of bridge dynamics are briefly presented, with a specific 

attention to wind-excitation and to the problems analyzed in the present thesis. 
 

0.1 Critical aspects in bridge dynamics 
The main external actions that excite long-span cable-supported bridges at 

the macro scale (see Appendix A for definitions) can be roughly classified into: 
wind loads,  traffic loads (either produced by highways and railways) and 
seismic loads. Meso-level structural components are affected by each of these 
excitations at different levels of intensity as it is represented in Figure 0.1. 

Generally speaking, wind excitation represents a severe action for towers at 
the free standing configuration (during the construction of the bridge), for the 
decking system and for long cable stays. On the contrary, the most severe action 
that affects the foundation system is certainly represented by seismic excitation. 
Traffic loads may be causes of fatigue ruptures in either main cables and 
hangers of suspension bridges (Petrini and Bontempi, 2008), as well as in the 



Filippo Ubertini  Wind effects on bridges: response, stability and control 
 
 

8 

decking system. Thus, a strong severity of this excitation in the above 
mentioned components should be accounted for (see Figure 0.1). 

 

 
Figure 0.1. Severity of different environmental actions on meso-level components 

of cable-supported bridges 

 
Figure 0.2. Severity of wind effects on meso-level components of cable-supported 

bridges 
 

As it is also emphasized in Figure 0.1, the present thesis mainly focuses on 
wind effects on the decking system and on cable stays. Taking a closer look to 
these two problems, the scenario that is depicted in Figure 0.2 is encountered. 
Namely, wind effects can be roughly classified into: response, stability, control 
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and fatigue-related problems. As an example, wind loads on cable-supported 
bridges may produce runability problems, i.e. large responses of the deck which 
may prevent running trains to cross the bridge at certain levels of external 
excitation. This can be seen as a strong response demand to the decking system. 
However, as the most severe case, wind loads may also produce aeroelastic 
stability problems (either affecting the deck or the cable stays) eventually 
leading to structural failures (severe demand). Wind response may also 
represent a severe demand for the towers at the free standing configurations, 
while it usually becomes a mild excitation for the towers during successive 
construction stages due to a change in the natural periods of these structural 
elements (Giuliano, 2007). Structural control may become a strong requirement 
for vibration suppression in long cable stays which may exhibit dynamic 
instabilities such as those ensuing from the contemporary action of wind and 
rain.  

The critical aspects which are primarily considered in the present thesis are: 
response, stability and control of deck vibrations and stability and control of 
cable vibrations (see Figure 0.2).  
 

0.2 Wind effects on bridges 
The effects of wind on the global dynamic response of cable-supported 

bridges can be subdivided into response and stability problems (see Figure 0.3). 
In response problems, there is a dynamic equilibrium between the body and the 
wind forces, while, in stability problems, interchanging energy between the 
body motion and the aeroelastic forces leads to a loss of equilibrium stability.  

The typical response problem in bridges is represented by the dynamic 
response to fluctuating wind velocities (buffeting response). Among the several 
types of possible aeroelastic instabilities occurring in long-span cable-supported 
bridges a special attention must be paid to torsional divergence (static 
instability) and to flutter (dynamic instability). The former arises when the 
system (first order systems of equations of motion) exhibits a double-zero 
eigenvalue at a certain value of the control parameter (wind velocity). This 
usually leads to an unbounded torsional response produced by the fact that the 
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aeroelastic moment overcomes the elastic resistant moment of the structure. 
Flutter is on the contrary characterized by a pair of complex conjugate 
eigenvalues with zero real parts. Usually, this leads to a coupled bending-
torsional harmonic motion characterized by a nil damping. However, a single 
degree of freedom flutter may also be encountered in some cases. 

 

 
Figure 0.3. Wind effects on bridges and on cable stays 

 
Galloping and vortex shedding are a little less relevant phenomena for bridge 

decks. The former is produced by an asymmetry in the flow which produces 
vertical oscillations of the deck. If the aerodynamic damping is greater than the 
structural damping, this vertical oscillations may become unbounded as a 
consequence of the fact that, for some body shapes, lift forces and structural 
damping forces have opposite sign. Finally, vortex shedding is a sort of 
resonant problem in which the frequency of a structural mode and the one of the 
alternating vortices arising in the wake of the body are very close to each other 
and eventually get closer (lock-in phenomenon). 

A special attention in the interaction between wind and cable-supported 
bridges should be paid to the dynamics of long cable stays. These lasts may 
exhibit large oscillations as a consequence of both response and stability 
problems (see Figure 0.3). As an example, the problem of wind-rain induced 
vibrations in cable stays was observed in many cable stayed bridges around the 
world. Unfortunately, this problem has not been solved yet and a well-
established understanding of this phenomenon is yet to come. A particular care 



Chapter 0 Basic aspects of cable-supported bridges 
 

11 

should also be paid to the vertical motion of the deck which represents an 
external excitation for the cable assuming the well-known parametric nature. 
This circumstance could lead to large cable vibrations when a global-local 
interaction exists between the whole structure and the cable itself (see Figure 
0.3).  

 
0.3 Mathematical models of cable-supported bridges 

It is of particular interest to have an idea of the type of mathematical models 
of long-span cable-supported bridges usually adopted in the technical literature 
for wind response and stability analysis. 
 

 
Figure 0.4 Statistics of bridge models available in the technical literature for wind-

bridge interaction problems 
 

By randomly selecting 41 technical papers recently published in 
international journals and specific conferences on these topics, 30 were 
referring to aeroelastic stability problems and 11 to buffeting problems. Among 
those, one can roughly define three main categories of models: bidimensional 
deck models, modal representations and tridimensional finite element (FE) 
models. Bidimensional deck models are those in which the dynamics (usually 
linear) of a bridge deck is condensed to the dynamics of an equivalent elastic 
system usually having a vertical and a torsional degree of freedom. Modal 
representations usually consider a larger number of degrees of freedom (linear 
normal modes) of the deck, but still rely on the hypothesis of a linear structural 
behavior. Finally, tridimensional FE models usually incorporate geometric 
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nonlinearities in the time domain and are often of the spine-type, i.e. the deck is 
modeled as a single equivalent frame.  

The statistics of the models are represented in Figure 0.4. The results 
emphasize that the use of tridimensional FE models is dominating in buffeting 
analysis, although modal representations of the system dynamics are also 
adopted in some cases. On the contrary, stability analysis are usually performed 
utilizing bidimensional deck models. This is somehow surprising since 
geometric nonlinearities, correctly modeled by means of tridimensional FE 
models, are more likely dominating in stability problems, involving larger 
external excitations, rather than in response ones. Indeed, though it is true that 
structural nonlinearities do not affect the critic condition which can be 
effectively predicted through a linearized dynamics, they anyway govern the 
postcritic behavior which is fundamental for structural safety evaluations. 

 
0.4 Concluding remarks 

The critical aspects of the dynamics of cable-supported bridges, with a 
particular attention to wind excitation, have been introduced using a 
multilayered approach which relies on the decomposition of the structural 
system at different scales. 
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Chapter 1 
 
 
 

HIERARCHICAL MACRO-LEVEL MODELS 
OF SUSPENSION BRIDGES 
 
 
 

Abstract 
The numerical modeling of long-span suspension bridges, at the macro-level 

scale, in view of nonlinear wind response analysis, is the topic of the present 
chapter. The aim is to compare the accuracy of simplified models with respect 
to more detailed ones, in predicting the modal parameters of an existing 
suspension bridge. The capability of simplified models in reproducing the 
geometric nonlinear behavior of the deck is also accounted for. 

 
1.1 Introduction  

Two case study bridges are considered within this thesis: the Tsing Ma 
Bridge, located in Hong Kong, China and the New Carquinez Bridge located in 
San Francisco, California. The main structural features of these bridges are 
presented in Appendix A. In this chapter the Tsing Ma Bridge is assumed as a 
benchmark to identify a sort of minimal model in view of nonlinear wind 
response analysis. To this end, three finite element (FE) macro-level models of 
the Tsing Ma Bridge, developed in the commercial Ansys CivilFEM 
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environment (Ansys Inc., 2005), are presented in order of decreasing 
complexity. The first model, called Tsing Ma Complete (TMC), is an accurate 
numeric replication of the real structure. The necessary information to build 
such a detailed model was kindly provided by Prof. Ni from Hong Kong 
University, whose advices are fully acknowledged by the author. In the second 
model, called Tsing Ma Reduced (TMR), a simplified equivalent deck is 
considered, while in the third model, called Tsing Ma Spine (TMS), the deck is 
drastically simplified to a single longitudinal frame, with cross rigid frames 
(outriggers) in correspondence of the hangers.  
 

1.2 Large dimensional models of suspension bridges 
Reduced dimensional numeric models of suspension bridges can be derived 

by properly simplifying large dimensional ones. An example of large 
dimensional model of the Tsing Ma Bridge (see Appendix A) is presented in 
this section. The model, called The Tsing Ma Complete (TMC), is validated by 
comparison with static and modal experimental results available in the 
literature. 
 
1.2.1 General FE formulation 

The TMC model is coded in the Ansys CivilFEM environment, in the 
framework of large/small-strains and large displacements. Large strain elements 
are adopted to model cables, suspenders and deck shells. In all other elements, 
strains are assumed to be infinitesimal and the large-displacements-small-strains 
formulation (large-rotations) is applied. The behavior of the materials is 
presumed to be linear elastic, with the only exception of the lateral bearings of 
the deck, which have a nonlinear constitutive behavior. The number and type of 
adopted finite elements are summarized in Table 1.1. The material properties 
adopted in the model are summarized in Table 1.2. 

Two-nodes tridimensional beams are adopted to reproduce the behavior of 
mono-dimensional elements (including hangers and main cables). In particular, 
Ansys BEAM4 elements (large deflections, small strains) are adopted to model 
deck, piers and tower frames, while BEAM188 (large deflections, large strains) 
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are utilized in the cases of cables and hangers. Both BEAM4 and BEAM188 
elements are based on Timoshenko’s beam theory, which allows transverse 
shear deformations and may be used to reproduce the behavior of both thick and 
slender beams. The lumped mass matrix is considered instead of the consistent 
mass formulation. BEAM4 elements are also adopted to model rigid bodies, by 
means of a fictitious rigid material, with no mass density. Four-nodes 
quadrilateral large-strain membrane elements (Ansys SHELL43) are adopted to 
model the behavior of the steel plates and the steel cladding of the deck. The 
lateral bearings of the deck are reproduced through tridimensional nonlinear 
links (COMBIN39) and tridimensional linear trusses with large displacements 
capability (LINK8). Additional masses (MASS21) are also adopted in special 
cases, such as to reproduce the masses and weights of the saddles on the top of 
the tower legs. Some graphical representations of the TMC model are presented 
in Figure 1.1. 

 
Group Element Type No. of Elements 

1 BEAM 4 13534 
2 BEAM 188 592 
3 SHELL 43 4589 
4 COMBIN 39 66 
5 LINK 8 34 
6 MASS 21 24 

Total No. of Elements 18839 
Table 1.1. Main features of the TMC model 

 
Material Density (kg/m3) E (N/m2) ν 

Reinforced Concrete 2400 3·1010 0.2 
Decking Steel 7800 20·1010 0.3 
Cables Steel 7935 19.6·1010 0.3 

Hangers Steel  7800 13.4·1010 0.3 
Plate Steel 16950 23·1010 0.3 

Cladding Steel 7800 20·1010 0.3 
Table 1.2. Material properties assumed in the TMC model 
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Figure 1.1. TMC FE model: global overview (a); deck and Ma Wan tower (b); 
additional longitudinal trusses near the Ma Wan tower (c); Tsing Yi span (d) 

 
In large strain elements, strains are assumed to be finite and are evaluated in 

logarithmic (true) form. The shape of the elements changes and deflections and 
rotations may be indefinitely large. In small strain elements, strains are assumed 
to be infinitesimal and engineering strain measures are adopted. Shape 
structural modifications are neglected except for rigid body motions. 
Nevertheless, stress-stiffening behavior is considered by assuming the large 
rotation hypothesis (i.e. large deflections with small strains). The stress stiffness 
matrix is formally calculated as in large strain elements, but the logarithmic 
strain measure is replaced by the nonlinear strain-displacements relation, 
truncated at the second order terms.  
 
1.2.2 Modeling Towers and Piers 

The towers are modeled as three-dimensional multilevel portal frames with 
fixed boundary conditions at the base. Soil-structure interaction is neglected in 

(d) 

(b) 

(c) 

(a)
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consideration of the relative rigidity of the underlying bedrock. The shear 
deformation of the members is also accounted for by assuming unit shear 
constants and by using tridimensional Timoshenko beam elements. In order to 
take into account of the considerable size of the cross sections in the calculation 
of the flexural rigidities, the nodes of the portal frames are modeled by means of 
rigid connections. The variation of the section properties along the height is 
reproduced by using 17 different cross sections to model the frames of each leg 
from the base to the top. 

Each of the tower legs is composed by 25 beam elements. The cross frame 
supporting the bridge deck is subdivided into 8 elements, while the remaining 3 
cross frames are modeled using 2 beam elements for each one. The masses and 
rotary inertias of the structural joints and of the cable are reproduced by means 
of three-dimensional point masses elements. Piers M1, M2, T2 and T3 are 
modeled using three-dimensional beam elements with flexural, shear and 
torsional rigidities. Pier T1 is on the contrary reproduced by means of fixed 
displacements boundary conditions. All the piers are considered as fixed at the 
base.  
 
1.2.3 Modeling Cables and Suspenders 

The main cables and the suspenders are modeled using three-dimensional 
beam elements accounting for reduced flexural rigidities provided by the 
friction between wires. The main anchorages are reproduced by means of fixed 
boundary conditions. No rotation releases are introduced in the connections. 
The cable between two suspender units is modeled by a single beam element, 
leading to 74 elements per cable in the main span and 21 elements in the Ma 
Wan span. Each of the main cables in the Tsing Yi span is modeled using 18 
beam elements. Each suspender unit is modeled by one single element 
representing the four strands.  
 
1.2.4 Modeling the Bridge Deck 

As already outlined, the bridge deck is modeled in such a way to carefully 
reproduce the decking system. The hybrid truss and box form of the deck is 
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reproduced by means of three-dimensional Timoshenko beam elements (for the 
frames) and four-nodes quadrilateral shell elements (for the steel plates and 
steel cladding). The curvature of the deck along the longitudinal axis is 
considered. Initial axial stresses are assigned to the main cables and to the 
suspenders in order to approximately preserve the same configuration after the 
application of the dead loads (see Section 1.3). All the changes encountered in 
the deck sections are accounted for, leading to 6 different sections along the 
bridge. These “typical” sections include additional longitudinal trusses near the 
towers (see Figure 1.1 c), approaching streets in the Tsing Yi side (see Figure 
1.1 d), Vierendeel cross frames and steel cladding modifications, etc. The 
connection between the deck and the towers is modeled by means of 4 vertical 
steel trusses supported by rigid links and 4 horizontal nonlinear links. The same 
approach is also adopted to model the connection between deck and piers.   

 
1.3 Models validation 

FE models of suspension bridges must be validated on the basis of the 
available information on the real structure, such as static reactions, natural 
frequencies, mode shapes and so on. This issue is discussed with reference to 
the TMC model presented in Section 1.2.  

A nonlinear static analysis under dead loads and a modal analysis on the 
linearized system are carried out.  Axial pretensions are assigned to main cables 
and hangers in the nonlinear static analysis. The initial cables stresses are 
identified through manual tuning, by satisfying the following conditions: 

- a maximum vertical deviation from the initial deck configuration of 
0.025% with respect to the length of the main span (34 cm); 

- a maximum percentage difference of 5% between the computed 
horizontal tension of the main cables in the Tsing Yi side and the value 
reported in the paper by Ni et al. (2004). 

- a maximum mean percentage difference of 4% between the first 17 
computed natural frequencies and those measured and summarized in 
the paper by Xu and Ko (1997); 
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1.3.1 Static analysis  
As summarized in Table 1.3, the vertical reactions calculated by means of 

substructure models (from towers alone to the complete one), well reproduce 
the approximated weights of the components of the Tsing Ma Bridge (see Table 
A.1).  
 

Model Vert. Reaction (t) Approx. Weight (t) 
TY tower alone 52401.6 52000 

MW tower alone 52962.3 51000 
TY-MW Towers-Cables 133741.1 129700 
TY-MW Towers-Cables-

Hangers 
135209.0 131200 

No Deck model 168420.0 164200 
Complete Model 228878.7 213200 

Table 1.3. Computed (using TMC model) vertical reactions vs. expected weights 
 

The vertical displacements of the bridge under dead loads are represented in 
Figure 1.2. A maximum vertical displacement of 0.314 m is obtained from the 
analysis, which corresponds to the 0.023 % of the bridge span. The computed 
horizontal tension of the main cables in the Tsing Yi side is Hx=388863 kN, 
which, compared to value of 405838 kN reported in the paper by Ni et al. 
(2004), gives a percentage difference of 4.2 %. Thus, the first two conditions 
stated in the introduction of this section are satisfied. 
 

-.177563    
-.150852    
-.124141    
-.09743     
-.07072     
-.044009    
-.017298    
.009413     
.036123     
.062834     
.089545     
.116256     
.142967     
.169677     
.196388     
.223099     
.24981      
.27652      
.303231      

Figure 1.2. Computed (using TMC model) vertical displacements under dead loads 
with pre-tensioned cables 

-0.178 m 
 
 
 
 
 
 
 
0.303 m 
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1.3.2 Linear normal modes  
The first 200 natural frequencies and mode shapes (linear normal modes) of 

the Tsing Ma Bridge are calculated in the neighborhood of the pre-stressed 
configuration under dead loads using the TMC model. The first 6 mode shapes 
are represented in Figure 1.3, while Figure 1.4 shows the histogram of the first 
200 natural periods. The first 17 natural frequencies of the bridge were 
experimentally measured and their values were reported in the paper by Xu and 
Ko (1997). A comparison between computed and measured natural frequencies 
is reported in Table 1.4, where the percentage differences Δ are also calculated. 
A mean percentage difference of 3.60% is obtained from the analysis, being 
therefore satisfied also the third condition stated above. 
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Figure 1.3. First 6 computed (TMC) mode shapes of the bridge 

 
The largest observed differences concern the first two torsional modes (8th 

and 12th modes) represented in Figure 1.4. However, it must be noted that the 

(TMC mode 1,  f=0.068 Hz ) (TMC mode 2,  f=0.116 Hz ) 

(TMC mode 3,  f=0.139 Hz ) (TMC mode 4,  f=0.158 Hz ) 

(TMC mode 5,  f=0.184 Hz ) (TMC mode 6,  f=0.210 Hz ) 
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frequency of the 8th mode is in good accordance with the one obtained, 
numerically, in the paper by Wong (2004), as outlined in Table 1.5.  
 

 
Figure 1.5. Histogram of the first 200 computed (TMC) natural periods 
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Figure 1.6. Hybrid torsion/bending modes calculated by means of the TMC model 

 

(TMC mode 14,  f=0.281 Hz ) (TMC mode 19,  f=0.365 Hz ) 

(TMC mode 9,  f=0.233 Hz ) (TMC mode 10,  f=0.234 Hz ) 

(TMC mode 8,  f=0.229 Hz ) (TMC mode 12,  f=0.256 Hz ) 
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Vertical Modes 
Bridge Mode TMC Xu & Ko, 1997 Δ (%) 

2 0.116 0.113 2.6 
3 0.139 0.130 6.5 
5 0.184 0.184 0.0 

11 0.242 0.241 0.4 
13 0.276 0.284 2.8 
15 0.328 0.327 0.3 

Transverse Modes 
Bridge Mode TMC Xu & Ko, 1997 Δ (%) 

1 0.068 0.069 1.4 
4 0.158 0.164 3.7 
6 0.210 0.214 1.9 
7 0.228 0.226 0.9 
9 0.233 0.236 1.3 

10 0.234 0.240 2.5 
16 0.341 0.336 1.5 
17 0.351 0.352 0.3 
20 0.383 0.381 0.5 

Torsional Modes 
Bridge Mode TMC Xu & Ko, 1997 Δ (%) 

8 0.229 0.267 14.2 
12 0.256 0.320 20.0 

MEAN DIFFERENCE Δmean (%) 3.6 
Table 1.4 Computed vs. measured natural frequencies 

 
Bridge Mode COMPUTED Wong 2004 Δ (%) 

1 0.068 0.069 1.4 
2 0.116 0.117 0.8 
8 0.229 0.238 3.8 

Table 1.5 Comparison between computed (TMC) natural frequencies and those 
obtained (numerically) by Wong (2004) 

 
The model also evidences the participation of both torsion and out-of-plane 

bending, in the 8th and 12th modes. The same circumstance is also observed in 
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the 9th and 10th bridge modes, whose calculated frequencies are 0.233 Hz and 
0.234 Hz, respectively (see Figure 1.6). Higher order hybrid torsion/bending 
modes are also detected in the analysis, such as the 14th and 19th ones, which are 
shown in Figure 1.6. These last two modes assume frequency values of 0.281 
Hz and 0.365 Hz respectively, which are not far from the first two torsional 
frequencies found by Xu and Ko (1997). These circumstances lead to presume 
that the interaction between torsion and bending produces slight frequency 
shifts in the bridge modes. Thus, in the numerical model, the torsional mass of 
the deck participates to several hybrid modes and a pure torsional mode with a 
frequency value of 0.269 Hz is hard to capture. The accordance with the 
numerical results presented in the paper by Wong (2004) confirms, to some 
extent, this hypothesis. 
 
1.4 Reduced dimensional models of suspension 

bridges 
This Section focuses on the derivation of reduced dimensional models of 

suspension bridges by simplifying large dimensional ones. This approach is 
applied to the case of the Tsing Ma Bridge for which two simplified models are 
presented in order of decreasing complexity starting from the TMC model. 

A first-step reduction of the TMC model is performed leading to a model 
called Tsing Ma reduced (TMR). An equivalent deck is adopted in the TMR 
model, utilizing a significantly smaller number of finite elements with respect to 
the TMC one. For computational convenience, large displacement trusses 
(LINK8) are adopted to reproduce the hangers, instead of large strain beams 
(BEAM188), as done in the TMC model. All other elements (towers frames, 
cables and piers) are identical in the two models. 

In the simplified deck of the TMR model all the major elements existing in 
the bridge are retained: the two longitudinal trusses and the stiffening plates. A 
single level deck is adopted, utilizing both BEAM4 and SHELL43 elements. 
The two longitudinal trusses are modeled by means of mono-dimensional 
frames, while the stiffening plates are modeled by means of shell elements. 
Mono-dimensional elements are also adopted to model the outriggers of the 
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deck. In the TMR model the number of elements is reduced of 73% with respect 
to the TMC one. This leads to a considerable reduction of the computational 
effort, which can be roughly quantified to 75%. Some views of the TMR model 
around the Ma Wan and Tsing Yi towers are presented in Figure 1.7. 
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Figure 1.7. TMR FE model: deck and Ma Wan tower (a); deck and Tsing Yi tower 

(b); Ma Wan span (c); Tsing Yi span (d) 
 
The same axial pretensions assumed in the TMC model are assigned also to 

the main cables and hangers of the TMR model. As already done in Section 1.3, 
both static and modal results are considered for model validation purposes.  

The results of the validation process, reported in Appendix B for the seek of 
brevity, outline that the TMR model gives almost similar results to the TMC 
one and well matches the global bridge vibration features experimentally 
evaluated by Xu and Ko (1997). In particular, static and modal results are 
practically identical between the two models. Moreover, first two torsional 
modes are captured with a much better approximation by the TMR model rather 
than by the TMC one. This circumstance is due to the fact that, in the TMR 

(a) (b) 

(c) (d) 
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model, the torsional rigidities of the deck have been regulated via manual tuning 
in order to match the torsional frequencies experimentally obtained in (Xu and 
Ko,1997). 

The first torsional mode predicted using the TMR model is a hybrid 
torsional/bending one. This circumstance has been evidenced also by the TMC 
model. The 13th mode calculated by means of the TMR model is also a hybrid 
torsional/bending mode, which is quite similar and close to the 14th mode 
calculated with the TMC model (see Appendix B). These results evidence the 
good agreement between the modal parameters predicted by the TMC and the 
TMR model, even for hybrid modes. 
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Figure 1.8. TMS FE model: detailed view of the deck and the Ma Wan tower (a); 

detailed view of the deck and the Tsing Yi tower (b) 
  

The TMR model represents a good compromise between numerical accuracy 
and computational efficiency. However, a further simplified model with a 
considerably lower computational effort is required for long time dynamical 
simulations. To this end, a very light model of the bridge, called Tsing Ma spine 
model (TMS), is developed. In particular, starting from the TMR model, the 
deck is simplified to an equivalent longitudinal frame, with transverse rigid 
frames in correspondence of the hangers (see Figure 1.8).  

In the TMS model, the frames of the deck are reproduced by means of 
BEAM4 elements, with null mass density and mass weight. Concentrated 
equivalent masses, with rotary inertia in the longitudinal bridge direction, are 
placed along the deck, at a mutual distance of 18 m. Bending and torsional 

(a) (b) 
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rigidities are assigned in such a way to have the best matching as possible 
between numerical and experimental natural frequencies. In order to correctly 
evaluate the normal stresses, the thicknesses of the cross section are 7.2 m in the 
vertical direction and 36 m in the out-of-plane direction. A unit shear constant is 
assumed to account for shear deformation. Table 1.6 summarizes the total 
number of elements and nodes adopted in the three FE model of the bridge, thus 
emphasizing the significant dimension reduction achieved with the TMS model, 
with respect to the TMR and TMC ones. 
 

Group Element Type No. of Elem. 
(TMC) 

No. of Elem. 
(TMR) 

No. of Elem. 
(TMS) 

1 BEAM 4 13534 2986 823 
2 BEAM 188 592 588 588 
3 SHELL 43 4589 1440 0 
4 COMBIN 39 66 0 0 
5 LINK 8 34 190 0 
6 MASS 21 24 24 123 
Total No. of Nodes 7325 3352 1966 

Total No. of Elements 18839 5038 1534 
Table 1.6. Main features of the TMC, TMR and TMS models 

 
Again for the TMS model, validation with respect to the TMC one and to the 

experimental results available in the literature is preliminary carried out. The 
results of this validation process are reported in Appendix B. As in the previous 
case (TMR model), the TMS model is able to carefully reproduce expected 
static and modal results, with the same accuracy of the TMC model. Moreover, 
as for the TMR case, the TMS model carefully predicts also the expected 
torsional frequencies, which on the contrary are not well predicted by the TMC 
model. It is worth noting that the TMS model is also able to capture hybrid 
bending/torsional modes (see Appendix B).  

A very relevant point, when simplifying a numeric model, is to correctly 
reproduce the nonlinear stress-stiffening behavior of its components. Thus, 
attention is paid to the stress stiffening behavior of the deck predicted by either 
TMR and TMS models. 
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Figure 1.9. TMC deck: undeformed configuration (a); deformed configuration 

under central vertical load (clamped boundary conditions) (b) 

 
Figure 1.10. Nonlinear force-displacement curve of clamped-clamped deck (V 
denotes the vertical mid-span displacement, FY is the vertical reaction at the 

boundaries) 
 

The deck of the TMC model is assumed to well reproduce the behavior of 
the real bridge deck in terms of geometric nonlinearities. In order to obtain a 
similar behavior, the axial rigidities of the longitudinal elements in the TMR 
and TMS models are regulated by manual tuning. To do so, the deck of the 
TMC model clamped at the towers is considered (see Figure 1.9 (a)). A 
nonlinear static analysis is performed by linearly increasing the mid-span 
vertical displacement V of the deck (see Figure 1.9 (b)). The corresponding 
force-displacement curve is obtained by calculating, at each step, the total 
vertical reaction Fy at the boundaries. The same procedure is also applied to the 
reduced models, by varying the axial rigidities of the deck elements until the 

(a) (b) 
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obtained force-displacement curves are in good agreement with the one 
obtained with the TMC model. The results are presented in Figure 1.10 and 
emphasize the capability of the reduced models to catch the nonlinear stress-
stiffening behavior of the deck with a good approximation. 
 
1.5 Concluding remarks 

Three hierarchical numerical macro-level models of the Tsing Ma Bridge are 
developed and presented. The first model is a very detailed one which is 
adopted as a reference to validate the remaining two simplified numeric 
schemes.  

Although the reduction of the model complexity precludes the analysis of 
local phenomena, it is shown how the experimental modal parameters (linear 
normal modes) and the stiffening behavior of the deck are correctly reproduced 
by simplified models, with a dramatic reduction of the computational effort. 
This is essential to perform nonlinear transient dynamic analysis with a 
reasonable computational expense. 
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Chapter 2 
 
 
 

EFFICIENT DIGITAL SIMULATION OF 
WIND VELOCITY FIELD 
 
 
 

Abstract 
The digital simulation of the wind velocity field, modeled as a n-variate 

stationary Gaussian process, is a widely adopted tool to generate the external 
input for response analysis of wind-sensitive nonlinear structures. The problem 
does not entail any theoretical difficulty, existing already a large number of 
well-established techniques (Schuëller (ed.), 1997), such as the robust and 
accurate weighted amplitude wave superposition (WAWS) method, early 
proposed by Shinozuka and Jan (1972). However, reducing the computational 
effort required by the WAWS method is often mandatory when dealing with 
complex structures and large simulation domains. To this end, less expensive 
techniques were proposed in the literature, such as autoregressive moving 
average methods (ARMA) and approximate formulas exploiting the proper 
orthogonal decomposition (POD) of the spectral matrix. In this Chapter, a 
comparative study between WAWS, POD-based and ARMA techniques, is 
proposed, accounting for algorithm structure and computational effort. Two 
numerical examples, with increasing complexity, are considered, in order to 
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give some guidelines about which method should be preferred in consideration 
of the problem under study. 

 
2.1 Introduction 

Representing and simulating the wind velocity field has been one of the 
main topics of wind engineering for the last decades. In this framework, wind 
velocity is usually idealized as the sum of a mean part, assumed as constant 
within a conventional time interval, and a fluctuating part representing the 
atmospheric turbulence. The intensity and direction of the mean wind velocity 
in different positions within the atmospheric boundary layer are statistical 
variables that depend upon the ground roughness, the terrain topography, the 
atmospheric stratification and the geographic latitude. These parameters also 
influence the statistical properties of the atmospheric turbulence, which is 
usually modeled as a stationary zero-mean Gaussian random process (Deodatis, 
1996; Shinozuka and Deodatis, 1997). 

Several techniques were proposed in the literature in order to simulate 
Gaussian wind velocity fields to be employed in structural analysis (Simiu and 
Scanlan, 1996; Kareem and Kijewski, 2002). Among those, the classic WAWS 
method, based on the spectral representation proposed in (Shinozuka and Jan, 
1972), has proved to guarantee the best quality of the obtained results (Rossi et 
al., 2003). Nevertheless, such a procedure requires the Cholesky factorization of 
the spectral matrix, which unfortunately leads to high computational expenses, 
especially when dealing with complex structures and large simulation domains. 
These difficulties are mainly related to memory allocation and time consuming 
operations, thus requiring, on one hand, the reduction of the problem size. On 
the other hand, an accurate wind simulation is essential for predicting the wind-
induced response of flexible structures, such as transmission power lines, tall 
buildings, suspension and cable-stayed bridges, etc. Less demanding procedures 
may be obtained by exploiting the properties of the POD decomposition of the 
spectral matrix, proposed in the papers by Li and Kareem (1995), Di Paola 
(1998) and Solari and Carassale (2000). A POD-based technique, in particular, 
was recently applied to simulate the wind velocity field on a domain 
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representing a long-span suspension bridge (Carassale and Solari, 2006) with 
significantly low computational efforts. A third well-established class of 
simulation methods, is represented by autoregressive (AR) and autoregressive 
moving average (ARMA) models, early introduced in the paper by Samaras et 
al. (1985) and more recently analyzed by Di Paola and Gullo in conjunction 
with the POD decomposition of the spectral matrix (Di Paola and Gullo, 2001). 
Finally, it must be mentioned that non-Gaussian techniques were also applied in 
the literature with the aim of directly simulating wind pressure fields on 
structures. As examples, this problem was analyzed by Gioffrè et al. (2000) and 
by Borri and Facchini  (2000), among others. 

Given the above presented scenario, the principal aspects of wind simulation 
are, at first, reviewed, devoting a special care to algorithm efficiency. 
Afterwards a comparative study between WAWS, POD-based and ARMA 
techniques is performed, by considering two numerical examples. The former, 
represented by the tower of a suspension bridge, is considered to compare the 
quality of the results obtained using ARMA and POD-based methods, with 
respect to those obtained using the WAWS method. The latter, represented by 
an entire suspension bridge, is a more demanding case in which the use of the 
WAWS method becomes prohibitive. Nevertheless, ARMA and POD-based 
techniques seem to guarantee efficient and accurate simulations also for this last 
case. 
 

2.2 Stochastic wind model  
Let Ox1x2x3 be the global Cartesian reference system, identified by the unit 

vectors e1, e2 and e3 and with the origin lying on the ground. In the following 
developments, without loss of generality, it is assumed that e3 is directed in the 
gravity direction while e1 is the direction of the mean wind velocity ( )xU , 
which is therefore assumed to be parallel to the horizontal plane. Considering 
different directions of the mean wind velocity, in different positions, requires 
the definition of a local reference system (depending on the position in the 
space), without any theoretical difficulty (Carassale and Solari, 2006). 
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However, for the seek of simplicity, the only case with ( )xU  parallel to e1 is 

considered herein. Following those definitions, the wind velocity field ( )t,xV  

is usually idealized as the sum of a mean value ( ) ( )0,0,1U=xU , function of 

the absolute position ( )321 ,, xxx=x , and a stationary zero-mean fluctuation 

( ) ( )321 ,,, uuut =xu , that depends on the position and varies in time: 

( ) ( ) ( )tt ,, xuxUxV +=        (2.2.1) 

The three components 1u , 2u , 3u  of the vector ( )t,xu  represent therefore the 

longitudinal, lateral and vertical components of turbulence respectively (see 
Figure 2.1).  

 
Figure 2.1. Global reference system and turbulent wind velocity field 

 
It is well-known that the mean component ( )xU  varies with the elevation 

from the ground, following a profile that depends on the roughness of the 
terrain, the geographic latitude and the thermal stratification of the atmosphere. 
For flat terrains, within the inner boundary layer, this profile is usually 
approximated by the following logarithmic law: 

( ) 1exU ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

0

3
** ln1

z
xu

k
       (2.2.2) 
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in which 4.0* =k  is the Von Karman constant, *u  is the shear velocity and 0z  
is the roughness length.  

The atmospheric turbulence u  is usually modeled as a zero-mean, Gaussian, 
stationary random field that depends on time. If P  and P′  denote two points, 
with absolute positions x  and x′ , then, from a probabilistic point of view, the 
complete characterization of this field is ensured by the knowledge of the 
correlation function for every pair of turbulence components, that is defined as: 

( ) ( ) ( )[ ]tutuEtt jiuu ji
′′=′′ ,,,,,, xxxxR      (2.2.3) 

where E[·] is the statistic average operator. As it is well-known, assuming that u 
is ergodic, ( )tt

jiuu ′′ ,,,xxR  is given by the Fourier transform of the cross power 

spectral density function  (CPSD) between iu  and ju , namely: 

( ) ( ) ( )∫
+∞

∞−

′−′=′′ ωω ω deStt tti
uuuu jiji

,,,,, xxxxR      (2.2.4) 

where ω  is the circular frequency and i  is the imaginary unit. Most of the 
theoretical models adopted in wind engineering express the CPSD in terms of 
auto-spectra and coherence function ( )nCoh

jivv ,,xx ′ , namely: 

( ) ( ) ( ) ( )nCohnSnSnS
jijjiiji uuuuuuuu ,,,,,, xxxxxx ′′=′    (2.2.5) 

where πω 2/=n  is the frequency. The imaginary part of the CPSD (called 
quadrature spectrum) introduces a time lag between the simulated velocities, 
which may become significant for points placed in the along-wind direction x1. 
The quadrature spectrum is here neglected, since the considered examples focus 
on simulation domains located on the x2x3 plane. However, neglecting the 
quadrature spectrum does not limit the generality of the presented results, which 
apply also to the case in which the CPSD has a nonnegative imaginary part. 

The auto-spectrum ( )nS
iiuu ,x of the turbulence component ( )nui ,x , is 

usually normalized in such a way that: 
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( ) ( )∫
∞

=
0

2 , dnnS
iii uuu xxσ        (2.2.6) 

where ( )x2
iuσ  is the variance of ( )nui ,x .  

Several models have been developed in the literature to give an analytical 
representation to ( )nS

jjuu ,x , for j=1,2,3. Among those, Solari and Piccardo 

(2001) have developed the following model, which is valid within the inner 
boundary layer and in neutral regime: 

( )
( )

( ) ( )( )
( ) ( )( )( ) 3/52 /5.11

/,

xUx

xUx

x

x

j

j

j

jj

uj

uj

u

uu

Ln

LnnnS

λ

λ

σ +
=     (2.2.7) 

where ( )x
juL  is the integral length scale of the turbulence component ju , 

868.61 =λ , 434.92 =λ  and 103.63 =λ .  

Turbulence components that are orthogonal to each other are usually 
assumed to be statistically uncorrelated. On the contrary, the coherence between 
pairs of parallel turbulence components in two distinct points, tends to decrease 
with increasing distance and frequency difference. This dependency is 
traditionally modeled with simple exponential laws, assuming the following 
general form: 

( ) ( ) ( )

( )[ ] ( )[ ] ( )[ ]
( ) ( )

3,2,1

,
222

exp

,,

2
333

2
222

2
111

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

′+

′−+′−+′−
−

=′′

j

xxCxxCxxCn

nCoh

jjj

uu jj

xUxU

xxxx

 (2.2.8) 

where jsC  is the exponential decay coefficient of ju , versus a displacement in 

the longitudinal (s=1), lateral (s=2) and vertical (s=3) direction. 
By looking at equation (2.2.4) and at the previous definitions, it is clear that 

the correlation function ( )tt
jiuu ′′ ,,,xxR  depends on tt ′−  (stationary in time) 

and on the positions x  and x′ . Nevertheless it is not simply a function of the 
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absolute value of the distance xx ′− , with the consequence that the random 
field is not isotropic. Besides, it is neither homogeneous because 

( )tt
jiuu ′′ ,,,xxR  depends separately from the heights from the ground 3x  and 

3x′ . The hypothesis of isotropic random field can be admitted for an horizontal 

string-like exposed structure, along which the mean wind direction and velocity 
do not change (Di Paola, 1998).  
 
2.3 Digital simulation techniques 

For simulation purposes, the spatial domain is discretized into N points 
which usually represent significant nodes of the case study structure. The 
position of the k-th node of the simulation domain is identified by the vector 

( ) ( ) ( ) ( )( )kkkk xxx 321 ,,=x , with k=1,2,…,N. Thus the discrete wind field is 

represented by the mean velocity vectors ( ) ( )( )kk xU  and by the turbulence 

vectors ( ) ( )( )tkk ,xu : 
( ) ( )( ) ( ) ( )( ) ( ) ( )( ) Nktt kkkkkk ,,2,1,,, K=+= xuxUxV    (2.3.1) 

The projections of the turbulence vector  ( )ku  in the global reference system 

are, respectively, the longitudinal ( )ku1 , transversal ( )ku2  and vertical ( )ku3  

components of turbulence in the k-th node of the simulation domain. 
Following the discrete approach, the time-dependent random field ( )t,xu , 

representing the atmospheric turbulence, is transformed into a 3N-variate 
stationary random process ( )tu , where ( )tu  is a 3N-order vector containing the 

components ( )k
ju , for j=1,2,3, of the turbulence vectors ( ) ( )tku . Its complete 

characterization can be obtained through the power spectral density matrix: 

( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
nn

nn
n

NNN

N

uuuu

uuuu

uu

SS

SS
S

L

MOM

L

1

111

      (2.3.2) 

in which ( ) ( ) ( )nkh uu
S  are matrices of order 33× , defined as: 
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( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )⎥

⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
nSnSnS
nSnSnS
nSnSnS

n
khkhkh

khkhkh

khkhkh

kh

uuuuuu

uuuuuu

uuuuuu

332313

322212

312111

uuS    (2.3.3) 

The power spectral density matrix defined by Equation (2.3.2) is real (since the 
quadrature spectrum has been neglected), symmetric and positive definite at 
each frequency value n (Di Paola and Gullo, 2001).  In the following 
developments the two-side power spectral density matrix ( )ωuuG  will also be 

utilized: 

( )

⎪
⎪
⎩

⎪⎪
⎨

⎧

<⎟
⎠
⎞

⎜
⎝
⎛−

≥⎟
⎠
⎞

⎜
⎝
⎛

=
 0     *

22
1

0      
22

1

ωfor

ωfor
G

π
ω

π

π
ω

π
ω

uu

uu

uu

S

S
      (2.3.5) 

where the superscript * denotes the complex conjugate.  
 
2.3.1 WAWS Method 

Since ( )tu  is a 3N-variate stationary, Gaussian, random process, its 
realizations can be generated by the Priestley spectral representation:  

( ) ( )∫
+∞

∞−

= ωω Zu det ti         (2.3.6) 

where ( )ωZ  is a zero-mean normal complex random process having orthogonal 

increments ( ) ( ) ( )ωωωω ZZZ −+= dd  that satisfy the following relations: 

( )[ ]

( ) ( )[ ] ( )
⎩
⎨
⎧ ′=

=′

∀=

      

      
*

   

otherwise

ifd
ddE

dE

T

0

G
ZZ

0Z

uu ωωωω
ωω

ωω

    (2.3.7) 

Since ( )tu  is a real-valued random process, the increments ( )ωZd  also satisfy 
the Hermitian symmetry: 

( ) ( )ωω −= *ZZ dd        (2.3.8) 
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A convenient representation of ( )ωZd , satisfying equation (2.3.7), can be 
expressed in the form: 

( ) ( ) ( ) ωωωω dd wTZ =        (2.3.9) 

where ( )ωw  is a vector that contains 3N complex-valued uncorrelated white 
noises, with unit variance and Hermitian symmetry, while ( )ωT  is a 
deterministic matrix obtained through a frequency-dependent decomposition of 

( )ωuuG , namely: 

( ) ( ) ( )Tωωω *TTG uu ⋅=       (2.3.10) 

It is worth noting that the decomposition (2.3.10) is not unique. A quite 
common strategy is based on the Cholesky factorization method, which 
provides ( )ωT  in lower triangular form: 

( )

( )
( ) ( )

( ) ( ) ( )⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

ωωω

ωω
ω

ω

NNNN TTT

TT
T

332313

2221

11

0
00

K

MOMM

K

K

T    (2.3.11) 

Following the previous definitions, equation (2.3.6) can be rewritten in the 
form: 

( ) ( ) ( )∫
+∞

∞−

= ωωωω det ti wTu      (2.3.12) 

The discretized version of equation (2.3.12) can be obtained by considering a 
sequence of uniformly spaced circular frequencies kω , with step ωΔ : 

( )

⎪
⎩

⎪
⎨

⎧

+=−

+=Δ−
=

−+ ω
ω

ω

ω

ω

ω
ω

NNkfor

Nkfork

kN

k

,,2
2

1
2

,,11

2 K

K
   (2.3.13) 

where a cut-off circular frequency ωω ω Δ= 2/Nc  has been assumed. This  

leads to the following discrete expression: 
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( ) ( ) ( )∑
+∞

=

Δ≅
1k

kk
ti ket ωωωω wTu      (2.3.14) 

When matrix ( )ωT  is selected in the lower triangular form (2.3.11), equation 
(2.3.14) can be rewritten as: 

( ) ( ) ( ) NjwTetu
j

r k
krkjr

ti
j

k 3,,1,
1 1

K=Δ≅∑∑
=

+∞

=

ωωωω   (2.3.15) 

which can be used for simulation purposes by truncating the summation to the 
finite number ωN  of harmonics. The realizations of the process ( )tu  are then 

generated along a sequence of tN  uniformly spaced time instants, given by: 

( ) tj Njfortjt ,,11 K=Δ−=      (2.3.16) 

An alternative version of equation (2.3.15) was early proposed by Shinozuka 
and Jan (1971) in  the following form: 

( ) ( ) ( ) NjtTtu
j

r

N

k
rkkkjrj 3,,1,cos

1 1
K=Δ+′≅ ∑∑

= =

ωφωω
ω

 (2.3.17) 

where rkφ  are independent random phases uniformly distributed in the interval 

[ ]π2,0  and kkk δωωω +=′ , kδω  being a small random frequency introduced 

to avoid the periodicity of the signal. As observed by Di Paola (Di Paola, 1998), 
the central limit theorem ensures that the process simulated by means of 
equation (2.3.17) is asymptotically Gaussian as ωN  becomes large. Equation 

(2.3.17) is sometimes called “weighted amplitude waves superposition method” 
(WAWS) and represents the well-known generation formula using harmonics 
superposition. Equation (2.3.17) will be regarded below as the most accurate 
method, to which two alternative strategies, requiring lower computational 
efforts, are compared from the viewpoint of the quality of the obtained results. 

Both equations (2.3.15) and (2.3.17) have some computational disadvantages 
since they require to keep in memory wN  matrices of order 3N, which often 

represents a technical limit to the size of the simulation domain. Equation 
(2.3.15) may be interpreted as a multidimensional Fourier series in which the 
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fundamental circular frequency is ωΔ  and the corresponding period is 
ωπ Δ= /2pT . The simulation is thus based on the assumption that a process of 

duration pT  may be interpreted as periodic with period pT . Therefore, when a 

sample of such a process is simulated using equation (2.3.15), its total duration 
tNtΔ  must be smaller than the period pT . Besides, an adequate sampling of a 

sinusoidal function requires, at least, 8 points. This entails that the sinusoid with 
higher circular frequency cω , in equation (2.3.15), must have its period cωπ /2  

greater than 8/tΔ , being tΔ  the smallest period considered in the simulation. 
Looking at the previous considerations, the simulation parameters must be 
chosen by satisfying the following conditions (Muscolino, 2001):  

ct

t
tN ω

ππω
4

;2
≤Δ

Δ
≤Δ       (2.3.18) 

 
2.3.2 POD-based method 

An alternative to the WAWS method is represented by the POD-based 
technique proposed by Carassale and Solari (2006). With such an approach the 
matrices ( )kωT , in Equation (2.3.10), are calculated as: 

( ) ( ) ( )∑
=

=
N

r

k
r

k
rk

3

1
γω θT       (2.3.19) 

where ( )k
rγ  are the eigenvalues of the two-side power spectral density matrix 

( )kωuuG  and ( )k
rθ  are the correspondent eigenvectors. Those last are 

normalized in such a way that ( ) 1=k
rθ and assume the physical meaning of 

wind modes (Di Paola, 1998). By substituting equation (2.3.19) into equation 
(2.3.14), the simulation formula becomes: 

( ) ( ) ( ) ( )∑∑
= =

Δ≅
N

r

N

k

k
r

k
r

k
r

ti pet k

3

1 1

ω

ωγω θu      (2.3.20) 

where ( )k
rp  are complex-valued, Gaussian random numbers with unit variance: 



Filippo Ubertini  Wind effects on bridges: response, stability and control 
 
 

40 

( )[ ]
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   (2.3.21) 

where δ  denotes the Kronecker operator. The complex numbers ( )k
rp  are 

generated as: 
( ) ( ) ( )k

r
k

r
k

r IiRp +=        (2.3.22) 

where ( )k
rR  and ( )k

rI  are zero mean normal random numbers that satisfy the 
following equations: 
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The process ( )tu , in Equation (2.3.20), can be rewritten as the inverse “fast 

Fourier transform” (FFT) of a 3N-order vector ( )ωU  thus improving the 
computational efficiency (Carassale and Solari, 2006). In this case, letting  

tNtΔ=Δ /2πω  and tNN =ω , it holds: 

( ) ( ) ( ) ( )∑
= Δ

=
N
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k
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k
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ω                (2.3.24a) 
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where [ ]⋅ℑ−1  denotes the inverse FFT operator. In Equation (2.3.24b) only the 

real part is retained since, in engineering applications, the process ( )tu  is a real-
valued one.  

Equations (2.3.20) and (2.3.24) represent the process ( )tu  as the 
superposition of 3N independent fully coherent stochastic processes, which 
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represent the contribution of the different wind modes. This approach offers two 
ways for preserving both computer time and allocated memory. Indeed, 
eigenvectors and eigenvalues of ( )ωuuG  could be calculated only for a small 

number ωω NN <<ˆ  of circular frequencies and then be interpolated elsewhere. 

A suitable sequence of those circular frequency values can be calculated as 
(Carassale and Solari, 2006): 

)ˆ,,1(,
2

2ˆ
1ˆ/1

ω

ωπω NhN
tN

Nh
t

t
h K=⎟

⎠
⎞

⎜
⎝
⎛

Δ
=

−−

    (2.3.25) 

The interpolation of eigenvalues and eigenvectors of matrix ( )ωuuG  along the 

sequence defined by equation (2.3.25) can be performed as described in 
(Carassale and Solari, 2006).  

The second way of reducing the computational expense required by 
Equations (2.3.20) and (2.3.24b) is to retain, in the simulation, only the wind 
modes, say NNr 3<< , which likely produce considerable effects on the 
structural response. This can be achieved by noting that the contribution of the 

r-th wind mode has a frequency dependent spatial distribution ( )k
rθ  and a 

frequency dependent power spectral density corresponding to the eigenvalue 
( )k
rγ . The problem was treated in details by Carassale and Solari (2006) and is 

not reported here for the seek of brevity. 
Using equation (2.3.24b) for simulation purposes ( tNN =ω ) requires the 

following conditions for the simulation parameters: 

t
N

tNN c
t

c

Δ
=Δ=

Δ
==Δ

πωωπω
ω ω

ω 2
;22

   (2.3.26) 

 
2.3.3 AR and ARMA methods 

Auto regressive moving average methods generate the wind velocity field by 
filtering a 3N-order vector ( )ta  of uncorrelated band-limited Gaussian white 

noises ( )ta j , for j=1,2,…,3N, with unit variance. The turbulent velocity vector, 
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at time jt , is thus expressed through a linear combination of the previous 

events, in the following form: 

( ) ( ) ( )tittitt j

q

i
ij

p

i
ij Δ−+Δ−= ∑∑

==

aBuΦu
01

   (2.3.27) 

where iΦ  and iB  are convenient NN 33 ×  matrices, which will be better 

specified in the following developments. Equation (2.3.27) represents a general 
ARMA method, in which  p denotes the order of auto regression and q is the 
order of the moving average component. It is well known (Rossi et al., 2003) 
that an ARMA(p,q) can be approximated by an AR(p1) method, with pp >>1 , 

where the AR(p1) method can be obtained by assuming 0=q  in equation 
(2.3.27):  

( ) ( ) ( )jj

p

i
ij ttitt aBuΦu 0

1
+Δ−=∑

=

     (2.3.28) 

Equations (2.3.27) and (2.3.28) are very popular because of their computational 
efficiency. The determination of the coefficient matrices iΦ  and iB  is, in fact, 

the only delicate point, after which the simulation of the process is extremely 
fast. Nevertheless, ARMA processes may become unstable as the time step is 
reduced and the required orders to provide a good approximation may increase 
considerably as the auto and cross correlations are reduced. 

The coefficient matrices iΦ  and 0B of an AR(p) model  can be calculated 

in consideration of the covariance structure of the process. In particular, the 
NN 33 ×  correlation matrix ( )τuuR  must be defined as: 

( ) ( ) ( )[ ]ττ += ttE TuuuuR        (2.3.29) 

As already described by Equation (2.2.4), under the hypothesis of ergodicity, 
the components of  ( )τuuR  form a Fourier pair with the corresponding PSD, 

namely: 
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( ) ( )∫
+∞

∞−

= ωωτ ωτ dei
ijij

SuuR        (2.3.30) 

Assuming the shorter notation ( ) ( )ktk uuuu RR =Δ , the following system of 

algebraic equations can be obtained (Samaras et al., 1985): 
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(2.3.31) 

Once the correlation matrices are calculated by means of a FFT algorithm using 
equation (2.3.29), the coefficient matrices iΦ  can be easily determined by 

solving the system (2.3.31) through Gaussian elimination. Then it is possible to 

calculate matrix 0B , by post-multiplying equation (2.3.28) by ( )Tjtu  and 

taking the average, namely:  

( ) ( )[ ] ( ) ( )[ ] ( ) ( )[ ]j
T

j

p

i
j

T
jij

T
j ttEttitEttE uaBuuΦuu 0

1
+Δ−= ∑

=

 (2.3.32) 

By definition of correlation matrix, equation (2.3.32) may be rewritten in the 
following form: 

( ) ( ) ( )00 0
1

uauuuu BΦ RRR += ∑
=

p

i

i      (2.3.33) 

From equation (2.3.33), it follows that the covariance structure of the process is 
preserved if the following condition is satisfied: 

( ) ( ) ( )∑
=

−=
p

i
i i

1
0 00 uuuuua ΦB RRR     (2.3.34) 

Thus the choice of matrix 0B  is not unique and a possible strategy is to assume 

( )T00 uaB R=  and to obtain it through the Cholesky decomposition. 

The weighting coefficients for an ARMA(p,q) technique can be calculated 
by means of a two-steps approach, as described in (Samaras et al, 1985). In 
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particular the coefficient matrices iΦ  are calculated, at first, using equation 

(2.3.31) for an AR(p1), with pp >>1 . The coefficient matrices calculated at 
this stage are then substituted in the following equations, which can be obtained 

by post-multiplying equation (2.3.28) by  ( ) ( ) ( )[ ]T
j

T
j

T
j qttt −− aaa L1  

and taking the average: 

( ) ( )

( ) ( )∑
=

−=−

==

k

i
i
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000
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Φ

B

RR
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M      (2.3.35) 

Equations (2.3.35) can be solved in chain in order to calculate the correlation 
matrices ( )k−auR , for 1,,1,0 −= qk K . The following matrices can then be 

introduced: 
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  (2.3.36) 

The system of algebraic equations for the calculation of the unknown 

coefficient matrices [ ]TpΦΦΦ L1=  and [ ]TqBBB L1=  can thus 

be written as: 
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T       (2.3.37) 
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where I  is the qNqN ⋅×⋅ 33  identity matrix, 

( ) ( )[ ]TTT q−−= auauf RR L1  and ( ) ( )[ ]Tp−−= uuuug RR L1 .  

The above described procedure shows that implementing an ARMA(p,q) 
technique requires the calculation of the AR(p1) coefficients, under the 
assumption that AR(p1) is equivalent to ARMA(p,q). Nevertheless, one could 
adopt the AR(p1) scheme directly, also considering that the time needed for the 
generation of long time histories is of the same order in both methods. It must 
be noted, however, that the quality of the signal generated by an ARMA(p,q) 
technique is sometimes better than the quality of the one generated by an 
AR(p1) technique (Rossi et al., 2003). About this last point, it must be 
mentioned that AR(20) and ARMA(5,5), estimated by means of AR(20) to 
AR(30) techniques, provided good results for turbulent wind simulations in 
many different environmental conditions (Rossi et al., 2003). 
 
2.4 Comparison of different methods for digital wind 

simulation 
The three simulation methods presented in Section 2.3 have been 

implemented in the MATLAB (The Mathworks Inc, 2002) environment to 
simulate along-wind and across-wind turbulence velocities 1u  and 3u , 

respectively. Without loss of generality, the turbulent wind field is thus reduced 
to a 2N-variate stationary Gaussian process.  

Equation (2.3.17) is implemented as the simulation formula of the WAWS 
method, while Equation (2.3.24b) is exploited in the POD-based technique. In 
this last, the inverse FFT algorithm is adopted to convert the vector ( )ωU  to the 

time domain and get the simulated process ( )tu . An AR(p1) filter, given by 
Equation (2.3.28), with a sufficiently large p1, is considered to represent 
autoregressive methods. A two-steps approach is adopted in the implemented 
codes, following the diagram reported in Figure 2.2. As represented in such a 
diagram, there is an initial phase (indicated as “phase 0”), which must be run 
only once, after which a general number n of simulations can be performed 
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(“phase 1”). Typically, in the “phase 0”, one calculates and collects all the data 
which are needed for the successive simulations (e.g. spectral matrix, 
factorizations, coefficients, etc.). This allows minimizing the number of 
operations when simulating several wind realizations, which is usually the case 
for performing Monte Carlo simulations. The results of the “phase 0” are 
deterministic and can be stored in the computer memory. According to these 
definitions, the three methods described above can be efficiently implemented 
as follows (for a 2N-variate process): 

 
WAWS METHOD: 

- Phase 0: calculate and store ωN  Cholesky matrices ( )ωT  of dimension 

NN 22 × ; 
- Phase 1: sum ( ) ωNNN 1+  vectors ( )tu  of length tN . 

 
POD-BASED METHOD: 

- Phase 0: calculate and store ωN̂  matrices (of eigenvectors) ( )k
rθ  of 

dimension NN 22 ×  and ωNN ˆ2 ⋅  eigenvalues ( )k
rγ ; 

- Phase 1: perform ωN  interpolations of ( )k
rγ  and ωN  interpolations of 

( )k
rθ , sum N2  vectors of length ωN  and perform N2  FFTs to convert 

( )ωU  from the frequency domain to the time domain and get ( )tu . 
 
AR METHOD: 

- Phase 0: calculate and store 1p  matrices iΦ  of dimension NN 22 ×  

and one matrix 0B  of dimension NN 22 × ; 

- Phase 1: sum tN  vectors of length N2  to calculate ( )tu . 

 
The two main aspects that should be considered when comparing different 

wind simulation techniques, from a computational point of view, are: the 
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allocated memory in the “phase 0” and the time needed for each single 
simulation. The first aspect is crucial since collecting a lot of data in the 
computer RAM may cause memory overflow and thus may preclude the use of 
a certain procedure when the simulation domain is too large. The second aspect 
is even more important since it gives the measure of the computational effort 
required by the considered method.  

When comparing the quality of the results of different simulation techniques, 
the main points that should be considered are: the preservation of the wind auto-
spectra, of the wind cross-spectra and of the corresponding auto-correlation and 
cross-correlation functions.    

 
Figure 2.2. Typical computational scheme of a wind simulation technique 

 
The memory that is allocated by the WAWS method, in the “phase 0”, grows 

with the ( ) ωNN 22  law. The corresponding memory, in the POD-based method, 

roughly grows with the ( ) ωNN ˆ2 2  law, while, in the AR method, it grows with 

the ( ) 1
22 pN  law. Thus, the ratio between allocated memory in the POD-based 

method and in the WAWS method is almost equal to ωω NN /ˆ2 , while the ratio 

between allocated memory in the AR method and in the POD-based method is 

equal to ωNp ˆ/1 . In the next section it will be shown that the POD-based 
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method gives sufficiently accurate results with 256ˆ =ωN , if compared to the 

corresponding WAWS method with 16384=ωN . The POD-based method 

allows therefore reducing the memory required by the WAWS method by more 
than 90%. This practically eliminates the risk of memory overflows in many 
technical conditions. Nevertheless, if memory occupation is still representing a 
problematic issue, an AR(p1) method can be adopted, since it even guarantees a 
further memory reduction. 

From the point of view of the computational effort it must be noted that, 
using the WAWS method, the computer time increases with the ( ) ωNNN 1+  

law, since the algorithm sums ( ) ωNNN 1+  vectors of length tN . In the case of 

the POD-based method the wind field is simulated, at first, in the frequency 
domain, by summing N2  vectors of length ωN . Afterwards, it is converted 

back to the time domain through the efficient inverse FFT algorithm. By 
operating in this way, if one neglects the computational expense required by the 

interpolations of ( )k
rγ  and ( )k

rθ  and by the FFT calculations, the computer time 

roughly increases with the N2  law. Finally, the use of the AR method leads to 
even faster simulations, since it requires a computational effort that increases 
with the 11 +p  law. 
 
2.4.1 Numerical example I: the tower of a suspension bridge 

The above described wind simulation techniques are commonly employed 
for the definition of the external inputs for nonlinear analyses of slender, 
flexible structures, as described in (Augusti et al., 1990; Petrini et al., 2006; 
Gattulli et al., 2007; Cluni et al. 2007), among others. 

A first numerical example is considered to compare the three methods. The 
simulation domain is composed by 9 significant points disposed along the 
height of one tower of a suspension bridge (see Figure 2.3). The modulus of the 
mean wind velocity is assigned by means of the logarithmic profile given by 

equation (2.2.2). The parameters 4.0* =k  and smu /9.1* =  are considered 
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which produce a value of sm /0.48  at the top of the tower (node 9), as 
proposed in the paper by Solari and Carassale (2006). 

 
Figure 2.3. Example I: grid for wind simulation (a); mean wind velocity profile (b) 
 

The following matrix contains the exponential decay coefficients Cjs adopted 
herein: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

0.35.60.10
5.65.60.10
5.00.30.3

C        (2.4.1) 

The variance and the integral length scale of the turbulence components are 
assumed as follows (Solari and Piccardo, 2001):  

( )[ ]
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+−=
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     (2.4.1) 

where 00.11 =α , 75.02 =α , 25.03 =α , 00.11 =β , 25.02 =β , 10.03 =β  

and the dimensional quantities are expressed in meters and meters per seconds. 
A nil coherence is assumed between the turbulence components 1u  and 3u .  

The following simulation parameters are adopted: sample time dt=0.05 s, 
number of time and frequency steps Nt=Nω=214, frequency step amplitude 
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Δω=0.00767 rad/s, cut-off circular frequency cω =62.8 rad/s, reduced number 

of factorizations (for POD-based method only) ωN̂ =256, order of auto 

regression (for AR method only) p1=20. 

Fig
ure 2.4. Example I: wind velocity field with WAWS method: along-wind velocities 

(a); across-wind velocities (b) 
 
Simulating the 18-variate wind field with the aid of a Pentium IV Intel 

Processor, 2MB DDRAM, in the in the MATLAB 7.0.1 (The Mathworks Inc, 
2002)  environment, led to the following computer times Tsim: 

- WAWS sTsim 5.5874=  

- AR  sTsim 0.4=  

- POD  sTsim 0.21=  

The results reported above emphasize that, as expected, POD and AR method 
are more computationally efficient than the WAWS method. It is implicit, 
however, that those results strongly depend on the environment of simulation. 
Indeed, the inverse FFT algorithm adopted in Equation (2.3.24b) is directly 
available in binary language in the internal database library of MATLAB 7.0.1. 
This circumstance guarantees a high computational efficiency when converting 
( )ωU  to ( )tu  and allows to code the POD-based method using one single “do 
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loop” as in the case of the AR filter. The WAWS method, on the contrary, 
requires three nested “do loops” which justify the larger computational effort.  

The turbulent wind field simulated by means of the WAWS method is 
represented in Figure 2.4. The quality of the results obtained using the three 
different methods is analyzed in Figures 2.5-2.10. In particular the turbulence 
velocities simulated in two points (number 5 and 9 in Figure 2.3) of the 
simulation domain are considered to compare the results. Figures 2.5 and 2.6 
refer to along-wind and across-wind velocities, respectively, simulated by 
means of the WAWS method. The corresponding results obtained by means of 
the POD-based and AR methods are reported in figures 2.7-2.10. From the 
presented results it follows that: 

 
 the WAWS method gives a very accurate representation of the wind 

velocity field, in which spectra and correlation functions are very well 
conserved; 

 

 The POD method, with ωω NN <<ˆ , gives an accurate description of 

the wind field in terms of simulated spectra. In the high frequency 
range, the agreement between target and simulated spectra seems to be 
even improved with respect to the WAWS method; 

 
 AR methods seem to produce a small disagreement of the spectra in the 

very low frequency range (which usually has small effects on the 
structural response). Spectra are well conserved elsewhere; 

 
 POD and AR methods produce slight errors in the correlation functions. 

The agreement is improved as the coherence is decreased (as, for 
instance, in the across-wind components); 

 
Regarding the last point, it must be noted that the errors introduced by the POD 
method are only due to interpolation of the spectral eigenvectors and 
eigenvalues along the sequence defined by Equation (2.3.25). If no interpolation 
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is performed ( ωω NN ≡ˆ ), POD and WAWS method would give almost similar 

results since they only derive from different (but equivalent) factorizations of 
the spectral matrix. Thus, in general, the WAWS and the POD methods share 
the same potentialities in terms of the quality of the obtained results, which does 
not rigorously hold for autoregressive methods.  

Another advantage of the POD-based method is to furnish a physically 
relevant representation of the wind field in view of a structural analysis. In the 
presented case, for instance, the POD decomposition reveals that the first 
eigenvalue is much larger than the others, in all the considered frequency range. 
This can be observed in Figure 2.11 where the first ten eigenvalues rγ  
(r=1,2,…,10) are plotted versus the frequency n . Figure 2.12 shows the first six 
eigenvectors evaluated for a fixed frequency value. From such a figure it 
immediately turns out that the first, the third and the sixth blowing modes 
involve the along-wind component, while the others involve the across-wind 
one. Hybrid modes are not found since a nil coherence was assumed between 
along-wind and across-wind turbulence components. Figure 2.12 reveals that 
the first blowing mode has a shape which is similar to the mean wind profile, 
due to the strong coherence of the along-wind components along the vertical 
axis. Since the associated eigenvector is the largest one, the first blowing mode 
indicates the predominant shape of the wind load acting on the structure.  
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Figure 2.5. Example I using WAWS method (black lines denote theoretical 
functions, gray lines denote numeric approximations): PSD of along-wind velocity 
at point 5 (a); corresponding autocorrelation function (b); CPSD between along-
wind velocities at points 5 and 9 (c); corresponding cross-correlation function (d) 

Figure 2.6. Example I using WAWS method (black lines denote theoretical 
functions, gray lines denote numeric approximations): PSD of across-wind velocity 
at point 5 (a); corresponding autocorrelation function (b); CPSD between across-
wind velocities at points 5 and 9 (c); corresponding cross-correlation function (d) 
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Figure 2.7. Example I using POD method (black lines denote theoretical functions, 
gray lines denote numeric approximations): PSD of along-wind velocity at point 5 

(a); corresponding autocorrelation function (b); CPSD between along-wind 
velocities at points 5 and 9 (c); corresponding cross-correlation function (d) 

Figure 2.8. Example I using POD method (black lines denote theoretical functions, 
gray lines denote numeric approximations): PSD of across-wind velocity at point 5 

(a); corresponding autocorrelation function (b); CPSD between across-wind 
velocities at points 5 and 9 (c); corresponding cross-correlation function (d) 
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Figure 2.9. Example I using AR method (black lines denote theoretical functions, 
gray lines denote numeric approximations): PSD of along-wind velocity at point 5 

(a); corresponding autocorrelation function (b); CPSD between along-wind 
velocities at points 5 and 9 (c); corresponding cross-correlation function (d) 

Figure 2.10. Example I using AR method (black lines denote theoretical functions, 
gray lines denote numeric approximations): PSD of across-wind velocity at point 5 

(a); corresponding autocorrelation function (b); CPSD between across-wind 
velocities at points 5 and 9 (c); corresponding cross-correlation function (d) 
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Figure 2.11. Example I: first ten non-dimensional eigenvalues (POD) of 

atmospheric turbulence as a function of the frequency n 

 
Figure 2.12. Example I: first 6 blowing modes for the frequency value 

ω=0.015rad/s 

 
2.4.2 Numerical example II: the Tsing Ma Bridge 

A second, more demanding, numerical example is considered to test the 
wind simulation techniques. In particular, the wind velocity field is simulated 
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on a grid representing the Tsing Ma suspension bridge, described in Chapter 1. 
The simulation domain is constituted by 83 nodes located on the mean plan of 
the bridge (see Figure 2.13 (a)).  

The direction of the mean wind velocity is orthogonal to the plane of the 
simulation domain and its modulus is assigned by means of the logarithmic 
profile given by equation (2.2.2) (see Figure 2.13 (b)). The parameters 

4.0* =k  and smu /9.1* =  are considered which produce a value of sm /1.40  
at the mid-span. The variance and the integral length scale of the turbulence 
components are assumed in accordance to equation (2.4.1). The same 
simulation parameters adopted for example I and summarized in Table 2.1 are 
also adopted in example II. 

Figure 2.13. Example II : grid for wind simulation (a); mean wind velocity  
profile (b) 

 
The simulation using the WAWS method led, in example II, to some 

numerical difficulties to compute the Cholesky decompositions. Since the 
spectral matrix is positive definite, this circumstance was probably due to the 
large dimension of the simulation domain. Only the results obtained by means 
of the POD-based and the AR methods are therefore presented herein. 

 Simulating the 166-variate wind field using the same machine as in example 
I led to the following computer times Tsim: 

- POD  sTsim 5.90=  

- AR  sTsim 8.141=  
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The results presented above indicate that, for a large dimensional simulation 
domain, the POD method is more competitive than the AR method. This 
circumstance is opposite to what has been observed in the case of the low 
dimensional simulation domain considered in example I. The POD-based 
technique also reveals to be more efficient than the AR method when 
performing the preliminary calculations (“phase 0”). This circumstance could 
become relevant when computing only a few wind simulations. The following 
computer times 0T  were needed to run the “phase 0”: 

- POD  sT 6.2580 =  

- AR  sT 0.39570 =  

The above presented results emphasize that the POD-based technique can be 
faster than the AR filter. However, both methods are computationally efficient 
and practically eliminate any technical difficulty, at least for the kind of 
problems here considered.  

The quality of the simulated results is analyzed in Figures 2.14-2.17, 
referring to the along-wind and across-wind velocities at the points number 1 
(top of one tower) and 70 (bridge mid-span) indicated in Figure 2.13 (a). The 
presented results are analogous to those obtained for example I, thus indicating 
that the quality of the simulated field is, as expected, independent on the 
dimension of the simulation domain. From those results it can be also noted that 
POD and AR methods give accurate results with comparable quality and 
computational efficiency. The POD method seems to be a little more accurate in 
the low frequency range. 

The eigenvalue analysis of the spectral matrix again reveals interesting 
properties of the wind field. As an example, Figure 2.18 (a) shows the first 10 

non-dimensional eigenvalues ( )k
rγ  (r=1,…,10) plotted versus the circular 

frequency ω. A detailed view of the different paths of the eigenvalues is also 
reported in Figure 2.18 (b), showing that different paths do not cross since the 
spectral matrix must have distinct eigenvalues. As inferable from those figures 
the first blowing mode has its maximum energetic content close to the circular 
frequency value of 0.069 rad/s. The eigenvectors corresponding to the first 6 
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eigenvalues ( )k
rγ  (r=1,…,6), calculated for ω=0.069 rad/s, are reported in 

Figure 2.19. The figure shows that the first blowing mode involves the whole 
bridge in the out-of-plane (along-wind) direction, with a shape that roughly 
reproduces the first bridge mode shape. A strong dynamic effect of this mode on 
the structural response is thus expectable. The fourth blowing mode, for 
ω=0.069 Hz, is the first one concerning the across-wind velocity and 
contemporary affects the bridge deck and the main cables. 
 

Figure 2.14. Example II using POD method (black lines denote theoretical 
functions, gray lines denote numeric approximations): PSD of along-wind 

velocities at points 1 and 70 (a), (b); corresponding autocorrelation functions (c), 
(d); CPSD of along-wind velocities in points 1 and 70 (e); corresponding cross-

correlation function (f) 
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Figure 2.15. Example II using POD method (black lines denote theoretical 
functions, gray lines denote numeric approximations): PSD of across-wind 

velocities at points 1 and 70 (a), (b); corresponding autocorrelation functions (c), 
(d); CPSD between along-wind velocities at points 1 and 70 (e); corresponding 

cross-correlation function (f) 
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Figure 2.16. Example II using AR method (black lines denote theoretical functions, 
gray lines denote numeric approximations): PSD of along-wind velocities at points 
1 and 70 (a), (b); corresponding autocorrelation functions (c), (d); CPSD between 

along-wind velocities at points 1 and 70 (e); corresponding cross-correlation 
function (f) 
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Figure 2.17. Example II using AR method (black lines denote theoretical functions, 
gray lines denote numeric approximations): PSD of across-wind velocities at points 
1 and 70 (a), (b); corresponding autocorrelation functions (c), (d); CPSD between 

along-wind velocities at points 1 and 70 (e); corresponding cross-correlation 
function (f) 

 
Figure 2.18. Example II: first ten non-dimensional eigenvalues (POD) of 

atmospheric turbulence as a function of the circular frequency ω (a); interaction of 
closed eigenvalues (b) 
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Figure 2.19. Example II: first 6 blowing modes for the frequency value ω=0.069 

rad/s 

 
2.5 Concluding remarks 

Simulating the wind velocity field in large dimensional domains may 
become a very demanding computational task due to memory occupation and 
time consuming simulations. A brief review of the three main classes of 
simulation methods is proposed, devoting special care to algorithm structure 
and computational expense. Starting from the well-established WAWS method, 
based on the historical pioneering work of Shinozuka and Jan (1972), it is 
discussed how AR and POD-based techniques may be adopted in order to gain a 
higher computational efficiency.  
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A first numerical example, represented by a one-dimensional structure, is 
presented to compare the accuracy of the three methods in terms of preservation 
of wind spectra and correlation functions. From the computational viewpoint, it 
is shown that POD-based and AR techniques dramatically reduce both 
computer time and memory allocation, with respect to the WAWS method. As 
far as algorithm accuracy, as expected, the WAWS method seems to guarantee 
the best quality of the obtained results. Nevertheless, either POD-based or AR 
techniques appear to furnish a comparable accuracy with respect to the WAWS 
method. Particularly, POD-based and AR methods are seen to produce only 
slight errors in the correlation functions, when the coherence becomes large, 
while spectra are essentially well-conserved. A small disagreement of the 
spectra in the very low frequency range is observed in the case of the AR 
method, which is not the case for the POD-based technique, and in any case 
does not bias the overall quality of the obtained results.  

For larger domains, such as those of large structures and long-span bridges, 
the WAWS method seems to be non-competitive or even unfeasible. 
Conversely, AR and POD-based appear to be the only methods capable to 
efficiently simulate the wind velocity field on complex domains. However, 
when performing structural analysis, the POD method seems to be more 
attractive because the POD decomposition of the spectral matrix provides a 
significant physical representation of the wind field which gives indications of 
the potential wind dynamic effects on the structure and of the interaction 
between the structure of the loads and that of the mechanical system. Finally, 
the quality of the results obtained by means of the POD method tends 
asymptotically to that of the WAWS method as the number of calculations of 
the spectral matrix decompositions grows. The same property is not rigorously 
shared by autoregressive methods. 
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Chapter 3 
 
 
 

MODELING UNSTEADY AERODYNAMICS 
IN BUFFETING ANALYSIS OF LONG-SPAN 
BRIDGES 
 
 
 

Abstract 
The role of unsteady phenomena in the buffeting response of suspension 

bridges is analyzed with reference to a case study. To this end, time domain 
analyses are carried out to incorporate geometric nonlinearities. In particular, a 
fully aeroelastic formulation and a wide-applied simplified method which 
neglects frequency dependency and memory terms in the self-excited loads are 
adopted. The results obtained by means of the two methods are compared and 
discussed from the viewpoint of modal participations and nonlinear effects.  
 

3.1 Introduction 
Suspension bridges are significantly prone to wind action (Simiu and 

Scanlan, 1996). In particular, buffeting analysis is one of the most important 
aspects of structural reliability in modern bridge design (Thorbek and Hansen, 
1998; Ding and Lee, 2000; Chen and Kareem, 2001; Chen and Kareem, 2002). 
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Indeed, vibrations originated by turbulent wind occur at both construction and 
completion stages for the whole life of the bridge (Petrini et al., 2007). These 
vibrations are sometimes “large” in the sense that they may produce fatigue 
ruptures, discomfort, runability problems and so on.  

Traditional buffeting analysis of bridges relies on linear models in the 
frequency domain (Xu et al., 2000; Guo et al., 2007). Nevertheless, the 
hypothesis of linearization may lead to either conservative or unsafe results. In 
contrast, time domain modeling of aeroelastic loads (Salvatori and Borri, 2007), 
although much more expensive from a computational viewpoint, does not 
require the hypothesis of a linear structural behavior and can effectively predict 
non-Gaussian responses (Gusella and Materazzi, 1998; Gusella and Materazzi, 
2000). 

The wide-applied method for predicting the buffeting response of bridges in 
the time domain is represented by the quasi-steady (QS) formulation, which 
makes use of steady aerodynamic coefficients and dynamic derivatives, 
accounting for effective wind angle of attack. As it is well-known, this 
simplified method is not fully capable to catch unsteady phenomena, as it 
neglects frequency dependency and memory terms. In contrast, fully aeroelastic 
formulations are: the classic method based on aeroelastic derivatives in the time 
domain (ADTD) and the formulation using indicial functions (IF). 

Comparing the predictions obtained by using QS and ADTD formulations 
gives indications on the relevance of unsteady phenomena in the buffeting 
response of suspension bridges. This topic is addressed by considering the case 
study of the Tsing Ma Bridge, whose aerodynamic characteristics are known 
from wind tunnel tests (Zhu et al., 2002).  

 
3.2 Wind loading on bridge decks: frequency domain 

approaches 
Before entering into the details of time-domain modeling of aeroelastic 

forces on bridge decks, a brief introduction to the classic frequency domain 
approach is given in this section, starting from the classic airfoil theory. 
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 Let us consider a thin airfoil of width bB 2= , subjected to an incoming 
flow of mean velocity U (see Figure 3.1 (a)). The vertical (bending) 
displacement of the airfoil is denoted by h, while α represents its (twist) rotation 
(assumed, without loss of generality, around the center of the chord). Assuming 
a harmonic motion with circular frequency ω, self-excited lift force (Lse) and 
pitching moment (Mse) acting on the airfoil may be expressed in the following 
well-known form (Lazzari, 2005): 
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where ρ denotes the air density. Equation (3.2.1) was early obtained by 
Theodorsen, on the basis of incompressible fluids theory and gives the lift and 
moment expressions as the sum of a non-circulatory and a non-stationary 
contribution. Drag force is, as usual, neglected for airfoil motion. The non-
circulatory contribution is frequency-independent and it is related to a fluid 
portion moving rigidly with the body. Non-stationary contribution, on the 
contrary, arises due to the presence of fluid circulation around the body. This 
last is a non-conservative load, which depends on the aerodynamic coefficient 
( )kC  that is a function of the reduced frequency Ubk /ω= . The expression of 

( )kC  can be given as follows: 

( ) ( ) ( )kGikFkC +=        (3.2.2) 

where i  is the imaginary unit. Equation (3.2.2) is known as “Theodorsen’s 
circulatory function” and it is widely approximated as follows: 
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The functions ( )kF  and ( )kG  are plotted versus k/2π  in Figure 3.1 (b).  
Bridge deck sections usually have “bluff” shapes, with edges on which the 

airflow detaches. Closed expressions of aerodynamic coefficients for such kind 
of shapes cannot be assessed by fluid theory. Experimental results are adopted 
instead, following the classic theory by Simiu and Scanlan (1996). Following 
this approach, the aeroelastic forces acting on the deck (including the drag force 
D) are calculated by means of linear combinations of displacements, rotations 
and their prime derivatives, with frequency-dependent coefficients ( )kH i

* , 

( )kPi
* , ( )kAi

*  for 6,,1K=i , called “flutter derivatives” and experimentally 

measured in wind tunnel tests.  

 
Figure 3.1. Aeroelastic forces on a thin airfoil (a); real and imaginary parts of 

“Theodoresen circulatory function” (b) 
 
According to the sign conventions reported in Figure. 3.2 (a), in which the 

horizontal displacement p is introduced, the aeroelastic forces acting on a bluff 
deck section read as (Simiu and Scanlan, 1996):  
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In Equations (3.2.4) the aeroelastic forces are expressed as functions of the 
reduced frequency of the motion UBK /ω= . 
 

 
Figure 3.2. Aeroelastic forces on a bluff deck section 

 

3.3 Wind loading on bridge decks: time domain 
approaches 

Frequency domain approaches require the fundamental hypothesis of a 
structural linear behavior. As it is well known, this hypothesis may become 
essentially inadequate for flexible structures such as cables, bridges, etc. which 
have a geometric nonlinear behavior. In all these cases, time domain 
representations of aeroelastic forces must be preferred. This topic was 
extensively analyzed in the paper by Lazzari (2005), in which the following two 
formulations were presented in order of increasing complexity: 

(a) (b) 
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- “Quasi-steady formulation” (QS), which neglects frequency 
dependency and memory terms; 

- “Theory of aeroelastic derivatives in the time domain” (ADTD), which 
accounts for frequency-dependent behavior and memory terms. 

 
3.3.1 Aeroelastic derivatives in the time domain (ADTD) 

With reference to a general bluff section of a bridge deck, subjected to an 
incoming mean flow of intensity U, the drag force D(t), the lift force L(t) and 
the aerodynamic moment M(t) are defined following the sign conventions 
reported in Figure 3.2 (b). The total wind velocity has intensity V and 
inclination Φ with respect to the mean wind direction. Given these definitions, 
the effective wind angle of attack α0 attains the value α+Φ. In the most general 
case, the aerodynamic forces are given by the sum of steady-state (subscript 
“0”), buffeting (subscript “b”) and self-excited (subscript “se”) loads. The drag, 
lift and moment aerodynamic coefficients (CD, CL and CM, respectively) can be 
measured by means of wind tunnel tests. Steady-state loads are related to the 
mean component of the incoming flow and, as a first approximation, depend 
upon the aerodynamic coefficients evaluated at the initial configuration (α0=0): 
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The presence of the atmospheric wind turbulent components u1 and u3 (see 
Chapter 2) produce buffeting forces per unit length, which can be expressed as: 
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Self-excited loads can be evaluated by expressing Equations (3.2.4) in the time 
domain, as proposed by Lazzari (2005). Let us consider, for instance, the 
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expression of the lift force. By considering the Fourier transform ( )λℑ  of a 

function of time ( )tλ  and by exploiting the relation ( ) ( )λωλ ℑ=ℑ i&  one can 
obtain an expression of the lift force fully written in the frequency domain: 
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By operating in the same way, the following matrix expression can be given: 
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A very common strategy to write the self-excited forces on a bridge deck, 
consists of deriving them from a linear superposition of impulses. Although not 
theoretically rigorous when structural nonlinearities are considered, this 
approach allows to derive time domain representation of aeroelastic forces. In 
particular, for the lift force one can write: 
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where LsehI , LsepI , αLseI  are the impulsive functions of the self-excited lift 
force with respect to the generalized displacements h , p  and α , respectively. 
The Fourier transform of Equation (3.3.5) reads as: 

( ) ( ) ( ) ( ) ( ) ( ) ( )α
ρ α ℑℑ+ℑℑ+ℑℑ=
ℑ

LseLsepLseh
se IpIhI
BU

L
2

2
  (3.3.6) 



Filippo Ubertini  Wind effects on bridges: response, stability and control 
 
 

72 

The compact form analogous to Equation (3.3.4) can thus be written as: 
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By comparing Equations (3.3.4) and (3.3.7), the following relations can be 
obtained: 
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Similar expressions to (3.3.8) can also be derived for drag and moment 
impulsive functions. Assuming in Equations (3.3.8) the so-called “rational 
function approximation” of the aeroelastic derivatives and then performing the 
inverse Fourier transform of Equations (3.3.7), the following expression of the 
Lift force can be achieved: 
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where the fourth term in the right-end-side represents the so-called “memory 
term” of the lift force. The coefficients 0a , 1a ,…, 2+ma , which appear in 

Equation (3.3.9), can be calculated by curve fitting of the aeroelastic derivatives 
exploiting the following relations: 
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The memory term which appears in Equation (3.3.9) can be efficiently 
calculated through the following recursive expression: 
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The above described approach was applied to the case of the Tsing Ma 
Bridge by Ding and Lee (2000) using wind tunnel experimental results. By 
assuming that the self-excited drag force is negligible with respect to the other 
terms involved and that coupled terms between lift and torsion are small, the 
following expression of the self-excited loads was achieved: 
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3.3.2 Quasi-steady formulation 

In the quasi-steady approach, steady aerodynamic coefficients are adopted 
by considering the relative motion between the deck and the airflow. The sign 
conventions and the definition of the aeroelastic forces are represented in Figure 
3.2 (b). The relative velocity rU  between the deck and the wind flow assumes 
the following value: 
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where 1m  is the distance between the rotation point and the center of the bridge 
deck (here neglected without loss of generality). The aeroelastic forces can thus 
be written as (Lazzari, 2005): 
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where LC , DC , MC  are the aerodynamic coefficients for lift, drag and torsion, 
respectively. Those coefficients are functions of the actual angle of attack γ, of 
the relative wind velocity, which is calculated as follows: 
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The angle ϕr between the relative wind velocity and the horizontal axis x1 is also 
utilized in Equation (3.3.14) to project the aerodynamic forces on the initial 
reference system.  

 
3.4 Buffeting response using different formulations 

A comparative study between the predicted buffeting responses using QS 
and ADTD formulations is carried out for the case study of the Tsing Ma 
Bridge. The TMS model, described in Chapter 1, is adopted in the simulation 
and the turbulent wind field is generated using the POD-based method 
described in Chapter 2. The simulations have a total duration of 600 s, using an 
integration time step dt=0.05 s. 

The aeroelastic derivatives and the aerodynamic coefficients of the Tsing Ma 
Bridge deck section were measured by means of wind tunnel tests in reference 
(Lau and Wong, 1997). Using these results, Ding and Lee (2000) calculated the 
coefficients CL1,…,CL6 and CM1,…,CM6, that appear in Equation (3.3.12), 
leading to the values summarized in Table 3.1. The aerodynamic coefficients of 
the bridge section for a nil angle of attack and their prime derivatives are also 
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reported in Table 3.1 to be adopted in the QS formulation. A drag coefficient of 
1.5 is adopted for the bridge towers, while a drag coefficient of 0.8 is assumed 
for the main cables (Cluni et al., 2007). 

The nonlinear buffeting response of the bridge is calculated at different 
values of the shear velocity u*.. The correspondence between the adopted values 
of u* and the values of the mean wind velocity Um at mid-span is reported in 
Table 3.2. The considered excitation levels are such that Um varies linearly from 
20 m/s up to 50 m/s which represents an extreme event for the bridge. Indeed, 
as reported in the paper by Beard (1995), the one minute mean wind speed with 
120 years of return period for the bridge is sm /58 . It is also worth noting that 
the mean wind velocity registered during the Typhoon York, occurred in 1997, 
at the bridge mid-span was only sm /20  (Guo et al., 2007). 
 

ADTD C1 C2 C3 C4 C5 C6 
Mse 0.26412 -0.51993 0.16645 0.29121 13.43210 5.87260 

Lse -1.08827 2.79466 0.99064 1.06341 13.09312 229.358 

QS CD(0) CL(0) CM(0) CD’(0) CM’(0) CL’(0) 

 0.135 0.090 0.063 -0.253 0.278 1.324 

 Towers: CD(0)=1.5 Cables: CD(0)=0.8  

Table 3.1. Aerodynamic coefficients of Tsing Ma deck section (Ding et al., 1999) 
 

u* (m/s) 0.950 1.425 1.900 2.375 
Um (m/s) 20.1 30.1 40.1 50.2 

Table 3.2. Correspondence between u* and mid-span mean velocities Um 
 

Figure 3.3 represents the time histories of the mid-span vertical displacement 
hm of the deck. As it can be observed from such a figure, regardless the level of 
external excitation, the ADTD formulation predicts values of hm which are 
approximately 30% smaller than those obtained by means of the QS 
formulation. This circumstance emphasizes that the QS formulation is not fully 
capable to reproduce the non-conservative aeroelastic loads caused by the 
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positive vertical and torsional aerodynamic damping exhibited by the deck of 
the Tsing Ma Bridge in wind tunnel tests (Xu et al., 2000). 

 
Figure 3.3. Time histories of vertical mid-span displacement hm computed by 

means of QS (gray line) and ADTD (black line) formulations  

 
Figure 3.4. Time history of mid-span twist angle αm computed by means of QS 

(gray line) and ADTD (black line) formulations 
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Figure 3.5. Time history of horizontal mid-span displacement pm computed by 

means of QS (gray line) and ADTD (black line) formulations 
 

 
Figure 3.6 Envelopes of maximum deck displacements computed by means of QS 
(grey lines) and ADTD (black lines) formulations for different values of the shear 

velocity u* 

 

 

 
Figure 3.7. Envelopes of maximum deck rotations computed by means of QS (grey 

lines) and ADTD (black lines) formulations for different values of the shear 
velocity u* 
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The difference between QS and ADTD formulations is not negligible and it 
seems to be independent on the excitation level. Similar conclusions can be 
made by looking at Figure 3.4, which shows the time histories of the mid-span 
twist angle αm, obtained using the two different approaches. As expected, 
having neglected self-excited terms in the out-of-plane direction, QS and ADTD 
formulation produce almost similar results as concerns the out-of-plane mid-
span displacement pm (see Figure 3.5). 

The comparison between the envelopes of the maximum deck 
displacements, obtained by means of the two different formulations, is reported 
in Figures 3.6 and 3.7. These figures emphasize that the shapes of the said 
envelopes are mostly equivalent. This circumstance suggests that the two 
approaches predict similar modal participations. In order to better investigate 
this last point,  the power spectral density functions (PSD) of the mid-span deck 
displacements are represented in Figure 3.8 for the case u*=1.9 m/s. The results 
confirm that the spectral compositions of the motions are almost independent on 
the chosen approach. Specifically, it can be observed that the out-of-plane 
motion is mainly composed by first symmetric mode (frequency 0.069 Hz). In 
the in-plane motion, the first symmetric mode is prevailing (frequency 0.141 
Hz), although the participations of the first anti-symmetric mode (frequency 
0.118 Hz) and the second symmetric mode (frequency 0.191 Hz) are also 
detected.  

The role played by nonlinearities in the buffeting response can be analyzed 
by considering the high order statistics (skewness and kurtosis) of the results. 
Namely, assuming a Gaussian wind excitation entails that, in the linear regime, 
the bridge response would also be Gaussian. This means that the expected 
values of the skewness and the kurtosis would be 0 and 3, respectively. 
However, when nonlinearities take place, a non-Gaussian response should be 
expected. As examples, Figure 3.9 represents the histograms of the vertical mid-
span displacement hm. Looking at this figure, one can hardly judge on the 
Gaussianity of the response. In order to better investigate this point,  the high 
order statistics of the generalized mid-span displacements are reported in Figure 
3.10. The presented results suggest that, mostly, the hypothesis of a Gaussian 
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bridge response is admissible, though it is sometimes inadequate. This 
circumstance is usually more evident at large levels of external excitation, 
although it may be observed even at low values of the shear velocity u* (see for 
instance the kurtosis of αm). It must be also noted that, although lower in terms 
of absolute values, the response calculated by means of the ADTD formulation 
is generally a little less Gaussian than the one predicted by using the QS theory.  
 

 

   
Figure 3.8. PSD functions of mid-span displacements computed by means of QS 

(grey lines) and ADTD (black lines) formulations (u*=1.9 m/s) 

 
Figure 3.9. Histograms of mid-span vertical displacement computed by means of 

QS (grey bars) and ADTD (black bars) formulations 
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Figure 3.10. High order statistics of generalized mid-span displacements  

 

3.5 Concluding remarks 
The role of unsteady aerodynamics in the time domain buffeting response of 

suspension bridges is discussed with reference to a case study. To this end, both 
quasi steady theory and the fully aeroelastic formulation based on aeroelastic 
derivatives in the time domain are adopted. The turbulent wind field is 
simulated by means of the POD-based technique described in Chapter 2. 

The comparison of the predicted responses using QS and ADTD 
formulations reveals that the former is not fully capable to catch unsteady 
phenomena even at low excitation levels. Indeed, in the considered case, self-
excited loads contain a positive aerodynamic damping which is correctly 
accounted for only by adopting the ADTD formulation. However, the two 
approaches are seen to furnish similar results in terms of modal participations. 

The stochastic analysis of the results indicates that the wind-excited response 
of the bridge is influenced by nonlinear phenomena, sometimes even at low 
vibration amplitudes. This circumstance is more evident when analyzing the 
results obtained by means of the ADTD formulation rather than those obtained 
using the QS theory.  
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Chapter 4 
 
 
 

BUFFETING ANALYSIS OF BRIDGES 
BASED ON FIELD MEASUREMENTS 
 
 
 

Abstract 
A framework for numerically predicting the buffeting response of long-span 

bridges is established, which makes use of field measurements. In order to 
validate the proposed computational scheme, the numerical predictions are 
compared to the measured responses for the case study of the New Carquinez 
Bridge. To this end, the results of the system identification performed elsewhere 
are adopted to update a finite element model of the structure, via an 
optimization technique. After checking the agreement between theoretical and 
measured wind spectra, the turbulent wind field is artificially generated via 
proper orthogonal decomposition of the spectral matrix. The results of the 
nonlinear response analysis emphasize the good agreement between predicted 
and measured accelerations of the deck, both in time and frequency domain. 

 

4.1 Introduction 
Numerical prediction of the dynamical behavior of long-span bridges under 

operating conditions is necessary for structural safety analysis, remaining 
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lifetime evaluation, etc. To this end, structural monitoring and system 
identification are essential tools to calibrate the numeric models in order to 
obtain realistic results.  

Because of the difficulty to measure excitation to long-span bridges, 
stochastic system identification techniques have been paid close attention to, 
with no need of input information (Magalhães et al., 2007; Betti et al., 2008). In 
addition, when performing numerical simulations, a particular care must be paid 
on characterizing and simulating the wind field. This problem can be treated as 
described in Chapter 2. Due to the complexity of the problem under 
investigation, comparison with field measurements is the only way to validate, 
to some extent, the numerical frameworks which are established in order to 
predict the wind-excited response of a bridge (Xu et al, 2007).  

This chapter focuses on predicting the wind-excited response of a newly 
built suspension bridge, making use of field measurements. The considered case 
study is represented by the New Carquinez Bridge (NCB), San Francisco. The 
main topic under investigation is the agreement between the field measurements 
and the numerical predictions obtained by using updated structural as well as 
wind field models. The results of the data driven stochastic system 
identification (SSI/data) of the NCB are adopted to update the structural model. 
Time domain quasi steady representation of aerodynamic loads is adopted since 
this approach makes use of steady aerodynamic coefficients and does not 
require to measure the aeroelastic derivatives of the deck, which are usually 
affected by a large data scattering.  
 

4.2 Governing relations 
 
4.2.1 Model updating technique 

Identified modal parameters are employed to update the numerical model of 
the NCB. To this end, a first order optimization technique is here adopted such 
that the optimal model, depending on the p design parameters X1,…, Xp, is 
identified by minimizing the following cost function (Gentile and Gallino 
2008): 



Chapter IV Buffeting analysis of bridges based on field measurements 
 

83 

( )
∑
=

−⋅
=

N

i
E

i

E
ipii

f

fXXXfw
J

1

21
* ,,, K

                         (4.2.1) 

where fi
E and fi

* represent the i-th expected and calculated natural frequencies of 
the structure and wi are user-defined weight coefficients. A certain number N of 
modes is considered in Equation (4.2.1). 

The first order optimization technique is an iterative procedure to find a 
minimum of the cost function. Particularly, the algorithm calculates, at each 
iteration, the gradients of the cost function with respect to the design parameters 
and determines a search direction for the next design point. Thus, each iteration 
is composed by sub-iterations, i.e. by several analysis loops. In the presented 
case, each single loop consists in a nonlinear static analysis followed by the 
modal analysis.  

The design variables are constrained to vary within a user defined feasible 
region of the design space. No further limit to the size of the line search step is 
assumed, which therefore can be as large as the design range. The gradients of 
the cost function are calculated by adopting a forward difference which is equal 
to 0.2 % of the design variable range. 

Convergence to an optimum is achieved when the change in the cost 
function from the best design, or from the previous design, to the current one is 
smaller than a given tolerance, which is assumed to be equal to one percent of 
the current value. Since the method starts from an existing point in design space 
and tries to find a path toward the minimum, it should be checked that it does 
not find a local minimum instead of a global one. Unfortunately, a minimum 
can hardly be judged to be local or global without the knowledge of the 
objective function in the whole design space. Nonetheless, some carefulness in 
the optimization can help to improve the obtained results by limiting the risk 
that the algorithm is stuck into a local minimum. First of all, the initial design 
point should be chosen in such a way that it is already close to the optimal 
design set. This obviously outlines the need of developing an initial model 
which is an accurate replication of the real structure and contains as much 
information as possible about the structure itself. By operating in this way, it is 
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possible to choose a limited number of design variables and to restrict their 
variability within reasonable limits. Particularly, the design variables will be 
those for which the largest sensitivities of the cost function are evidenced. 
Several attempts to find the global minimum should then be performed. 
Particularly, the initial design point and the region of the design space in which 
design variables can vary must be manually adjusted until a satisfactory 
reduction of the cost function is obtained after optimization. Usually, 
convergence to a minimum should be achieved after about 5-10 iterations. The 
combination of initial design set and limits of design variables offering the 
minimum value of the cost function is the feasible global minimum or, at least, 
a good approximation of it. Although more computationally demanding than 
other possible optimization strategies, the first order method is found to be 
effective and feasible for the presented case. 
 
4.2.2 Wind simulation technique 

As customary in wind engineering the wind velocity field is idealized as the 
sum of a mean value, following the well-know logarithmic law, and a 
multivariate stationary Gaussian zero-mean fluctuation (atmospheric 
turbulence) that depends on the position and varies in time (see Chapter 2).  

For response analysis purposes, it is necessary to simulate tridimensional 
correlated turbulent wind velocities in a certain number n of points, which 
usually correspond to relevant nodes of the numerical model of the structure. 
This reflects on a 3n-variate Gaussian stochastic process. The efficient POD-
based method described and implemented in Chapter 2 is adopted for wind 
simulation purposes.  

 

4.3 Wind measurement data 
Four records of the horizontal wind velocity and its direction, in 

correspondence of the bridge mid-span, are available. The measured along-wind 
velocity records V (i.e. the measured records projected onto the mean wind 
direction) are shown in Figure 4.1. In table 4.1, the mean along-wind velocity, 
the mean direction Dir (270° correspond to west-ward direction, i.e. transversal 
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to the bridge deck), the longitudinal turbulence intensity and the skewness and 
kurtosis of the along-wind velocity, are reported for each data set. The 
calculated values of skewness and kurtosis are almost close to 0 and 3, 
respectively, which correspond to the Gaussian distribution. This circumstance 
indicates that the hypothesis of a Gaussian stochastic wind field, usually 
assumed in the technical literature, is an acceptable simplification. 

 

 
Figure 4.1 Time history records of along-wind velocities 

 

Figure 4.2 Comparison between measured and theoretical auto-spectra of along-
wind velocities 
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Figure 4.3 Comparison between measured and theoretical auto-spectra of across-

wind horizontal velocities 
 

Date Mean 
[m/sec] 

Dir [°] Turb. Int. [%] Skewness Kurtosis 

04-Jan-08 30.9 195.8 31.8 -0.0293 2.4152 
22-Feb-08 7.7 283.0 6.82 -0.0349 2.3858 
23-Feb-08 8.1 179.5 43.8 0.6872 3.5599 
24-Feb-08 8.1 230.5 9.66 -0.2994 3.2861 

Table 4.1 Stochastic characteristics of wind velocity measurements 
 
The model by Solari and Piccardo (2001), which requires the knowledge of 

the roughness length z0, is adopted to give an analytical representation to wind 
spectra (see Chapter 2). The characterization of the wind environment at the site 
of the NCB was performed at the West Wind Laboratory (Ragget, 1998). From 
the referenced report it can be seen that the appropriate roughness length z0 for a 
“coastal” exposure, such as the one of the NCB, is equal to 0.005 m. By 
assuming this value, the agreement between theoretical and measured auto-
spectra that is shown in Figures 4.2 and 4.3 is obtained. 

The results presented in Figures 4.2 and 4.3 emphasize that the model by 
Solari and Piccardo (2001) well matches the power spectral density functions 
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(auto-spectra) of the measured along-wind ad across-wind velocities. It is worth 
noting that the spectra that are shown in Figures 4.2 and 4.3 are normalized to 
the variance of the turbulent velocities and multiplied by the frequency. Based 
on the presented results it is also assumed that the same model works for 
vertical turbulent components as well.  

 

4.4 FE structural modeling and updating 
A spine-type tridimensional nonlinear FE model of the NCB, which is 

composed by 947 finite elements and 652 nodes, is developed in the ANSYS 
environment (Ansys Inc. 2005). A graphical view of the model is presented in 
Figure 4.4. The orthotropic deck is modeled by an equivalent longitudinal frame 
completed by outriggers in correspondence of each hanger. The frames of the 
deck are reproduced by means of BEAM4 elements, i.e. tridimensional elastic 
beams, capable for large displacements and small strains. A null mass density 
and mass weight is assigned to these elements, while lumped equivalent masses 
(MASS 21 elements), with rotary inertia in the longitudinal direction, are placed 
along the deck, in correspondence of each suspender (i.e. at a mutual distance of 
12.5 m). BEAM 4 elements are also adopted to model either horizontal and 
vertical frames of the towers. BEAM 188 elements, i.e. large displacements and 
large strains beam elements, are adopted to model the main cables and the 
suspenders. 

 

 
Figure 4.4 FE model representing the New Carquinez Bridge 

 
The deck is rigidly linked to the towers in the lateral direction. In the vertical 

direction it is supported by rocker links placed on the edges of the outriggers 
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and connected to the lower horizontal beams of the towers. The rocker links are 
axially rigid vertical steel beams which can undergo elastic bending deflections. 
Thus, small relative longitudinal displacements between the deck and the towers 
are allowed.  Similarly, the deck in correspondence of the bridge ends is 
restrained in the lateral direction and supported by rocker links in the vertical 
direction. The tower saddles have been reproduced by means of rigid bodies 
with a rotational hinge in correspondence of the tower vertical frames (the 
saddles are constrained to rotate in their planes). Equivalent six-degrees of 
freedom elastic springs have been placed at the bottom of the vertical frames of 
the towers to reproduce soil-piles deformability. The masses of the pile caps 
have been lumped at the bottom of each tower leg. 

 
Mode 

no. 
Frequencies (Hz) 

Shape Δ (%) 
Calculated Expected 

1 0.136 0.136 symmetric transverse 0.0 

2 0.144 0.144 anti-symmetric 
longitudinal/vertical 0.0 

3 0.200 0.193 symmetric vertical 3.5 
Mean percentage difference Δmean (%) 1.2 

Table 4.2 Calculated vs. expected (PTG model) modal frequencies of the bridge 
 

 Axial forces (kN)  
Section Calculated Expected Δ (%) 

South lateral 95557 96521 1.0 
South main 88769 88515 0.3 
North main 88895 88960 0.1 
North lateral 91895 92963 1.2 

Mean percentage difference Δmean (%) 0.6 
Table 4.3 Calculated vs. expected (PTG model) axial forces in main cables 

 
The pre-stressed initial configuration is achieved by increasing the initial 

curvature of the deck such that, after the application of the self weight, it almost 
assumes the prescribed curved shape. By operating in this way it is not 
necessary to assign initial stresses to the cables. 
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 Mode 
no. Shape wi 

Frequencies (Hz) Δ (%) 
 Objective  Calculated  

Transver
se modes 

1 symmetric 1 0.168 0.165 1.8 
8 anti-symm. 1 0.373 0.390 4.6 

18 symmetric  0 0.538 0.589 9.5 

Vertical 
modes 

2 anti-symm. 1 0.184 0.186 1.1 
3 symmetric 1 0.193 0.195 1.0 
5 symmetric 1 0.258 0.253 1.9 
7 anti-symm. 1 0.351 0.319 9.1 

10 north span 1 0.410 0.416 1.5 
15 symmetric 0 0.479 0.476 0.6 
17 symmetric 0 0.554 0.572 3.2 
23 anti-symm. 0 0.642 0.643 0.2 
30 symmetric  0 0.797 0.777 2.5 

Torsional 
modes 

14 symmetric 1 0.461 0.472 2.4 
27 anti-symm. 1 0.742 0.729 1.8 
38 symmetric  1 0.974 0.981 0.7 

Hybrid 
modes 

12 tors./transv. 0 0.486 0.434 10.7 
13 tors./transv. 0 0.499 0.440 11.8 
29 tors./transv. 0 0.781 0.741 5.1 

Table 4.4 Objective vs. calculated natural frequencies after model updating 
 

Mean percentage difference (all frequencies) Δmean  (%) 3.9 
Initial value of the cost function J 0.115 
Final value of the cost function J 0.026 

Number of iterations 7 
Table 4.5 Optimization results 

 
The mechanical characteristics of the model were known from the 

information provided by Parsons Transportation Group (PTG) that carried out 
the initial design for the NCB. As a first check, it has been verified that the 
modal parameters (linear normal modes) predicted by the FE model developed 
in this study were in good agreement with those provided by PTG. Particularly, 
in Table 4.2, the mode shapes and natural frequencies of the first three modes of 
the bridge from the current FE model are compared with those provided by 
PTG, showing a good agreement between the calculated values and those 
obtained by PTG. As an additional check, a comparison between the calculated 
axial forces and those provided by PTG at different sections of the main cables 
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is presented in Table 4.3. Also for the axial forces in the cable, the agreement 
between the two sets of values is excellent. 
 

 
 

Figure 4.5 First six linear normal modes and corresponding periods T calculated 
by means of the updated FE model 

 
An updating of the FE model was done using ten natural frequencies and 

mode shapes experimentally identified via SSI/data. This FE model updating 
was based on the optimization technique described in Section 4.2.  

The updated numerical model shows the same mode shapes experimentally 
identified via SSI/data, particularly, hybrid modes such as torsion/transverse 
and vertical/longitudinal ones. In calculating the cost function in the 
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optimization process, only the first two transverse, the first six vertical and the 
three torsional identified modes have been considered. The hybrid 
torsion/transverse modes have not been included in the cost function since they 
were not easily detectable by the numerical model for each combination of the 
design variables (i.e. at design set) and were characterized by relatively small 
participation factors. However, those modes were detected by the updated FE 
model and thus, for completeness, the agreement of the modal characteristics of 
the updated FE model with those from the data analysis has been checked in all 
the eighteen identified modes, as it is discussed below. 

 

 
Figure 4.6 First two torsional modes and corresponding periods T calculated by 

means of the updated FE model 
 

Eight optimization variables have been considered: the values of the 
translational and torsional lumped masses along the deck, the in-plane and out-
of-plane bending rigidities of the deck, the torsional rigidity of the deck, the 
bending rigidity of the rocker links and the lateral rigidities of the soil springs, 
assumed to be different for the north and south towers. 

The results of the optimization, reported in Tables 4.4 and 4.5, evidence a 
remarkable reduction of the cost function from the initial model to the final one 
with a few iterations. To have an idea of the computational expense required by 
the presented procedure it can be mentioned that the optimization was 
performed in about 20 minutes using a standard personal computer (Intel Core 2 
Duo Processor T7250, 2 GB  SDRAM). 

The mean percentage difference Δmean between the ten identified and 
calculated natural frequencies included in the cost function is equal to 2.6%, 
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while the percentage difference calculated on all the identified sixteen modes is 
equal to 3.9 % (see Table 4.5). This confirms, to some extent, the good 
agreement between the updated FE model and the experimental data. 

Looking at the percentage errors between calculated and identified natural 
frequencies, it can be observed that the largest differences concern the two 
hybrid torsion/transverse modes (modes 12 and 13) (percentage differences of 
10.7% and 11.8%, respectively). Including these two modes in the optimization 
would reduce these errors at the expense of weakening the accordance on the 
more relevant torsional and lateral modes thus deteriorating the overall quality 
of the model. For this reason and because of the difficulty to detect hybrid 
modes using the numerical model at each design set, modes 12 and 13 have not 
been included in the cost function during the optimization process. The first six 
mode shapes and the first two torsional ones, calculated by means of the 
updated FE model are shown in Figures 4.5 and 4.6.  
 

 Mode no. Calculated frequencies (Hz) Δ (%)  No SSI SSI 

Transverse 
modes 

1 0.192 0.165 14.1 
8 0.556 0.390 29.8 

18 0.763 0.589 22.8 

Vertical 
modes 

2 0.186 0.186 0.0 
3 0.195 0.195 0.0 
5 0.253 0.253 0.0 
7 0.319 0.319 0.0 

10 0.416 0.416 0.0 
15 0.476 0.476 0.0 
17 0.572 0.572 0.0 
23 0.643 0.643 0.0 
30 0.777 0.777 0.0 

Torsional 
modes 

14 0.472 0.472 0.0 
27 0.729 0.729 0.0 
38 0.981 0.981 0.0 

Hybrid 
modes 

12 0.434 0.434 0.0 
13 0.437 0.440 0.7 
29 0.763 0.781 2.4 

Table 4.6 Sensitivity of natural frequencies to soil-structure interaction (SSI)  
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Mode no. 

Calculated frequencies (Hz) 
Δ (%)  Rigid rocker 

links Elastic rocker links 

Transverse 
modes 

1 0.164 0.165 0.6 
8 0.387 0.390 0.8 

18 0.585 0.589 0.7 

Vertical 
modes 

2 0.208 0.186 10.6 
3 0.178 0.195 9.5 
5 0.243 0.253 4.1 
7 0.284 0.319 12.3 

10 0.439 0.416 5.2 
15 0.526 0.476 9.5 
17 0.617 0.572 7.3 
23 0.652 0.643 1.4 
30 0.737 0.777 5.4 

Torsional 
modes 

14 0.472 0.472 0.0 
27 0.729 0.729 0.0 
38 0.982 0.981 0.1 

Hybrid 
modes 

12 0.429 0.434 1.2 
13 0.436 0.440 0.9 
29 0.734 0.781 6.4 

Table 4.7 Sensitivity of natural frequencies to the deformability of rocker links  
 

It is important to mention that some structural details have proved to be 
essential for accurately matching the experimentally identified natural 
frequencies. First of all, modeling the center tie connecting the deck to the main 
cables at mid-span had a strong influence on the frequency of the vertical anti-
symmetric mode (mode 2 in Figure 4.5). Namely, by removing such a 
connecting element, the frequency of the first anti-symmetric in-plane mode 
varied from 0.186 Hz to 0.148 Hz, while the one of the first symmetric in-plane 
mode (mode 3 in Figure 4.5) varied from 0.195 Hz to 0.196 Hz. Soil-structure 
interaction (SSI) effects, simply modeled by means of elastic springs at the base 
of the tower frames, affected the frequencies of the out-of-plane modes, as 
evidenced in Table 4.6. The natural frequencies of the in-plane modes revealed 
to be strongly sensitive to the deformability of the rocker links at the 
boundaries. Indeed, as evidenced in Table 4.7, imposing fixed boundary 
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conditions to the deck in the longitudinal direction reflected in drastic changes 
of the frequencies of the in-plane modes.  
 
4.5 Wind-excited response: measured vs. simulated 
 
4.5.1 Digital simulation of wind velocity field 

Turbulent wind field realizations, corresponding to wind events similar to 
those registered and described in Section 4.3, are digitally simulated on a grid 
composed by 161 nodes deployed along the deck, the towers and the cables of 
the NCB. In the simulation, attention is paid to reproduce the theoretical spectra 
described in Section 4.3 and the measured mean directions, mean velocities and 
turbulence intensities at mid-span. The grid for wind simulation is shown in 
Figure 4.7 (a). 

 
Figure 4.7 Grid for digital wind simulation (a); profile of mean velocity projected 

onto the transversal direction to the deck (b) 
 
By considering all the three components of the wind velocities at each point, 

a 483-variate Gaussian stochastic process is obtained. The sample time dt=0.05 
s is assumed in the wind simulation and a total of 214 time and frequency steps 
are considered, with a cut-off circular frequency of 62.8 rad/s. For 
computational convenience, eigenvalues and eigenvectors (wind blowing 
modes) of the 483x483 spectral matrix are calculated along a sequence of 28 
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points and interpolated elsewhere as discussed in Chapter 2. No blowing modes 
are neglected in the wind simulation for accuracy. 

To have an idea of the computational effort required by the adopted method, 
it can be mentioned that each digital generation of the wind velocity field, using 
an Intel Core 2 Duo Processor T7250, 2 GB  SDRAM, required around 10 
minutes for the calculation of the frequency-dependent eigenvectors and 
eigenvalues of the spectral matrix and around 50 s for the stochastic simulation 
of the wind field. 

 

 
Figure 4.8 Comparison between simulated and theoretical spectra, cross-spectra, 

auto-correlation and cross-correlation functions 
 

In order to discuss the quality of the performed wind simulations, the case of 
the wind event registered on January 4th 2008 is here considered. Indeed, 
among the measured wind events, the one registered on January 4th 2008 is 
characterized by the largest longitudinal turbulence intensity and mean velocity. 
Thus, it is the one for which the largest dynamic excitation on the structure is 
likely to be expected. According to the experimental measurements, the 
horizontal along-wind direction on January 4th 2008 had an inclination with 
respect to the transversal direction to the bridge deck of 74.2°. This corresponds 
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to the profile of the mean velocities projected onto the transversal direction 
which is reported in Figure 4.7 (b). The auto-spectrum of the along wind 
velocity at the bridge mid-span, the cross-spectrum between the along-wind 
velocities in two close nodes at mid-span and the corresponding auto- and 
cross-correlation functions are reported in Figure 4.8 and compared to the 
objective functions. The auto-spectrum is normalized by multiplying the power 
spectral density (PSD) amplitude by the frequency and dividing it by the 
variance of the turbulent velocity. The presented results emphasize the 
capability of the method to preserve the frequency content and the level of 
correlation of the turbulent velocities. 

Figure 4.9 shows the frequency variation of the first three along-wind and 
the first three across-wind vertical eigenvalues (normalized by multiplication by 
the frequency) and the corresponding eigenvectors calculated for a frequency of 
0.1 Hz. The eigenvalues denote the energy that is associated to each blowing 
mode, while the similarity between the blowing modes and the structural mode 
shapes govern the energy that is transferred by the wind to the structure. 

 

 
Figure 4.9 First three along-wind and across-wind vertical normalized eigenvalues 

and corresponding blowing modes 
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4.5.2 Buffeting response analysis 
The nonlinear response of the bridge to turbulent wind excitation is 

evaluated by using the quasi steady (QS) representation of aerodynamic loads 
(Ding et al. 2000) which accounts for effective wind angle of attack, relative 
velocities between the structure and the airflow and makes use of steady 
aerodynamic coefficients. As it is well-known, the quasi steady theory belongs 
to the so-called “Aeroelastic Theories” (Petrini et al. 2007). This means that the 
wind loads depend on the structural response, i.e. the equations of motion 
contain self-excited terms.  

The aerodynamic coefficients of the deck of the New Carquinez Bridge were 
determined from wind tunnel experimental tests in reference (Ragget 1998). 
The drag, lift and moment aerodynamic coefficients are represented in Figure 
4.10 as functions of the effective wind angle of attack. As emphasized by the 
results shown in Figure 4.10, lift and moment coefficients are well 
approximated by straight lines and thus, as customary in buffeting analysis, the 
variability with the effective wind angle of attack is here taken into account by 
means of a first order approximation (by using the so called “aerodynamic 
derivatives” evaluated for a nil angle of attack). On the contrary, assuming a 
first order regression line for the drag coefficient would lead to quite erroneous 
results. For this reason, the drag coefficient is approximated through a fourth 
order regression line evaluated via least square approximation. It is worth 
mentioning that the calculated regression line and the experimental data have a 
statistical correlation factor equal to 0.98. 

Using the realizations of the digitally simulated stochastic wind field and the 
updated FE model of the structure, nonlinear transient buffeting analyses are 
performed to evaluate the wind-excited responses of the bridge. The equations 
of motion are integrated in time by means of the classic Newmark method 
performing Newton Raphson iterations at any integration step. A maximum 
integration time step of 0.05 s is assumed in the simulations for a total duration 
of 10 min. Buffeting loads are applied to the deck, the towers and the cables. 
According to (Ragget, 1998) the drag coefficient of the tower frames is assumed 
to be equal to 1.3 while the one of the main cables is assumed to be equal to 0.8 
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(Cluni et al. 2007). Each simulation was completed in about six hours using an 
Intel Core 2 Duo Processor T7250, 2 GB  SDRAM. 

The case of a turbulent wind field realization similar to the one measured on 
January 4th 2008 is here analyzed in some detail. Indeed, this wind event 
corresponds to the largest recorded structural responses. Figures 4.11, 4.12 and 
4.13 show the comparison between measured and simulated accelerations and 
corresponding PSD functions, at mid- and quarter-span of the deck. It is worth 
noting that in the time history plots the scales of the abscissas vary at time equal 
to 50 sec and that the PSD amplitudes are normalized to the maximum peak 
values.  

Although only a qualitative comparison can be made since measured and 
simulated wind velocities correspond to different realizations, the presented 
results emphasize a good agreement between measured and simulated structural 
responses. In particular, numeric and measured accelerations have very similar 
amplitudes which means that the aerodynamic forces of the numerical model 
are of the same order of magnitude of those existing in the real bridge. 
Moreover, the PSD functions of the predicted and measured accelerations 
exhibit peaks in correspondence of the same frequencies. This last circumstance 
is particularly evident in the cases of vertical and rotational accelerations. 
Namely, either numeric or measured vertical motions of the deck are mainly 
composed by the first two symmetric vertical modes, while the rotational 
accelerations essentially correspond to the excitation of the first and second 
torsional modes. In the case of the transversal accelerations, the records of the 
data set registered on January 4th 2008 evidence that the second and the third 
modes participate to the motion along with the first one. Numeric predictions 
confirm the presence of the leading component corresponding to the first out-of-
plane mode, with a smaller participation of the higher modes. This circumstance 
could be related to a difference between the simulated wind field and the real 
one. Indeed, as it is commented below, this difference is almost unnoticeable 
when considering different wind events.  

Table 4.8 summarizes the high order statistics of the mid-span and quarter-
span bridge responses for the case of January 4th 2008. The presented results 
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emphasize that either the numerical or the measured structural responses 
approximately follow the Gaussian distribution (skewness and kurtosis are close 
to 0 and 3, respectively). As an example, the histograms of the predicted and 
measured vertical accelerations at mid- and quarter-span for the case of January 
4th 2008 are shown in Figure 4.14.  

It is worth noting that the agreement between numerical predictions and field 
measurements is confirmed also for the other measurement sets. For example, 
the case of February 23rd 2008 is briefly analyzed in Figure 4.15 where the PSD 
amplitudes of simulated and measured mid-span responses are compared. Also 
for this case a good agreement is achieved between the two responses which 
approximately share the same frequency components. It is also worth noting 
that, in this case, both measured and simulated transversal accelerations almost 
exhibit a single component corresponding to the first transversal mode.   

 

 
Figure 4.10 Steady aerodynamic coefficients of the deck of the NCB (Scanlan and 

Jones, 1998; Ragget, 1998) 
 

Item Mid-span Vertical Transverse Rotation 

Kurtosis Measured response 3.441 3.755 3.394 
Simulated response 3.536 3.017 3.807 

Skewness Measured response 0.035 -0.522 0.003 
Simulated response -0.052 -0.058 0.080 

Item Quarter-span Vertical Transverse Rotation 

Kurtosis Measured response 2.896 3.385 3.274 
Simulated response 3.148 3.122 3.926 

Skewness Measured response 0.020 -0.142 0.024 
Simulated response 0.000 -0.009 -0.004 

Table 4.8. High order statistics of simulated and measured bridge responses  
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Figure 4.11 Comparison between simulated and measured mid- and quarter-span 

vertical responses (4th-Jan-2008 case) 
 

 
Figure 4.12 Comparison between simulated and measured mid- and quarter-span 

transversal responses (4th-January-2008 case) 
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Figure 4.13 Comparison between simulated and measured mid- and quarter-span 

rotational responses (4th-January-2008 case) 
 

 
Figure 4.14 Comparison between histograms of simulated and measured vertical 

accelerations at mid- and quarter-span (4th-January-2008 case) 
 

 
Figure 4.15 Comparison between simulated and measured mid-span responses 

(23rd-Feb-2008 case) 
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The presented results outline that the numerical procedure, updated with the 
aid of the field measurements, furnishes realistic predictions of the  dynamic 
behavior of the bridge under wind action. The validated numerical model can 
then be employed for evaluating the operability of the bridge under different 
wind conditions, for safety evaluations and so on. 
 

4.6 Concluding remarks 
A numerical procedure for computing the buffeting response of bridges 

accounting for structural monitoring data, is outlined. A case study, represented 
by a newly built suspension bridge, is chosen to test the reliability of the 
adopted computational scheme. 

 The SSI/data technique was implemented elsewhere and the identified 
modal parameters of the NCB are adopted to update a numerical FE model of 
the structure. To this end, a first order optimization technique is utilized to 
minimize the difference between identified and calculated modal frequencies. 
The adopted optimization strategy reveals to be simple and effective for the case 
study, thus guaranteeing a significant reduction of the cost function after a few 
iterations. 

Some natural frequencies calculated by means of the numerical FE model 
have exhibited a high sensitivity with respect to modeling details. Indeed, soil-
piles deformability at the bottom of the tower legs have a strong influence on 
the frequencies of the out-of-plane modes, while in-plane ones are sensibly 
affected by the boundary conditions of the deck. 

The stochastic characteristics of the available wind velocity measurements 
confirm that the assumption of a Gaussian wind can be accepted with a good 
level of approximation. The power spectral density functions of the 
measurements also emphasize a good agreement with a theoretical 
representation of wind spectra taken from the literature. These circumstances 
allow an efficient computational technique, recently proposed in the literature, 
to be adopted for digital wind generation purposes. 

As a final result, validating to some extent the proposed computational 
framework, simulated and measured buffeting responses of the bridge are 
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compared. The results emphasize a good agreement in both time and frequency 
domains between the computed response and the field measurements. 
Moreover, predicted and measured responses exhibit similar stochastic 
characteristics, approximately corresponding to the Gaussian distribution. 
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Chapter 5 
 
 
 

TIME DOMAIN AEROELASTIC STABILITY 
ANALYSIS OF BRIDGES 
 
 
 

Abstract 
The time domain aeroelastic stability analysis of bridges is studied using 

both low-dimensional and large dimensional models. Within this framework, it 
is shown how the time domain formulation using indicial functions allows to 
transform the aeroelastic stability analysis in the form of a simple direct 
eigenvalue problem. This approach is tested with reference to a case study by 
comparison with the classic frequency domain formulation based on aeroelastic 
derivatives.  
 

5.1 Introduction  
The steadily growing demand for lighter and more economical designs of 

long-span bridges, is enhancing today the risk of fluid structure interactions 
leading to aeroelastic instabilities (Bontempi and Malerba, 1994; Bontempi et 
al., 2000). Although technically tightening, a comprehensive understanding of 
this problem is still lacking and there has not yet been established a unique 
theoretical nor an experimental framework to predict the critic condition. 
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Self-excited wind loads on bridge deck sections are commonly predicted by 
identifying sets of frequency-dependent flutter derivatives, through wind tunnel 
tests conducted on cross-sectional models of the bridge deck. The major 
shortcoming of this approach is that a large data scattering is often encountered 
in wind tunnel experiments, since non-structural details may change 
significantly the aerodynamics of the deck. Thus, many experiments are 
required to determine the critical wind speed with a reasonable level of 
confidence. Computational fluid dynamics (CFD) is an alternative strategy to 
investigate, numerically, the aeroelastic behavior of bridge deck sections 
(Cavagna et al., 2005). However, CFD will unlikely replace wind tunnel testing 
in the next future, although it will surely play a role in modern bridge design. 

The critic flutter condition is a Hopf bifurcation that can be predicted 
analytically or numerically, using either bi-dimensional deck models or more 
costly tridimensional finite element (FE) numerical schemes. Both frequency 
domain (Simiu and Scanlan, 1996) and time domain (Caracoglia and Jones, 
2003; Lazzari et al., 2004) methods can be adopted for this purpose. In the 
frequency domain, the most accurate method is the so-called multi-modal 
approach, where some selected modes of the structure can contribute to the 
bridge response and to the flutter critical mode. Unfortunately, frequency 
domain approaches rely on a linear structural behavior and cannot easily handle 
the presence of non-classical damping devices and atmospheric turbulence. An 
alternative strategy, which overcomes these drawbacks, is to operate in the time 
domain. To this end, aeroelastic forces are introduced in the equations of 
motion, using time-domain formulations which are the counterparts of the 
flutter derivatives. Within this framework two classic strategies are usually 
adopted: the theory of aeroelastic derivatives in the time domain and the 
formulation based on indicial functions. The former has been presented in 
Chapter 3, while the latter is mainly considered within this chapter. 
 

5.2 Governing relations 
The most intuitive and physically relevant model which can be adopted for 

aerodynamic assessments in bridge design is represented by the so-called “deck 
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model”. This model simply considers the two degrees-of-freedom (dofs) linear 
dynamics of the bridge cross section. Although very simple, sectional models 
are those for which wind tunnel experimental results are determined and thus, in 
principle, the most consistent with the classic quasi-steady and unsteady 
formulations presented in Chapter 3. 

 

 
Figure 5.1. Two-dofs aeroelastic deck model 

 
The motion of a rigid unit-length deck portion of the bridge is considered 

(see Figure 5.1). Consistently with the definitions given in Chapter 3 of the 
aeroelastic lift L and pitching moment M, h denotes the vertical degree of 
freedom (heaving) and α denotes the rotation (twist angle). Consequently, if m 
is the translational mass and I is the mass inertial momentum of the unit-length 
deck portion, the equations of motion of this simple mechanical system read as: 

 
MkcI

Lhkhchm hh

=++
=++

ααα αα &&&

&&&
      (5.2.1) 

where ch and cα are viscous damping coefficients, while kh and kα are the elastic 
stiffness coefficients. It is worth noting that, without loss of generality, 
Equations (5.2.1) are written under the assumption that the center of mass and 
the elastic center are coincident.  
 
5.2.1 Frequency domain approach using aeroelastic derivatives 

A widely adopted method to determine the critical velocity for the onset of 
the flutter instability of a deck section, is to represent the lift and moment 
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linearly in the generalized displacements and velocities αα &&  , , , hh . The relevant 
non-dimensional coefficients appearing in the expressions of the self-excited 
loads are called “aeroelastic derivatives” (Simiu and Scanlan, 1996). These lasts 
are functions of the frequency of the motion (which is presumed to be 
harmonic) and can be evaluated either analytically, by assuming the flat plate 
analogy, or experimentally. The self-excited lift and pitching moment can thus 
be expressed as (Simiu and Scanlan, 1996): 
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In order to solve the critic flutter condition (Hopf bifurcation), it is convenient 
to rewrite the equations of motion (5.2.1) in the following form: 

( )
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     (5.2.3) 

where ξh, ξα are damping ratios and ωh, ωα are the natural circular frequencies of 
the bending and twist motions, respectively. By substituting Equations (5.2.2) 
into Equations (5.2.3) one gets the classic Flutter Equations (Simiu and Scanlan, 
1996). A harmonic solution to the Flutter problem is sought in the form: 
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where ω is the complex circular frequency of the motion, which, by definition 
of reduced frequency K, is equal to UK/B and s=Ut/B is a convenient non-
dimensional time. By substituting Equations (5.2.4) into the Flutter equations 
and by imposing that the system admits a nontrivial solution, one gets the 
following eigenvalue problem: 
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where Kh=Bωh/U and Kα=Bωα/U. Equations (5.2.5) were found in reference 
(Simiu and Scanlan, 1996) by neglecting the contributions of H4* and A4*. 
Nevertheless, the derivation of analogous expressions in which H4* and A4* are 
also retained is straightforward. The problem of finding the critical eigenvalue 
Kcrit, stated in Equation (5.2.5), is implicit in the sense that the aeroelastic 
derivatives depend on the solution Kcrit. Thus an iterative procedure is necessary 
to solve equations (5.2.5).  

The iterative procedure to find the critic eigenvalue Kcrit converges when K 
is equal to one of the calculated four roots of the characteristic equation. The 
reduced frequency K is taken therefore to be a complex number of the form 
K=Kr+ιKι, whose real part Kr denotes the frequency of the motion while the 
sign of the imaginary one dictates if the motion is growing (Kι>0) or decaying 
(Kι<0). The condition Kι=0 identifies a Hopf bifurcation point (two complex 
conjugate eigenvalues cross the imaginary axis) which represents the critic 
flutter condition (K=Kcrit) and the velocity Ucrit, at which this condition is 
satisfied, is identified as the critic flutter velocity. It is worth noting that when 
the critic eigenvalue comes into the form (0,0) a steady state bifurcation occurs 
which usually corresponds to a torsional divergence. 

A convenient strategy to find the pair (Ucrit, Kcrit) is reported in reference 
(Simiu and Scanlan, 1996). Following such an approach, the determinant of the 
matrix operator defined in Equation (5.2.5) is forced to be zero, which results in 
a complex polynomial characteristic quartic equation. By defining the unknown 
X=ω/ωh and assuming that X is real at the flutter condition, the following two 
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equations are obtained (the former for the real part and the latter for the 
imaginary part):   
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The two real equations (5.2.6a) and (5.2.6b) are solved for different values of K 
and their roots are plotted vs. K. At the point (Xcrit, Kcrit), where the two plots 
cross (with Xcrit>0), the flutter condition is identified. 
 
5.2.2 Time domain approach using indicial functions 

Time domain formulations of aeroelastic forces have a wider application 
with respect to classic frequency domain methods (Caracoglia and Jones, 2003; 
Lazzari et al., 2004). However, well-established experimental techniques 
currently exist only for the determination of the aeroelastic derivatives. Thus, 
time-domain counterparts of aeroelastic derivatives must be found, utilizing 
optimization schemes that introduce in the system a degree of approximation.  

The most effective and up-to-date method to express aeroelastic forces for 
bridge deck sections in the time domain, is probably represented by the load 
model for self-excited forces via indicial functions (Salvatori and Borri, 2007). 
This model seems promising in the sense that it was formulated directly in the 
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time domain (Bisplinghoff et al. 1955), for the thin airfoil, and it allows direct 
experimental assessments (Caracoglia and Jones, 2003). 

Wagner’s function, in thin airfoil Theory, can be considered as the first 
indicial function (Costa and Borri, 2006). A common approximation of 
Wagner’s function is due to Jones (1940), as the sum of exponential functions, 
suitable for Fourier-transforming (Costa, 2007). More general functions were 
proposed by Bisplinghoff et al. (1955), for describing aerodynamic moment and 
distinguishing the effects of the different components of the motion on self-
excited loads. The extension to bluff cross-sections of the formulation 
developed theoretically for the thin airfoil is due to Scanlan et al. (1974) and it 
is based on the exponential approximation of Wagner’s function.  

The indicial functions represent the time evolutions of the wind loads caused 
by generalized unit displacements. Thus, the self excited loads are calculated 
through convolution integrals between indicial functions and generalized 
displacements, namely: 
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As customary in aeroelasticity (Salvatori and Borri, 2007) the following 
approximation of the indicial functions via exponential filters is adopted: 
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The dimensionless parameters ai
hk and bi

hk (h=L,M, k=h,α) appearing in 
Equation (5.2.8) must be identified by matching the measured aeroelastic 
derivatives in the frequency domain. To this end, an optimization strategy can 
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be performed, in which the number of exponential groups Nhk accounts for the 
desired level of accuracy. In the optimization phase, the following equivalence 
between aeroelastic derivatives and coefficients of indicial functions must be 
exploited (Costa and Borri, 2006): 
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Looking at Equations (5.2.9), the parameters ai
hk and bi

hk (h=L, M, k=h,α) must 
be identified by fitting, at each turn, two aeroelastic derivatives simultaneously. 
In order to do so, on must minimize a suitable cost function ELh such as, for 
instance, the one proposed by Costa and Borri (2007): 
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~~ HHHHE Lh −+−=      (5.2.10) 

where *~
iH  denote the identified aeroelastic derivatives calculated by means of 

Equations (5.2.9). Analogous expressions can be derived for the cost functions 
of the remaining pairs of aeroelastic derivatives.  
 
5.3 Time domain aeroelastic stability analysis via 

direct eigenvalue problem 
The representation of self-excited wind loads through Equations (5.2.7) and 

(5.2.8) is particularly useful since it allows to express the dynamics of the 
system without using integral terms which are difficult to handle in practical 
applications. This results to be trivial for the thin airfoil using Wagner’s 
function (Coller and Chamara, 2004). A similar procedure to the one described 
in reference (Coller and Chamara, 2004) can be also applied to general bluff 
deck sections as described below. 

Similarly to what was done in reference (Lee et al., 1997), the following 
additional variables can be introduced: 
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In the case, for instance, in which one single exponential group is considered for 
each indicial functions, four additional variables are defined as: 

αα MMhLLh wwwwwwww 14131211 ====   (5.3. 2) 

By substituting Equations (5.3.2) into Equations (5.3.1) it results: 
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With the positions stated above, the equations of motion can be rewritten as: 
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Equations (5.3.4) assume the form of a linear first-order autonomous system of 
the form: 

( )xUAx =&                                (5.3.5) 
where A is a real n×n matrix, U represents the control parameter and the eight-
dimensional state vector x is defined as: 

( )Twwwwhhx 4321 ,,,,,,, αα &&=      (5.3.6) 

Clearly, the above described approach allows also to include nonlinearities in 
the system. In such a case, discussed in detail in Chapter 6, the equations of 
motion (5.3.5) are generalized as: 

( )Uxfx ,=&        (5.3.7) 
 where f denotes a convenient vector field. 
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A first glance to equations (5.3.5) and (5.3.7) reveals that considering a 
general bluff section reflects on a larger dimensional system of ordinary 
differential equations with respect to the airfoil case. Namely, the dimension of 
the first order form of the flutter problem grows as the number of exponential 
filters adopted to approximate the indicial functions. Namely, each exponential 
filter produces and additional first order equation and the minimal number of 
state variables to describe the flutter problem is equal to 8. 

In order to investigate the linear stability of an equilibrium point, a local 
linearization of Equation (5.3.7) in the form of Equation (5.3.5) must be sought. 
This reflects on a non-symmetric real matrix operator A whose eigenvalues 
judge on the stability of the chosen point. Two different formulations can be 
stated for the problem of finding eigenvalues of a non-symmetric real matrix: 
finding vectors x such that Ax = λx, and finding vectors y such that y HA = λy H 
(y H implies a complex conjugate transposition of y). Vector x denotes a right 
eigenvector, while vector y denotes a left eigenvector. Both x and y correspond 
to the same eigenvalue λ. Differently from the symmetric problem, the 
eigenvalues of a non-symmetric matrix do not form an orthogonal system and 
might also not form a linear-independent vector system (this may happen in 
case of multiple eigenvalues, where a subspace with size strictly less than k can 
correspond to the eigenvalue with multiplicity k). Moreover, the eigenvalues 
and the eigenvectors of a non-symmetric matrix could be complex even though 
the matrix operator is real. In this case, complex eigenvalues always come in 
conjugate pairs (Mailybaev et al., 2005). 
 

5.4 Time domain vs. frequency domain aeroelastic 
stability analysis of bridge decks: a case study 

The above described formulations are adopted to evaluate the critic flutter 
condition for the two-dofs deck model of the Tsing Ma Bridge (see Appendix 
A). For generality purposes, the flat plate analogy is assumed as a benchmark, 
which means that the aeroelastic derivatives of the thin airfoil are adopted in the 
analysis. In thin airfoil theory, the aeroelastic derivatives can be evaluated 
analytically as functions of the real and imaginary parts of Theodorsen’s 
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function, introduced in Section 3.2. Particularly, the following theoretical 
relations hold: 
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where k=K/2. 
 

 
Figure 5.2. Bi-dimensional analysis in the frequency domain: graphic 

determination of the critic solution (Kcrit, Xcrit) 
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Figure 5.3. Bi-dimensional analysis in the frequency domain: time histories of 

heave and rotation at criticality (a, b); phase plane projection of unstable 
harmonic orbit at post-criticality (c) 

 
B (m) ωh (rad/s) ωα (rad/s) m (kg) I (kg*m2) ξh ξα 

41 0.8859 1.6588 27778 2.5·106 0.0222 0.0384 
Table 5.1. Unit-length (1 m) deck model of the Tsing Ma bridge 

 
The characteristics of the unit-length deck model of the Tsing Ma Bridge are 

summarized in Table 5.1. The graphic solution of Equations (5.2.6) is reported 
in Figure 5.2, where the black lines denote the roots of Equation (5.2.6a), while 
red lines denote the roots of Equation (5.2.6b). As evidenced in such a figure, 
the critic flutter condition is identified as the point at which two plots cross, 
with the physical constraint X>0. The following solution is thus obtained: 

 
Frequency domain approach (H4* and A4* neglected) 
- Kcrit=   0.603 
- Xcrit=   1.245 
- ωcrit=Xcrit·ωh=  1.103 rad/s 
- Ucrit=B·ωcrit/ Kcrit= 74.9 m/s 

(a) (b) 

(c) 
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The above presented results emphasize that the frequency ωcrit of the coupled 
flutter mode, is located, as expected, between the natural values ωh and ωα. The 
time histories of heave and rotation at the critic and postcritic flutter conditions 
and the phase portrait of the postcritic motion, corresponding to Equation 
(5.2.4) are reported in Figure 5.3. By assuming a linear structural behavior the 
postcritic motion is obviously unstable. 

The calculation of the critic eigenvalue, by considering also the contribution 
of the aeroelastic derivatives H4* and A4*, in Equations (5.2.5), leads to the 
following solution: 

 
Frequency domain approach (H4* and A4* considered) 
- Kcrit=   0.7349  
- Xcrit=   1.2898 
- ωcrit=Xcrit·ωh=  1.143 rad/s 
- Ucrit=B·ωcrit/ Kcrit= 63.756 m/s 

 
Thus, in the presented case, neglecting the contribution of the aeroelastic 
derivatives H4* and A4* means overestimating the critic flutter velocity of about 
17 %. 

The solution of the flutter problem applied to the case study is also sought by 
means of the direct eigenvalue problem stated in Section 5.3 with the aid of 
indicial functions. To this end, the cost function ELh defined in Equation 
(5.2.10) is minimized using evolutionary algorithms, which are often capable to 
avoid local minima. Clearly, this procedure finds its justification only when 
working with measured aeroelastic derivatives (indeed, for the thin airfoil, 
Wagner’s function is already an analytic indicial function with no need of 
parameter fitting via optimization). However, the considered case is here 
assumed as a benchmark and the optimization is applied to the aeroelastic 
derivatives of the thin airfoil as if they were measured aeroelastic derivatives of 
the deck model.  

Figure 5.4 shows the results of the optimization when using one, two or three 
exponential groups for each indicial function. As it can be noted, one 
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exponential group already guarantees a satisfactory approximation of the 
aeroelastic derivatives reported in Equations (5.4.1). 

 

 

 

 

 
Figure 5.4. Identified aeroelastic derivatives via evolutionary algorithm using 1, 2 

and 3 exponential groups 
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The critic condition is solved for the case study using 1, 2 and 3 exponential 
groups in the indicial functions. Particularly, at each time, the value Ucrit at 
which matrix A (introduced in Equation (5.3.5)) exhibits a pair of complex 
conjugate eigenvalues with nil real parts is found. The results of the analysis are 
the following: 

 
Time domain approach using indicial functions 
- 1 Exponential group: Ucrit=66.837  m/s ωcrit=1.373 rad/s 
- 2 Exponential groups: Ucrit=64.034  m/s ωcrit=1.446 rad/s 
- 3 Exponential groups:  Ucrit=62.122 m/s ωcrit=1.501 rad/s 

 
The comparison between the results presented above and those calculated in 

the frequency domain (Ucrit=63.756 m/s and ωcrit=1.143 rad/s), reveals that 
considering more than one exponential group in the indicial functions does not 
necessarily entail a better approximation of the critic condition. Particularly, the 
case with two exponential groups results to be the most accurate in predicting 
the critic velocity, while the one with one single exponential group is the most 
accurate in predicting the circular frequency of the critic motion. However, one 
single exponential group is already sufficient to guarantee a very accurate 
approximation of both critic velocity and critic frequency of the system. 

The critic condition evaluated in the time domain with one exponential 
group is analyzed in Figure 5.5. The figure represents the time histories of 
heave and rotation and the corresponding PSD functions at criticality and the 
root locus of the two complex conjugate pairs of eigenvalues of the structural 
system. The frequency content of the motion reveals that, as expected, a 
coupled flutter occurs with critic circular frequency ωcrit equal to 1.373 rad/s. 
The postcritic condition is analyzed in Figure 5.6 which is obviously unstable 
since a linear structural behavior has been presumed. 
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Figure 5.5. Bi-dimensional analysis using indicial functions: time histories of heave 

and rotation at criticality (a, b); corresponding PSD functions (c); root locus of 
structural eigenvalues by increasing the wind velocity (the circles indicate the Hopf 

bifurcation point) 
 

 
Figure 5.6. Bi-dimensional analysis using indicial functions: time histories of heave 

and rotation at post-criticality (a, b); phase portrait of the solution (c) 

(a) (b) 

(c) 

(a) (b) 

(c) (d) 
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5.5 Prediction of bridge flutter using FE models  
Time domain expressions of self-excited loads can also be introduced into a 

tridimensional FE model of the structure with the aim of analyzing the critic 
condition in a tridimensional framework.  

By adopting the same coefficients obtained in Section 5.4 for the case with 1 
exponential group in all aeroelastic derivatives, the following critic condition is 
detected using the spine-type FE model presented in Chapter 1: 

 
- Time domain FE analysis using indicial functions (1 exponential group, 

flat plate analogy): 
Ucrit= 136.25  m/s, ωcrit=1.17 rad/s  

 
The above presented results cannot be compared to those obtained by means 

of the planar deck model. Indeed, such a model was only adopted as a 
benchmark to validate the time domain approach using indicial functions. 
However, it did not consider relevant effects such as the modal participation of 
the aeroelastic loads and the masses of the main cables participating to the 
flutter mode.  

The critic solution obtained by means of the tridimensional model is 
analyzed in Figures 5.7, 5.8 and 5.9. In particular, Figures 5.7 and 5.8 give 
indications on the shape of the flutter mode, while Figure 5.9 analyzes the 
motion of the mid-span of the deck at criticality. Figure 5.7 shows instantaneous 
plots of the deformed structure, during the harmonic motion ensuing from the 
onset of the flutter instability, while Figure 5.8 shows the envelopes of the 
maximum generalized displacements at criticality. In Figure 5.7 T0 represents a 
general time instant in which the mid-span vertical displacement attains a 
maximum, while T denotes the period of the harmonic motion. Figures 5.7 and 
5.8 emphasize that the critic mode is essentially characterized by a coupling 
between the first symmetric vertical in-plane mode and the first symmetric 
torsional mode. However, a participation of the second symmetric in-plane 
mode is also evidenced by the fourth frame (T0+0.75T) reported in Figure 5.7. 
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The results presented in Figure 5.9 confirm that the critic condition is harmonic 
with a circular frequency ωcrit=1.17 rad/s. 

The spine-type FE model is finally adopted to evaluate the critic condition of 
the case study structure, by considering the measured aerodynamic 
characteristics of the deck. The analysis is conducted by adopting the 
formulation of aeroelastic derivatives in the time domain (ADTD), using the 
coefficients reported in (Ding et al., 1999) and calculated to match the 
aeroelastic derivatives of the Tsing Ma deck section measured in wind tunnel 
experiments. 

The analysis has revealed that a static instability (torsional divergence) takes 
place before the onset of the oscillatory Hopf bifurcation. This is a consequence 
of the positive aerodynamic damping exhibited by the deck of the bridge in 
wind tunnel tests. Particularly, the following critic condition leading to a 
torsional divergence has been found: 

 
- Time domain FE analysis using aeroelastic derivatives in the time 

domain (measured aeroelastic derivatives): 
Ucrit= 149.7 m/s 

 
Since torsional divergence is a static instability (a purely real eigenvalue crosses 
the imaginary axis) one expects that it can be correctly predicted by adopting 
the quasi-steady representation of the aerodynamic forces. In this case, the 
following formula can be given: 
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Figure 5.7. Numeric FE analysis using indicial functions: flutter mode 
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T0+0.5T T0+0.75T 
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Figure 5.8. Numeric FE analysis using indicial functions: envelopes of maximum 

generalized displacements at criticality 
 

 

 
Figure 5.9. Numeric FE analysis using indicial functions: mid-span motion at 

criticality (a, b, c, d) 
 

The results reported above confirm, as expected, the correspondence between 
unsteady and steady models in predicting the critic condition leading to a 
torsional divergence. The post-critic time history of the mid-span deck rotation 
is represented in Figure 5.15, while the deformed  configuration of the structure 
at a general time instant is represented in Figure 5.16. As shown by these 
figures, the unstable motion has the shape of the first symmetric torsional mode 

(a) (b) 

(c) (d) 

(a) (b) 
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with the participation of the vertical displacements due to the geometric 
nonlinearity. 
 

 
Figure 5.10. Numeric FE analysis using ADTD: unstable postcritic rotation at 

bridge mid-span ensuing from a torsional divergence bifurcation 

X

Y
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Figure 5.11. Numeric FE analysis using ADTD: critic mode of torsional divergence 

(U=150 m/s) 
 

5.6 Concluding remarks 
The aeroelastic stability of bridges is studied with a particular attention to 

time domain formulations.  
The introduction of convenient additional variables, with the aid of indicial 

functions, allows to write the equations of motion in the form of an autonomous 
system without integral terms. This allows to state a simple direct eigenvalue 
problem to solve the critic condition. This approach, combined with the 
identification of indicial functions from flutter derivatives via evolutionary 
algorithms, is seen to be in good agreement with the more involved iterative 

(a) 

(b) (c) 
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search of the Hopf bifurcation point in the frequency domain. Besides its 
computational convenience, the proposed time domain approach is more general 
than the frequency domain formulation, since it naturally handles the presence 
of structural nonlinearities, non-classic damping devices and so on. 

 With the aim of investigating the critic condition in a tridimensional 
framework, time domain representations of self-excited loads are introduced 
into a tridimensional FE model of a case study structure. The analysis of the 
critic condition reveals that, for the considered case, the flutter mode is 
characterized by a coupling between the first symmetric vertical in-plane mode 
and the first symmetric torsional mode, with a small participation of the second 
symmetric vertical mode. The analysis also reveals that, as expected, the 
aeroelastic instability can also arise in the form of a static torsional divergence. 
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Chapter 6 
 
 
 

INCLUDING STRUCTURAL 
NONLINEARITIES, ATMOSPHERIC 
TURBULENCE AND EXPERIMENTAL 
UNCERTAINTIES IN BRIDGE 
AEROELASTICITY 
 
 
 

Abstract 
The roles played by structural nonlinearities, atmospheric turbulence and 

experimental uncertainties in bridge aeroelasticity are studied. A FE analysis 
shows that, in the case of an unstable postcritic behavior, the atmospheric 
turbulence may destabilize the structural response even below criticality. The 
presented results are seen to assume a stochastic meaning when accounting for 
the experimental uncertainties that usually arise in wind tunnel tests. 
 

6.1 Introduction  
The theory of bridge aeroelasticity has been well-established since the 1940s 

(Kehoe, 2005). However, some aspects still deserve higher efforts as they have 
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not been completely clarified yet. The agreement between different 
formulations to evaluate the aeroelastic stability of long-span bridges has been 
discussed in the previous chapters. Here one investigates the roles played by 
structural nonlinearities, atmospheric turbulence and experimental uncertainties, 
which were traditionally neglected in bridge aeroelasticity. The problem of 
incorporating structural nonlinearities into the flutter equations (Lee et al., 1997; 
Lee et al., 1999) has been analytically treated by Coller and Chamara (2004), 
with reference to bi-dimensional airfoil theory, while only a few studies, among 
which the work by Salvatori and Spinelli (2006), considered the effects of the 
atmospheric turbulence in the aeroelastic stability analysis. 

The main theoretical achievements reported in the paper by Coller and 
Chamara (2004) are recalled and extended to general bluff sections. The effect 
of the atmospheric turbulence on the critic condition, in the case of an unstable 
postcritic behavior, is then analyzed via numerical simulations. When 
accounting for the experimental uncertainties that usually arise in wind tunnel 
tests, the predicted critic condition assumes a random nature (Jacobsen and 
Tanaka, 2003). This topic is addressed in some details through a direct 
Montecarlo approach. 

 
6.2 Flutter in presence of structural nonlinearities 
 
6.2.1 Analytic equations of motion for general bluff sections 

Let us extend the two-dofs deck model, already introduced in Chapter 5, to 
incorporate the presence of quadratic and cubic structural nonlinearities (see 
Figure 6.1). The equations of motion thus read as: 
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where Iα is the rotary inertia. In Equation (6.2.1) it is assumed that the elastic 
center of the deck lies at a distance bξea  from one edge, where b denotes the 
half chord of the system. The distance along the chord between the elastic 
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center and the center of rotation is denoted by bχ. Inertial nonlinearities, in 
Equations (6.2.1), are also neglected according to the hypothesis of small 
angular rotations. 

 
Figure 6.1. Deck section subjected to an incoming wind flow 

 
In the case of an ideal thin airfoil, Equations (6.1) can be reduced to a 6-

dimensional first order problem by making use of Wagner’s function (Coller 
and Chamara, 2004). In the case of a bluff section it is convenient to represent 
the aeroelastic loads via indicial functions approximated by exponential filters, 
as described in Chapter 5. 

Repeating the same steps described in Chapter 5, Equations (6.2.1) can be 
rewritten in the form of an autonomous system of ordinary differential 
equations without using integral terms. Particularly, for the case with one single 
exponential group for each indicial function, the equations of motion become: 
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Equations (6.2.2) can be expressed in the following form: 
( )Uxx ,ℑ=&        (6.2.3) 

where the eight-dimensional state vector x is analogous to the state vector 
already defined in Chapter 5. The vector field ℑ , appearing in Equation (6.2.3), 
can be specialized as follows: 
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where the following expressions have been introduced: 
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6.2.2 Problem dimension reduction by Center Manifold Theory 

The dimension of the flutter problem at the critical point can be reduced by 
means of the Center Manifold Theory, as described extensively in reference 
(Coller and Chamara, 2004). At the onset of instability, the set of differential 
equations of motions can be decomposed as: 

( )
( ) b

a

yyxgByy
xyxfAxx

ℜ∈+=

ℜ∈+=

,,
,,

&

&
     (6.2.6) 

where all the eigenvalues of the matrices A and B have zero and negative real 
parts, respectively. By operating in this way the x co-ordinates represent the 
critical modes while the y variables are locally stable (non-critical co-ordinates).  

According to the Center Manifold Theorem (Guckenheimer and Holmes, 
1983), there exists a p-dimensional invariant manifold Wc (see Figure 6.2) lying 
tangent at x=y=0 to the linear center eigenspace spanned by the x variables. 
Since the critical eigenvalues for the flutter problem occur in a complex 
conjugate pair, the center eigenspace Ec and the center manifold Wc are two 
dimensional. Invariance implies that solutions starting on Wc remain on the 
center manifold for all time. Besides, it can be shown that solutions close to the 
center manifold are attracted to it. Thus, local properties such as system stability 
are determined by the dynamics restricted to the center manifold. 
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Figure 6.2. Schematic representation of the center manifold in the flutter problem 

 
The center manifold y=h(x) can be explicitly expressed in the form of a 

power series that, by substitution into the second expression of Equation (6.2.6), 
gives: 

( ) ( )( )xhxgxBhx
x
h ,+=
∂
∂

&      (6.2.7) 

Then, by employing the first expression of Equation (6.2.6), invariance is 
expressed by: 
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x
hAx

x
h ,, +=

∂
∂

+
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   (6.2.8) 

which can be solved for the coefficients that appear in the power series in h. The 
dynamics on the center manifold, which determine the local qualitative behavior 
of the system, thus follow: 

( )( )xhxfAxx ,+=&       (6.2.9) 
To study system behavior close to, but not at criticality, one may embed system 
parameters into the center manifold, as: 

( )( )xhxfxAx λλλ ,+=&       (6.2.10) 

where λ corresponds to one or more system parameters (in the case of bridge 
flutter obviously λ=U). 

The two-dimensional non-trivial dynamics of the center manifold are 
expressed in the form of a power series whose coefficients depend on system 
parameters and details of the mathematical model. The tool of normal forms, 
establishes the existence of a co-ordinate transformation, x=Tλξ+Pλ(ξ) that 
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simplifies Equation (6.2.10) considerably. Tλ is a matrix conceived to put the 
linear part of the dynamical system in a canonical form. Pλ(ξ) is a vector of 
polynomials, beginning at quadratic order, whose coefficients are chosen to 
eliminate certain terms in the ordinary differential equations (ODEs). According 
to the Normal Form Theorem (Guckenheimer and Holmes, 1983), given a Hopf 
bifurcation, the equations can be re-arranged into the following simplified form: 
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where terms of fifth and higher order have been truncated.  
Equations (6.2.11) possess rotational symmetry that can be exploited by 

switching to polar co-ordinates. Defining 2
2

2
1 ξξ +=r  and ( )12 /arctan ξξϑ =  

the equations of the normal form become: 
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+=

+=
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       (6.2.12) 

The first expression of Equation (6.2.12) is an equation for oscillation amplitude 
which de-couples from θ. It must be noted that 0≡r&  when 0=r  and when 

λλσ cr /−= . The point 0=r  is a zero amplitude equilibrium corresponding to 

an un-displaced airfoil. Meanwhile, when λσ  and λc are of opposite sign, 

λλσ cr /−=  corresponds to a finite amplitude limit cycle. Figure 6.3 depicts 

the typical behaviors for different values of λσ  and λc .  

If one varies a system parameter λ (e.g., the wind velocity), the values of λσ  

and λc  change. Let λ* denote the critic value at which instability occurs (i.e., 

0* =λσ ), and assume, without loss of generality, that 0<λσ  for λ<λ* and 

0>λσ  for λ>λ*. Generically it is also expected that 0* ≠λc  and thus, by 

varying continuously λ in a neighborhood of λ* a curve in the λσ - λc  plane is 

traced. If 0>λc  the Hopf bifurcation is said to be subcritical, while for 0<λc  
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it is supercritical. Qualitative sketches in the amplitude-parameter space 
depicting the emergence of periodic orbits are also given in Figure 6.3. It is 
worth noting that at λ=λ* the zero amplitude equilibrium changes stability: the 
solid line (stable) becomes dashed (unstable). Arrows indicate regions in which 
oscillation amplitudes either grow or decay. In the supercritical case, the 
instability spawns a stable periodic solution for λ>λ* whose amplitude initially 
grows as *λλ −k . In the subcritical case, the periodic orbit is unstable and lies 

on the stable side of the bifurcation. This latter case is recognized to be 
potentially dangerous: because of the unstable limit cycle in the vicinity of the 
origin, small but finite perturbations may lead to growing oscillations even 
though the system is linearly stable. 

 
Figure 6.3. Typical phase portraits for different values of λσ  and λc and 
corresponding two generic Hopf bifurcations (Coller and Chamara, 2004) 

 
To determine whether a flutter instability is subcritical or supercritical, it is 

simply necessary to check the sign of *λc . At λ=λ*.the first expression of 

Equations (6.2.10) becomes: 
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Guckenheimer and Holmes (1983) report that the cubic normal form coefficient 
can be calculated by: 
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where the subscripts after the comma denote partial derivatives, i.e.: 
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Thus, to determine the criticality of the Hopf bifurcation, a small algebraic 
calculation is only necessary rather than the full normal form transformation 
which usually is a difficult task. 
 
6.2.3 Cubic structural nonlinearities 

At a first stage of investigation, the cases for which the only non-linearity of 
the system appears as cubic restoring forces in the springs is considered: δα2= 
δh2=0, 03 ≠αδ and/or 03 ≠hδ . 

With such an assumption, the computation of the cubic order normal form 
coefficient cλ* does not require to compute the center manifold. After some 
calculations, it results (Coller and Chamara, 2004): 

( ) ( ) ( ) ( )( )222,2
3
*112,2

3
*122,1

3
*111,1

3
** 16

1
λλλλλ ffffc +++=   (6.2.16) 

where f(3) is the part of f containing only cubic nonlinearities. Therefore, cλ* is 
given by a linear combination of third derivatives of ( )3

*λf , thus assuming the 

following general form: 

33* hqpc δδαλ +=       (6.2.17) 

where the constants p and q depend on the system parameters. 
From Equation (6.2.17) it can be recognized that, in the δα3- δh3 parameter 

space, a straight line with inclination θ separates regions of super-criticality 
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from regions of sub-criticality (see Figure 6.4).  When θ>0 (depending on the 
system parameters p and q), the so-called flutter criticality hypothesis hold, 
namely the flutter instability is of the benign supercritical nature if the pitch 
spring is of the hardening type (δα3>0, with δh3=0), while it is of the subcritical 
type if the pitch spring is softening (δα3<0, with δh3=0). Cases in which θ<0 may 
represent counterexamples to this hypothesis. 
 

 
Figure 6.4. Regions of supercritical and subcritical Hopf bifurcation in the 

parameter space in presence of cubic nonlinearities (Coller and Chamara, 2004) 
 
6.2.4 Quadratic structural nonlinearities 

Including quadratic nonlinearities in the restoring forces entails a break of 

the symmetry ( ) ( )αα −−→ ,, hh  of the system. Nonetheless, the system is 
till invariant with respect to the transformation 
( ) ( )2222 ,,,,,, αα δδαδδα −−−−→ hh hh  and thus the cubic normal form 

coefficient cλ* must be invariant under ( ) ( )2222 ,, αα δδδδ −−→ hh , which 

means that the qualitative nature of the instability is the same regardless the 
direction in which the symmetry is broken. 

In order to account for quadratic nonlinearities in the calculation of cλ* one 

has to incorporate the center manifold in the analysis. Letting ( ) ( )yxg ,2  

denote the quadratic part of ( )yxg ,  in Equation (6.2.6), then the quadratic part 
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of ( )( )xhxg ,  in Equation (6.2.7) is ( ) ( )0,2 xg . Thus, at quadratic order, 
Equation (6.2.7) becomes: 

( )
( ) ( ) ( ) ( )0,22

2

xgxBhAx
x

h
+=

∂
∂

     (6.2.18) 

Equation (6.2.18) can be solved for the expansion coefficients in ( )2h , which 
will be linear functions of the coefficients 2αδ  and 2hδ . Then in Equation 

(6.2.9) it can be written: 

( )( ) ( )( ) ( ) ( ) ( ) ( ) ( )( ) ( )4,0,0,, 2232 oxhxfxfxfxhxf +++=  (6.2.19) 

In Equation (6.2.19) the expansion coefficients in ( )( )0,2 xf  are quadratic in 

2αδ  and 2hδ  and the expansion coefficients in ( ) ( )0,3 xf  are linear in 3αδ  and 

3hδ . Finally, since Equation (6.2.14) is linear in the cubic expansion 

coefficients and quadratic in the quadratic expansion coefficients, the following 
relation is obtained: 

33
2

222
2

2* hhhhhh qpdddc δδδδδδ ααααααλ ++++=   (6.2.20) 

Equation (6.2.23)  governs the nature of the Hopf bifurcation when quadratic 
and cubic nonlinearities are introduced in the system. 
 

6.3 Turbulence effects on aeroelastic stability 
 
6.3.1 Numeric prediction of unstable postcritic behavior 

The results presented in Section 6.2 allow to discern between supercritical 
and subcritical flutter instability of a bridge deck. This issue is primarily 
important when considering the influence of atmospheric turbulence on the 
system response, as it is discussed here through numerical simulations. In the 
analysis, the FE spine type model of the Tsing Ma Bridge (TMS) presented in 
Chapter 1 is adopted along with the time domain model of aeroelastic forces via 
indicial functions. Flat plate analogy and one exponential group for each 
indicial functions are also assumed.  
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First of all, it must be checked weather the postcritic behavior 
predicted by the TMS model is stable or unstable. In the model (see 
Chapter 1) the deck is reproduced by large displacements beams, which 
have a hardening behavior with deflection but are linear with rotation. 
Thus we are in the case δα2=δα3=0 and δh3≥0, which always yields a 
subcritical instability since *λc , in Equation (6.2.20), is always positive. 

It is worth noting that the nature of the postcritic behavior predicted 
by the numeric model has nothing to do with the postcritic behavior of 
the real structure. Indeed, this last can be assessed only by accurately 
modeling the torsional nonlinearities of the deck of the bridge. Looking 
at this problem goes, however, beyond the purposes of this study which 
is primarily focused on turbulence effects in the case of unstable 
postcritic behaviors. 

 

 
Figure 6.5. Unstable postcritic behavior evaluated via time domain FE analysis 
using the TMS model 
 

The critic condition, already analyzed in Chapter 5, corresponds to a 
velocity of 136.25 m/s and a circular frequency of 1.17 rad/s. If the postcritic  
behavior is unstable, steady state oscillations do never take place when the wind 
velocity is larger than the critic value and a divergent solution is encountered. 
This more dangerous case, as theoretically expected, characterizes the numeric 
model. As an example showing this conclusion, the dynamic response of the 
structure to an external wind velocity of 140 m/s is shown in Figure 6.5. The 
results evidence that a divergent unstable solution is encountered at the 
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considered velocity. Clearly, it has also been checked that analogous results can 
be found at velocities that are closer (but higher) to the critic one and that the 
response does not eventually become steady on a limit cycle after a longer time.   
 
6.3.2 Turbulence effects in the case of an unstable postcritic 
behavior 

The problem of including turbulent components in the aeroelastic stability 
assessment of a bridge has not been yet clarified in the literature although it has 
been already analyzed in reference (Simiu and Scanlan, 1996). Salvatori and 
Spinelli (2006) have shown that, although turbulence has no effects on the onset 
of the aeroelastic instability in the linear regime, it may strongly affect the 
amplitudes of vibration in the nonlinear postcritic regime.  Particularly, it results 
that a partial correlation between turbulent velocities may lead to quite larger 
displacements than the less realistic full correlation case. Nevertheless it must 
be mentioned that the results presented in reference (Salvatori and Spinelli, 
2006) apply only to the cases in which the postcritic behavior is stable. On the 
contrary when the structure exhibits a postcritic unstable flutter behavior, small 
but finite perturbations may lead to growing oscillations even though the system 
is linearly stable (Coller and Chamara, 2004). This entails that turbulent 
components might play a significant role and destabilize the structural motion 
even below criticality.  

With the aim of investigating this point in deeper details, numerical 
simulations are here performed. Namely, both along-wind and across-wind 
turbulent components are introduced in the tridimensional TMS model of the 
bridge. Steady state loads are neglected according to the basic assumption of 
flat plate analogy. Buffeting and self-excited loads are introduced instead, as 
described in Chapters 3 and 5. The turbulent wind field is artificially simulated 
by adopting the POD-based technique described in Chapter 2, accounting for a 
partial correlation between turbulent velocities. 

The effects of an increasing level of turbulence intensity are accounted for 
by generating the stochastic turbulent wind field for two values of the shear 
velocity, namely u*=0.95 m/s (low turbulence intensity) and u*=1.9 m/s (high 
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turbulence intensity). Clearly, the assumed values of the shear velocity do not 
correspond to a mean velocity at mid-span equal to the critic flutter velocity. 
Indeed, as commented in Chapter 5, the critic velocity (assuming flat plate 
analogy) without turbulence, is equal to Ucrit=136.25 m/s.  This value would 
correspond to a shear velocity u*crit=6.45 m/s which would produce quite large 
(even unphysical) turbulent components. On the contrary the assumed values of 
the shear velocity are seen to lead to reasonable and realistic wind simulations. 

 

 

 
Figure 6.6. Unstable driven motion at criticality (U=Ucrit=136.2 m/s) due to the 

presence of the atmospheric turbulence 
 

 

 
Figure 6.7. Stable case in laminar flow driven to instability by the presence of the 

atmospheric turbulence (u*=1.90 m/s) 
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Figure 6.8. Stable response with turbulent wind flow (u*=1.90 m/s) 

 
The results of the analysis have confirmed that the presence of a low level of 

turbulence can destabilize the motion even at smaller velocities than the critic 
one. Figure 6.6 shows the time history of the mid-span vertical displacement 
and rotation for U= 136.2 m/s and for the two different values of the shear 
velocity: u*=0.95 m/s and u*=1.9 m/s. As evidenced by the presented results, the 
motion close to criticality becomes unstable due to the presence of the buffeting 
loads regardless the level of turbulence intensity.  

In the case u*=1.90 m/s the lower velocity at which an unstable motion is 
encountered is found to be equal to Ucrit*=135.2 m/s, which is a little smaller 
value than Ucrit. Moreover, as it is also evidenced in Figure 6.6, the effect of an 
increasing level of atmospheric turbulence is to increase the amplitude of the 
oscillations in the postcritic regime, thus accelerating the onset of the non-
oscillatory divergent motion. These circumstances indicate the major role 
played by turbulence in the case of an unstable post-critic regime and that 
neglecting turbulence effects in flutter analysis could lead to serious 
inaccuracies and even non-conservative results. An example of dynamic 
behavior which is stable without turbulence and it is driven into instability by 
the buffeting loads is reported in figure 6.7 for the case U=136.0 m/s < Ucrit, 
while Figure 6.8 represents a stable motion close to criticality (U=135.0 m/s) 
under turbulent wind flow. 
 

6.4 Uncertain flutter analysis 
Differently from aerospace engineering, flutter analysis in civil structural 

engineering is related to numerous uncertainties. Thus, the main questions 
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arising concerns the actual reliability of the predicted critic condition (model 
reliability) and the level of structural safety with respect to onset of the flutter 
instability (structural reliability). In order to discuss the former point, the planar 
deck model presented in Chapter 5 is here adopted and the aeroelastic stability 
analysis is treated from a probabilistic viewpoint. Since geometric nonlinearities 
are neglected, the classic frequency domain  approach is utilized as it does not 
introduce any further approximation into the problem. 

Uncertainties in the mass, stiffness and damping properties of the 
mechanical system should be certainly incorporated in the aeroelastic stability 
analysis (Pourzeynali and Datta, 2002). However, the variability of the 
mechanical properties of the bridge, leading to variations of mass and stiffness 
properties, is complex and difficult to model. A possible solution is to multiply 
the deterministic structural matrices by a sequence of log-normally distributed 
random variable factors. If standard deviation and mean values are known, a set 
of mass and stiffness matrices can be artificially generated and, for each 
combination, the corresponding critical flutter speed can be determined 
(Pourzeynali and Datta, 2002). 

At a first stage of investigation, variability of the flutter derivatives is only 
considered here, since the main sources of uncertainty usually come from wind 
tunnel tests results. Particularly, the i-th flutter derivatives are calculated as: 

( )Viiii CAHAH ⋅+⋅= ε1,~,~ ****      (6.4.1) 

where **, ii AH  are the (deterministic) flutter derivatives of the thin airfoil, Cv is 
a user defined coefficient of variation and ε is a normally distributed random 
number. 

According to literature results (see, for instance, Simiu and Scanlan (1996)), 
disparity between the results of flutter derivatives obtained under turbulent and 
laminar conditions is of the order of 15%. In addition, experimental errors and 
curve-fitting techniques introduce extra uncertainties into the analysis. Thus, 
values of Cv around 15-20% are likely expectable in technical applications. 

According to Equation (6.4.1), all the flutter derivatives are presumed to 
share the same frequency independent Gaussian variability. Clearly, considering 
frequency dependent variability indices and defining different levels of 
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confidence for different aeroelastic derivatives would not entail any difficulty in 
the analysis. However, Equation (6.4.1) allows to describe the level of 
uncertainty on the flutter derivatives by the single parameter Cv, thus 
guaranteeing a significant simplification in presenting the results, without 
anyway reducing the generality of the proposed approach. 

 

 
Figure 6.9. Results of the Montecarlo simulation: mean values and coefficients 

of variation of predicted critic velocity Ucrit and critic frequency Kcrit, by varying 
the coefficient of variation Cv of the aeroelastic derivatives 

 

 
Figure 6.10. Results of the Montecarlo simulation: skewness and kurtosis of 

predicted critic velocity Ucrit and critic frequency Kcrit, by varying the coefficient of 
variation Cv of the aeroelastic derivatives 
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Figure 6.11. Results of the Montecarlo simulation: histograms of predicted 

critic velocity Ucrit (values in m/s), by varying the coefficient of variation Cv of the 
aeroelastic derivatives 

 
Different values of the coefficient of variation Cv are considered in the 

analysis and, for each of these values, 104 sets of flutter derivatives are 
artificially simulated using Equation (6.4.1). It must be mentioned that the 
number of 104 samples is chosen since it was seen to be sufficiently large to 
give a significant statistic characterization of the results. For each set of flutter 
derivatives, the Hopf bifurcation point is calculated using the iterative 
procedure described in (Simiu and Scanlan, 1996). This approach is chosen for 
its computational efficiency. As mentioned in Chapter 5, the fourth aeroelastic 
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derivatives H4
* and A4

* are neglected by the said method. This leads to the 
following deterministic critic condition (Cv=0): 

Ucrit=74.90 m/s, Kcrit=0.603      (6.4.2) 
The adopted probabilistic approach relies on a straightforward Montecarlo 

simulation which gives an accurate estimate of the probability density functions 
(pdf) of the results, mainly consisting of critic velocities and critic circular 
frequencies. The main topics under investigation are: the differences between 
expected and mean values, the variability of the obtained results versus the 
input variability coefficient Cv, the Gaussianity of the results. 

Figure 6.9 summarizes the main results of the Montecarlo simulation. As 
already mentioned, each point in this figure corresponds to 104 iterative 
calculations of the critic eigenvalue. The results show that the mean values of 
both Ucrit and Kcrit exhibit, as expected, a small sensitivity on Cv. On the 
contrary the coefficients of variation Cv

* of Ucrit and Kcrit grow with Cv 
following the logarithmic lines reported in Figure 6.9.  

Figure 6.10 analyzes the Gaussianity of the pdfs of Ucrit and Kcrit by varying 
the coefficient of variation Cv of the aeroelastic derivatives. The presented 
results emphasize a strong non-Gaussianity of both Ucrit and Kcrit. This 
circumstance is also evidenced by the histograms of Ucrit which are shown in 
Figure 6.11.  

The results presented in Figure 6.11 also emphasize that Ucrit likely follows 
right skew distributions even at small values of Cv. This last circumstance 
entails that common levels of experimental uncertainties may lead to unsafe 
predictions of the critic velocity. 
 

6.5 Concluding remarks 
The role of structural nonlinearities and atmospheric turbulence on the 

aeroelastic behavior of bridges and the effects of experimental uncertainties on 
the predicted critic condition have been analyzed. 

Structural nonlinearities judge on the nature of the postcritic behavior. 
Within this framework, a FE analysis has shown that, in the case of an unstable 
postcritic behavior, small but finite perturbations may destabilize the motion 
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even below the critic velocity. In particular, in the presented case, the motion at 
criticality is seen to become unstable due to the presence of the atmospheric 
turbulence which can even destabilize the motion slightly below the critic 
velocity. Besides, the effect of an increasing level of atmospheric turbulence is 
to increase the amplitude of the oscillations in the postcritic regime and thus to  
shorten the route towards a structural failure. 

When accounting for the data scattering usually arising in wind tunnel 
experiments, the results of the aeroelastic stability analysis assume a 
probabilistic meaning. A Montecarlo study has shown that, in the case of a 
Gaussian variability of the flutter derivatives, the predicted critic velocity 
follows a non-Gaussian right skew distribution. This entails that common levels 
of experimental uncertainties could lead to unsafe predictions of the critic flutter 
velocity. 
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Chapter 7 
 
 
 

SUPPRESSION OF AEROELASTIC 
INSTABILITIES IN CABLES AND BRIDGES 
 
 
 

Abstract 
Long-span bridges and cables are lightly damped structures for which wind 

loads may produce large amplitude oscillations or even catastrophic 
instabilities. The use of single and multiple tuned mass dampers as control 
solutions against cable galloping and bridge flutter are analyzed, by paying a 
special attention to mistuning effects. 
 

7.1 Introduction 
Increasing the safety against aeroelastic instabilities is sometimes mandatory 

in Civil engineering structures. This is mostly the case of cable galloping and 
bridge flutter. To this regards, passive control strategies are probably the most 
economical and robust control solutions among those currently available in the 
literature.  

The occurrence of catastrophic dynamic instabilities (such as for instance 
rain-wind induced vibrations or galloping oscillations), in cables, is essentially 
influenced by the damping of the system (Faravelli and Ubertini, 2008). Cable 
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galloping is a well-known catastrophic event which was studied by Luongo & 
Piccardo (2005). The application of tuned mass dampers (TMDs) as control 
devices against cable galloping was investigated in reference (Gattulli et al. 
2003).  

The flutter instability of a bridge deck section ensues from a Hopf 
bifurcation which is analogous to the one leading to cable galloping. Recently, a 
great attention was devoted in the technical literature to conceiving control 
strategies against deck flutter (Preidikman and Mook, 1997; Kwon and Chang, 
2000). The idea of using  TMDs for this purpose was proposed in (Gu et al., 
1998) and in (Lin and Cheng, 2000), while multiple tuned mass dampers were 
proposed, for instance, in (Lin et al., 1999; Chen and Kareem, 2003; Kwon and 
Chang, 2004).  

In this chapter the effectiveness of a single TMD as a control device against 
cable galloping is studied. Since a strong sensitivity to mistuning effects is 
evidenced in this case, which may become unsustainable when dealing with 
bridge flutter, a multiple tuned mass damper (MTMD) is proposed for this more 
demanding case. Indeed, multiple tuned mass dampers proved to be capable to 
increase the robustness against mistuning effects when dealing with buffeting 
vibrations mitigation of flexible structures (Giuliano, 2007). 

 
7.2 Cable galloping  

The classic 2-degrees-of-freedom (DOFs) cable galloping is considered. As 
it is well-known, the critic condition is represented by a Hopf bifurcation, which 
is the case in which two complex conjugate eigenvalues cross the imaginary 
axis. In the case of cables, this may happen when icing conditions modify the 
aerodynamics of the system, originating lift forces. A simple linear two-DOFs 
cable sectional model, subjected to an incoming wind flow of velocity U, can be 
written as (Luongo & Piccardo 2005): 
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In which q1 represents the out-of-plane displacement and q2 denotes the in-plane 
one. In Equation (7.2.1) CD and CL represent the drag and lift coefficients of the 
cable, while CD’ and CL’ denote their derivatives with respect to the effective 
wind angle of attack, calculated for a nil value of this angle. The same structural 
damping ξs is assumed in the two directions, while ω=ω1/ω2 denotes the ratio 
between the first out-of-plane and the first in-plane circular frequencies. It is 
worth noting that, in Equation (7.2.1), the time variable has been normalized by 
multiplication to ω1. The non-dimensional wind velocity μ has also been 
defined as μ=0.5ρbU/(mω2), where ρ is the air density, b is a reference 
dimension of the cylinder cross-section and m is the cylinder mass per unit 
length.  

The following eigenvalue problem can be written from Equations (7.2.1), to 
analyze the incipient instability of the trivial solution (q1=0, q2=0): 

[ ] 0det 2 =++ KDΜ λλ       (7.2.2) 
where M is the mass matrix, D is the aerodynamic damping matrix and K is the 
stiffness matrix which can be immediately derived from Equations (7.2.1).  

In the non-resonant case (|ω-1|>ε, ε being a small perturbation parameter), a 
first order approximation of the system eigenvalues can be achieved by means 
of the multiple scale method (Luongo & Piccardo 2005), leading to the 
approximate critic wind velocity μ0

crit= -2ξs/(CD+C’L), which is positive for 
CD+C’L<0. When the system is under internal resonance conditions (|ω-1|=0), 
the linear stability diagram can be drawn in the detD-trD plane, where det and tr 
denote the determinant and the trace operators, respectively, and an approximate 
expression of the critic velocity can be derived in which the linear 
proportionality between μ0

crit and ξs still holds (Luongo & Piccardo 2005). 

 
7.3 Suppression of cable galloping using TMDs  

The critic wind velocity of the uncontrolled system grows linearly with the 
structural damping, in both resonant and non-resonant cases. A way to increase 
the critic velocity is therefore to increase the damping of the system as, for 
instance, by adopting a small TMD.  
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The relevant mass, damping and stiffness matrices then become: 
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where ψ is the ratio between the mass of the TMD and the mass of the cable, 
while ωt is the ratio between the circular frequency of the TMD and the in-plane 
cable circular frequency ω1. The third rows of the matrices reported in 
Equations (7.3.1) correspond to the degree of freedom qt of the TMD.  

A linear eigenvalue problem, analogous to Equation (7.2.2), can be written 
from Equations (7.3.1) to evaluate the incipient instability of the controlled 
trivial solution (q1=0, q2=0, qt=0). Figure 7.1 shows the root locus of the 
eigenvalues of the cable-TMD system, obtained by solving numerically the 
eigenvalue problem for increasing values of the control variable μ. In the 
calculations, the mass, damping and stiffness parameters of the cable model 
identified in Appendix C have been assumed. Moreover the TMD has been 
presumed to be perfectly tuned to the vertical mode of the cable (ωt=1) and the 
optimal Dan Hartog’s damping parameter ξt,opt=[3/8ψ/(1+ψ)]0.5 has been chosen 
for the TMD. The mass ratio ψ=0.01 has been assumed, as usual in technical 
applications, while the aerodynamic coefficients are: CD=0.8, C’D =1.5, CL=0.1 
and C’L =1.3. It must be noted that, even by choosing ωt=1, the perfect tuning of 
the system is never achieved as a consequence of veering interactions between 
closed eigenvalues. This is the reason why, in Figure 7.1, all the three pairs of 
complex conjugate eigenvalues are distinct for the value μ=0. 
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Figure 7.1. Root locus of the eigenvalues of the cable-TMD system by increasing 

the control variable μ below (a) and above (b) the critic value 
 
The results presented in Figure 7.1 (a) emphasize that, in correspondence of 

the critic velocity of the uncontrolled system (μ=μ0
crit), the cable-TMD system 

is still in the stability region, which is encountered at the value μ=μcrit>μ0
crit.  

Figure 7.2 investigates the effect of the tuning of the TMD on the critic 
velocity. As it was expectable, the increment of the critic velocity is very 
sensitive to variations of the frequency tuning ωt and attains a maximum close 
to the perfectly tuned condition (ωt=1). It must be mentioned however, that the 
maximum increment of the critic velocity which can be achieved by using the 
TMD is remarkable (larger than 100%). This is a consequence of the fact that, 
in cable galloping, the critic velocity is proportional to the damping of the 
system. Thus, for instance, doubling the mechanical damping of the cable 
means doubling its critic velocity. On the contrary, this is not the case of the 
coupled flutter instability of bridge decks, as it is discussed below.  

 

(a) 

(b) 

μ= 0 

μ= μ0
crit 

μ= 0 

μ= μcrit 

Stability boundary 



Filippo Ubertini  Wind effects on bridges: response, stability and control 
 
 

152 

 
Figure 7.2. Critic velocity as a function of the frequency ratio of the TMD 

 
Figure 7.3. Critic velocity as a function of the damping ratio of the TMD 

 
The effect of the damping ratio of the TMD on the critic velocity is analyzed 

in Figure 7.3. The results show that the optimal damping value of the TMD, 
against structural galloping, is smaller than the classic Den Hartog’s optimum 
ξt,

opt. It must be also noted that the critic wind velocity rapidly grows below the 
optimum value, while it slowly decreases above it. This circumstance suggests 
that, in practical applications, overestimating the optimum damping of the TMD 
is more conservative that underestimating it. 
 
7.4 Robust passive control of flutter via MTMDs 
 
7.4.1 Multiple tuned mass damper system 

The use of multiple tuned mass dampers (MTMDs) to increase the critic 
velocity leading to a coupled flexural-torsional flutter in bridge decks is studied. 
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The proposed MTMD is derived as an extension of the single tuned mass 
damper (TMD) presented in reference (Lin et al., 2000), which has two degrees 
of freedom corresponding to vertical motion and rotation. 

By adopting the deck model presented in Chapter 5, the equations of motion 
of the system equipped with the TMD read as: 
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h, α being the DOFs of the deck model and hT, αT the DOFs of the TMD. In 
Equations (7.4.1) mt, IT, kt and ct denote the total mass, the total inertia, the total 
stiffness and the total damping coefficients of the TMD, respectively.  

It is convenient to rewrite equations (7.4.1) in the following form: 
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where ψ=mT/m and ψα=IT/I are the mass and inertial ratios of the TMD-deck 
system. The following relations are adopted in Equation (7.4.2): 

T

T
TT

T

T
TT I

lm

ω
ωξξ

ωω

α
α

α

=

⋅=
2

22

      (7.4.3) 

Looking at Equations (7.4.3), the TMD can be designed to have two distinct 
natural frequencies. In the paper by Lin et al. (2000), these lasts were tuned to 
the frequencies of the first flexural and torsional structural modes to suppress 
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the resonant effects thus reducing the buffeting response of the deck. When 
dealing with the classic flutter instability, it is more convenient to tune the two 
frequencies of the TMD to the same value, nearly corresponding to the critic 
flutter circular frequency of the system (optimal tuning of the TMD). This can 
be achieved by simply concentrating two equal masses at the positions of the 
elastic and viscous forces (IT=mTl2). 

 

 

 
Figure 7.4. TMD system for bridge decks (Lin et al., 2000): (a); proposed MTMD 

system with n=5: (b) 
 
The proposed MTMD system is obtained by splitting the equivalent single 

TMD into a certain odd number n of TMDs having the same total masses (equal 
to 1/n of the total mass mt of the single TMD) and damping ratios equal to the 
one of the equivalent single TMD. The detuning parameter ε =0÷1 is defined 
such that the circular frequencies (ωTi, i=1,…,n) of the TMDs composing the 
MTMD are calculated as: 

(a) 

(b) 
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As an example, a MTMD system with n=5 is sketched in Figure 7.5. 
From equations (7.4.4) it can be recognized that the TMD proposed by Lin et 

al. (2000) can be interpreted as the MTMD with ε =0. The equations of motion 
of the deck equipped with the MTMD system can simply be obtained by 
extending equations (7.4.2) and (7.4.3) to the presence of n TMDs.  
 
7.4.2 Aeroelastic stability analysis 

As commented in Chapter 5, a convenient time domain representation of self 
excited lift L and pitching moment M can be obtained by using aerodynamic 
indicial functions approximated by exponential filters. The main advantage of 
this approach is that the introduction of an additional variable wi for each 
exponential group allows to eliminate integral terms from the equations of 
motion thus making the aeroelastic stability analysis a straightforward task.  

As an example, let us rewrite Equations (7.4.2) by adopting one single 
exponential group for each indicial function (see Chapter 5). After some 
calculations one gets: 
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Equations (7.4.5) can be rewritten in first order form as: 
( )xUAx =&                                (7.4.6) 

where A is a real 12×12 matrix depending on the wind velocity U. The state 
vector x, in Equation (7.4.6), is defined as: 

( )TTTTT wwhhhhx 41 ,,,,,,,,,, K&&&& αααα=                                (7.4.7) 
The extension of the above described procedure to consider a MTMD system 
composed by n TMDs and to use an arbitrary number k of exponential groups is 
straightforward. Eventually, a system of ordinary differential equations (ODEs) 
of the form (7.4.6) is obtained, in which the state vector is defined as: 

( )TkTnTnTnTnTTTT wwhhhhhhx ,,,,,,,,,,,,,,, 11111 K&&K&&&& αααααα=  (7.4.8) 

and A reflects in a n×n matrix, being n=4(n+1)+k. 
After deriving equation (7.4.6), the aeroelastic stability analysis of the deck-

MTMD system can simply be performed by calculating the eigenvalues of 
matrix A. The flutter instability is encountered when a pair of complex 
conjugate eigenvalues have zero real parts (Hopf bifurcation point). The 
minimal velocity Ucrit at which this condition is satisfied is the critic velocity of 
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the system, while the imaginary part ωcrit of the critic eigenvalue represents the 
circular frequency of the motion at criticality. 
 
7.4.3 Analysis of control effectiveness 

The opportunity of using a MTMD rather than a single TMD to suppress 
bridge flutter is discussed with reference to a case study. Without loss of 
generality, the considered MTMD is composed by n=5 TMDs.  

The mechanical and geometric characteristics of the considered deck model 
are summarized in Table 7.1. As discussed in Section 7.4.1, the MTMD is 
designed to have ωT=ωTα and ξT=ξTα.. The mass ratio ψ is assumed to be equal 
to 0.01, as usual in technical applications, which corresponds to the generalized 
mass ratio ψα=0.047 of the rotational DOF (l=20.5 m). 

 
B (m) ωh (rad/s) ωα (rad/s) m (kg) I (kg*m2) ξh ξα 

41 0.8859 1.6588 27778 2.5·106 0.0222 0.0384 
Table 7.1. Characteristics of the deck model assumed as case study 

 
In order to generalize the obtained results as much as possible, the 

aeroelastic derivatives of the thin airfoil are assumed in the calculations. Thus, 
as shown in Chapter 5, one single exponential group for each indicial function 
is adopted as it is already sufficient to obtain accurate results in the aeroelastic 
stability analysis. 

The parameter η is introduced as the evaluation criterion of control 
effectiveness:  

( ) 0

0

%
crit

critcrit

U
UU −

=η       (7.4.9) 

where 0
critU  denotes the critic velocity of the uncontrolled system. 

In order to investigate the effect of the frequency tuning of the MTMD, the 
critic conditions are solved as described in Section 7.4.2 for different values of 
ωT and for the following values of the detuning parameter: ε=0 (single TMD 
case), ε=0.10, ε =0.15 and ε =0.20. The case in which ξT=ξTα=ξopt, being ξopt the 
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optimum Dan Hartog’s criterion calculated with respect to the bending mode is 
considered at this stage. 

 

 
Figure 7.5. Control effectiveness of MTMDs by varying the frequency tuning ωT  

and the detuning parameter ε 
 
The results of the analysis, presented in Figure 7.5, emphasize that the 

maximum achievable increment of the critic velocity is around 20% and that the 
performance of the single TMD is very sensitive to mistuning effects. This 
means that a small mistuning of the TMD could lead to poor control 
performances. In addition, it must be mentioned that mistuning effects can 
hardly be eliminated in coupled flutter of bridge decks since the critic frequency 
of the motion (perfect tuning of the TMD) is usually unknown. Indeed, this last 
is a result of the analysis and its calculation is usually related to large 
uncertainties descending from wind tunnel experimental data scattering and 
uncertainties of the mechanical system. Thus, enlarging the frequency band of 
control effectiveness is  always mandatory in these applications in order to meet 
the fundamental requirement of a large control robustness. As it is discussed 
below, this can be achieved by increasing the detuning parameter ε of the 
MTMD system. 

The case ε=0.10, in Figure 7.5, guarantees a better performance at the 
perfectly tuned condition (η>25%) with respect to the single TMD solution. 
However, the curve of control effectiveness is still evidencing some sensitivity 
to mistuning effects. On the contrary, as ε assumes the values 0.15 and 0.20, the 
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frequency band of control effectiveness is enlarged at the expense of slightly 
reducing the peak of effectiveness at the perfectly tuned condition. It is also 
worth noting that, as the detuning parameter is increased, the η vs. ωT curves 
assume a “softening” aspect. This circumstance entails that frequencies lower 
than the optimum tuning of the single TMD may produce a better performance 
with respect to slightly higher ones. The increment of the detuning parameter 
may also produce the appearance of n local maxima in the η vs. ωT curves. 

 

 
Figure 7.6. Critic flutter circular frequency as a function of the frequency tuning 

ωT of the MTMD and of the detuning parameter ε 
 

Figure 7.6 presents the critic circular frequency ωcrit of the system vs. the 
frequency tuning ωT, for the solutions analyzed in Figure 7.5. In the single 
TMD case, the optimal tuning corresponds to a global minimum of ωcrit and to a 
cusp of the ωcrit vs. ωT  line. The effect of an increasing detuning parameter ε, 
within the considered values, is to smoothen this cusp and to produce local 
minima of ωcrit.  

The results presented in Figures 7.5 and 7.6 also reveal that large values of 
ωT could reflect on critic velocities which are 1-2% lower than the critic 
velocity of the uncontrolled system. This circumstance certainly represents a 
critical point although it does not impair the overall effectiveness of the 
proposed control solution. 

An example of critical flutter motion of the deck-MTMD system is reported 
in Figure 7.6 by considering the values ε=0.1 and ωT=1.16 rad/s, corresponding 
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to the optimal tuning of the MTMD with ε=0.1. As evidenced by the presented 
results, the critic condition is characterized by a coupled harmonic motion. The 
root locus of the eigenvalues of the system, by increasing the wind velocity up 
to criticality, is shown in Figure 7.8. Particularly, 24 pairs of complex conjugate 
eigenvalues descend from the structural system, while 4 real eigenvalues 
descend from the additional variables wi introduced to represent aeroelastic 
loads via indicial functions. As the wind velocity is increased, the eigenvalue 
corresponding to the bending mode is driven towards the stability region, while 
the eigenvalue of the twist mode is initially pushed towards the stability 
boundary. Eventually, instability is reached by the eigenvalue corresponding to 
the twist motion of deck. Wind coupling makes the bending mode participate to 
the critic motion as shown in Figure 7.7. The DOFs of the MTMD also 
participate to the motion as a consequence of mechanical couplings between the 
twist mode and the twist DOFs of the MTMD and between the bending mode 
and the vertical DOFs of the MTMD. Thus the critic condition is characterized 
by a 12 DOFs coupled harmonic motion. 

 

Figure 7.7. Critic flutter condition for ωT=1.16 rad/s  and ε=0.1 
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Figure 7.8. Root locus of the eigenvalues of the deck-MTMD system (ωT=1.16, 

ε=0.1) by increasing the wind velocity U up to criticality: (a); detailed view of critic 
eigenvalue: (b) 

 
In the results presented above, the damping ratio of the MTMD has been 

fixed to the optimum Dan Hartog’s value for the bending mode (ξT=ξopt). 
However, it must be mentioned that ξopt is not optimal for the twist mode. Thus, 
analyzing the influence of different values of ξT on the control effectiveness is a 
worth effort. To this end the critic conditions are solved by varying the ratio 
ξT/ξopt for ωT=1.16 rad/s. 

The results are presented in Figure 7.9 and emphasize that the optimal 
damping ratio of the MTMD depends on the detuning parameter ε. As an 
example, for the single TMD case, the optimal value of ξT is roughly equal to 
1.4· ξopt, while in the case ε=0.1 it is close to 0.9· ξopt. In Figure 7.9, both the 
lines η vs. ξT/ξopt and ωcrit vs. ξT/ξopt evidence cusps and jumps at certain values 
of ξT/ξopt. The effect of an increasing detuning parameter ε, within the 
considered values, is to smoothen these cusps. 

(a)

(b) 
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Figure 7.9. Control effectiveness of MTMDs by varying the damping ratio and the 

detuning parameter ε (ξopt denotes the optimum Dan Hartog’s value for the 
vertical bending mode): (a); variation of the flutter circular frequency: (b) 

 
A final remark concerns the maximum increment of the critic flutter velocity 

which can be achieved utilizing MTMDs. The analysis of the considered case 
study has revealed that a mass ratio of 0.01 leads to increments of the critic 
velocity which are hardly larger than 25%. Though, this conclusion is limited to 
the considered example and cannot be generalized, it is worth noting that the 
obtained control performances are sensibly smaller those obtained, for a similar 
mass ratio, in the case of cable galloping using a single TMD (see Section 7.3). 
One main explanation of this result is given below by investigating the 
variability of the uncontrolled critic velocity of the considered case study with 
respect to variations of the mechanical damping parameters. Particularly, the 
critic conditions are solved by separately multiplying the mechanical damping 
ratios of the system ξh and ξα by the coefficients βξh and βξα, respectively. The 

(a) 

(b) 
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case in which ξh and ξα are contemporary multiplied by the same coefficient βξ 
is also considered. 

 

 
Figure 7.10. Variability of critic flutter velocity (uncontrolled system) with 

mechanical damping 
 

The ratio between the critic velocity of the system and the critic velocity for 
βξh=βξα=βξ=1 is plotted versus  βξh, βξα and βξ in Figure 7.10. The presented 
results emphasize that the critic velocity is rather insensitive to the mechanical 
damping of the bending mode, while it increases nonlinearly as  ξα increases. 
This increment is slow if compared to the case of cable galloping in which there 
is a linear proportionality between CVR and  the mechanical damping. Thus, it 
is likely expectable that added damping via the use of TMDs produces larger 
increments of the critic velocity in the case of cable galloping rather than in the 
case of deck flutter. It must be noted, however, that an increment of about 25% 
of the critic flutter velocity, which is easily achievable utilizing the proposed 
MTMD, is usually sufficient to strongly increase the safety of a structure 
against aeroelastic instability. 

 
7.5 Concluding remarks 

When utilizing tuned mass dampers as passive control devices against 
structural aeroelastic instabilities, a large sensitivity to mistuning effects is 
usually evidenced as it is discussed for the case of cable galloping. In the case 
of the classic coupled flutter instability of a bridge deck, the sensitivity to 
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mistuning effects makes the single tuned mass damper solution practically 
unfeasible, as the calculation of the optimal tuning of the device is related to 
numerous uncertainties. To overcome this drawback, a multiple tuned mass 
damper system for suppressing bridge flutter is conceived. 

The aeroelastic stability analysis of the system incorporating the proposed 
control device is performed by representing the aeroelastic loads in the time 
domain via indicial functions and by rewriting the equations of motion in the 
form of a first order system without integral terms. The opportunity of utilizing 
multiple tuned mass dampers instead of the single device is discussed with 
reference to a case study. The results show that  a correct design of the multiple 
tuned mass damper may enhance the performance at the perfectly tuned 
condition and enlarge the frequency band of effectiveness with respect to the 
single tuned mass damper system. Additional reductions of the sensitivity to 
mistuning effects can be obtained at the expense of slightly reducing the peak of 
effectiveness at the perfectly tuned condition.  

As a final remark, it must be mentioned that the use of tuned mass dampers 
in cables guarantees increments of the critic velocity which are sensibly larger 
than those achievable in the case of bridge flutter. An explanation of this result 
is given, based on the observation that in bridge flutter there is not a linear 
proportionality between mechanical damping and critic velocity, which on the 
contrary holds in cable galloping.  
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Chapter 8 
 
 
 

CONTROL SOLUTIONS FOR CABLE 
VIBRATION MITIGATION 
 
 
 

Abstract 
Two control strategies for cable vibration mitigation are conceived. The 

former, based on the application of an active state controller, is theoretically and 
numerically investigated, while the latter, consisting of an adaptive strategy 
combining a distributed passive solution with a semi-active actuation, is 
investigated via experimental tests. 
 

8.1 Introduction 
Cables represent core structural elements of either suspension or cable-

stayed bridges. Especially in cable stayed bridges (Caetano et al., 2008) these 
elements may be prone to large amplitude oscillations which often require 
control solutions as in the cases of guyed masts and tall buildings (Gioffré et al. 
2004; Breccolotti et al., 2007; Venanzi and Materazzi, 2007). 

As discussed in Appendix C, a rich technical literature on cable dynamics 
was established (Cluni et al., 2007; Luongo et al., 1984; Benedettini et al., 1995; 
Nayfeh et al., 2002; Rega, 2004) and several effective control strategies for 
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cable vibration mitigation were recently proposed. Passive solutions, based on 
the use of classic tuned mass dampers (TMDs) were analyzed in the two papers 
by Cai et al. (2006), while a semi-active version (Casciati et al., 2006) of the 
TMD device, employing variable out-of-plane inclination, was proposed in 
(Casciati and Ubertini, 2008). An active control solution based on longitudinal 
actuation was analyzed in references (Susumpow and Fujino, 1995; Gattulli et 
al., 1997; Pasca et al., 1998; Gattulli and Vestroni, 2000; Gattulli et al., 2008). 
Transverse control is probably the most applied solution for mitigating the 
vibration of cables. Within this field, semi-active dampers were mainly 
investigated in both theoretical and numeric frameworks (Ubertini, 2008; 
Faravelli et al., 2008). 

Currently, the growing demand for robust structural control solutions and 
reduced energy consumption makes passive or hybrid (passive-semi-active) 
control strategies more attractive and feasible (Casciati et al., 2006). Within this 
context, a convenient passive strategy is to adopt “intelligent” materials as for 
instance by adding a pre-stressed shape memory alloy wire to a steel taut cable 
thus providing a control solution which is distributed along the cable and hence 
it is not affected by the device localization (Casciati et al., 2008).  

Two control strategies for cable vibration mitigation are conceived. The 
former is based on an active state controller (Ubertini, 2008) while the latter 
consists of  a hybrid solution (Faravelli et al., 2008) combining the distributed 
passive solution utilizing wrapped SMA wires and an open loop control strategy 
which is based on nonlinear energy transfer between modes. Generally 
speaking, this solution can be included in the framework of those control 
strategies that exploit the strongly nonlinear behavior of the dynamical system 
for control purposes (Rega and Lenci, 2008; Lenci and Rega, 2004). 

 

8.2 Active state control 
 
8.2.1 Linear case 

Let us consider the tridimensional motion of a heavy suspended cable, 
hanging in the vertical plane Oxy (see Figure 8.1). The cable is assumed to 
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behave as an ideal cord with no bending, torsion or shear rigidities. Two point 
forces Fcv(t) and Fcw(t), parallel to the y and z directions respectively, are also 
applied in the vicinity of one of the cable ends (lc<<l), z being the out-of-plane 
direction. In the successive developments, these two forces represent two 
control inputs, calculated according to a non-collocated active feedback 
algorithm. 

 
Figure 8.1. Cable static and dynamic varied configurations 

 
Under the hypothesis of small displacements, the motion of the cable can be 

analyzed in the framework of the linear models. In this case, a convenient 
representation of the system is sought by expanding the vector of nodal 
displacements Q in the space of modal coordinates q=ΦQ, where Φ is the nn×  
matrix of linear cable eigenvectors, calculated by Irvine's Theory (Irvine and 
Caughey 1974). The vector of modal amplitudes is composed as 

[ ]y
n

z
n

yzyz qqqqqqq ,,,,,, 2211 K= , where qi
z indicates the i-th out-of-plane 

coordinate and qi
y is the i-th in-plane one. By omitting the superscript y, the 

equation of motion of the i-th in-plane mode can be written as: 

( ) ( ) ( ) ( ) ( )tFtftqtqtq cviiiiiiii
022 φωωξ +=++ &&&    (8.2.1) 

where 0
iφ  is the component of the i-th in-plane eigenvector at the position of the 

control force and fi is the i-th modal-component of the external excitation. In 
Equation (8.2.1), ωi represents the natural circular frequency of the i-th in-plane 
mode and ξi is the modal damping. Similarly, by omitting the superscript z, the 
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equation of motion of the i-th out-of-plane mode reads as Equation (8.2.1), in 
which Fcv is substituted by Fcw. 

 
Figure 8.2. Closed loop system illustrating Equation (8.2.4) 

 
In the presented results, the control devices are placed at a distance lc=0.05·l. 

Such a distance is sufficiently small to attach the control devices to the deck or 
to the vertical support of the cable, in a typical structural context. In order to 
introduce an additional damping in the first in-plane and out-of-plane modes, a 
modal derivative (MD) controller is designed as: 

( ) ( )
( ) ( )tqgtF

tqgtF
zz

dcw

yy
dcv

11

11

&

&

⋅−=

⋅−=
      (8.2.2) 

where y
dg 1  and z

dg 1  are user-defined control gains. The motion of the first in-

plane and out-of-plane modes, with the MD controller, can be obtained by 
substituting Equations (8.2.2) into Equation (8.2.1): 

( ) ( ) ( ) ( ) ( )tftqtqgtq d 11
2
111

0
1111 2 =+++ ωφωξ &&&    (8.2.3) 

Equation (8.2.3) shows that the control action enters the first in-plane and out-
of-plane modes as an additional damping. Nevertheless, in the higher modes, it 
enters as an external disturbance. Therefore, a compromise has to be searched in 
order to find an optimum set of control parameters. For the higher modes an 
equation of the following type holds true: 

( ) ( ) ( ) ( ) 11
022 qgtftqtqtq djjjjjjjj &&&& φωωξ −=++   (8.2.4) 

where nj ≤<1 . 



Chapter VIII Control solutions for cable vibration mitigation 
 

169 

Equation (8.2.3) can be written in the frequency domain as: 

( ) ( )
( ) ( ) ( ) ( ) ( )sfsWsf

swsw
swsq c

c
111

11

1
1

~~
1

~ =
+

=    (8.2.5) 

where the tilde indicates the Laplace transform and s is the Laplace variable. 
The term w1(s), in Equation (8.2.5), is the transfer function of the uncontrolled 
system between the first modal amplitude and the correspondent modal load 
component. It can be expressed by the following equation: 

( ) 2
111

21 2
1

ωωξ ++
=

ss
sw      (8.2.6) 

The feedback transfer function wc1(s) is also introduced in Equation (8.2.5). It is 
defined as the ratio between the control action and the modal amplitude, in the 
frequency domain, and it is given by: 

( ) sgsw dc 1
0

11 φ=        (8.2.7) 

The term ( )sW c
1 , in Equation (8.2.5), is the closed-loop transfer function of the 

system composed by the cable mode and the modal control action, as illustrated 
in Figure 8.2. The equations of motion of the higher modes ( nj ≤<1 ), in the 
frequency domain, can now be written as: 

( ) ( ) ( ) ( ) ( )sqswsfswsq cjjjj 1
~~~ −=     (8.2.8) 

where it holds: 

( ) sgsw djcj 1
0φ=        (8.2.9) 

The first mode with MD controller is asymptotically stable as long as the poles 

of the closed loop transfer function ( )sW c
1  have strictly negative real parts. By 

looking at Equation (8.2.3), one can easily recognize that ( )sW c
1  is simply the 

transfer function of a second-order system with circular frequency 1ω  and 

damping 1
0

1112 dgφωξ + . Thus, the stability condition of the system reads as: 

111
0

1 2 ωξφ −>dg        (8.2.10) 
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8.2.2 Nonlinear case 
A more general modal-proportional-derivative (MPD) control law is adopted 

in the nonlinear case. Four in-plane and four out-of-plane modes are considered 
in the MPD controller, including proportional terms. The control forces are then 
calculated as: 

( ) ( ) ( )( )

( ) ( ) ( )( )∑

∑

=

=

⋅+⋅−=

⋅+⋅−=

4

1

4

1

ˆˆ

ˆˆ

i

z
i

z
di

z
i

z
picw

i

y
i

y
di

y
i

y
picv

tqgtqgtF

tqgtqgtF

&

&

    (8.2.11) 

where the over-hat indicates an estimate based on the observed variables. 
Without adopting a nonlinear state observer, a simple estimate of the vector of 
nodal positions is obtained through a "not a knot" cubic spline, that interpolates 
the nodal observations.  The estimate of the vector of nodal velocities is instead 
obtained by linear interpolation. Five monitored points are considered and 
placed at equidistant points along the cable. 

The control gains in Equation (8.2.11) are calculated by means of an optimal 
linear quadratic regulator (LQR) calculated by using the matrices of the 
linearized system. More details on the application of the LQR controller to the 
presented case can be found in (Ubertini, 2008). As it is well-known from linear 
control theory, LQR control guarantees asymptotic stability for the linear 
system, if the controllability condition holds and the weight matrix that appears 
in the Riccati equation is properly chosen. Nevertheless, it must be mentioned 
that, even if designed for linear systems, the LQR regulator is often stabilizing 
also for nonlinear ones. However, no proof of this result exists, even if the gain 
matrix is assumed to be state-dependent and it is calculated in real time in the 
neighborhood of the actual state. Thus, a constant gain matrix is here assumed, 
in order to minimize the computational expense. 
 

8.3 Active control effectiveness 
The two cables C1 and C2, reported in reference (Ubertini, 2008), are here 

considered to test the effectiveness of the proposed control strategy. Cable C1 is 
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characterized by the stiffness non-dimensional Irvine parameter λ2=2.91π2. 
Cable C2 represents the physical model described and identified in Appendix C. 
 
8.3.1 Linear free vibrations 

The spatial linear free vibrations of cable C1 with MD control are studied 
analytically in closed form. From a mathematical point of view this corresponds 
to the application of Dirac-delta nodal forces (in both y and z directions) with 
the value AΔδ(t), where AΔ is the amplitude of the single impulses. 

The i-th modal equation of motion in the frequency domain, can be obtained 
from Equations (8.2.5), (8.2.6) and (8.2.7) by adopting gd1=0 and by considering 
that the Laplace transform of the Dirac-delta function is the constant unit 
function: 

( ) 2
111

2 2

~
~

ωωξ ++
= Δ

ss
Asq i

i       (8.3.1) 

where ∑
=

ΔΔ Φ=
n

j
iji AA

1

~
. Equation (8.3.1) can be decomposed as follows: 

( ) ( ) ( ) i
i

i

i

i
i A

bs
A

as
Asq Δ⎥

⎦

⎤
⎢
⎣

⎡
−

−
−

=
~~      (8.3.2) 

where 12 −+−= iiiiia ξωωξ  is a complex number, bi is its conjugate and 

( )iii baA −= /1 . Equation (8.3.2) can be easily converted to the time domain 

by considering the properties of the Laplace transform. The following explicit 
formula can be derived to evaluate the uncontrolled solution in the time domain: 

( ) ( ) ( )[ ] iiiiii AtbAtaAtq Δ−=
~expexp     (8.3.3) 

The overall cable response can be then calculated by modes superposition. 
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Figure 8.3. Analytic solution for spatial linear free vibrations with MD controller 
(uncontrolled solution in gray, controlled solution in black) 

 
The motion of the first in-plane or out-of-plane mode, with MD control, is 

described by Equation (8.2.1). The modal amplitudes, in the time domain, can 
thus be calculated as described by Equation (8.3.3). By indicating with the 
apices c the controlled solutions, it holds in particular: 

( ) ( ) ( )[ ] 111111
~expexp Δ−= AtbAtaAtq ccccc     (8.3.4) 

where ( ) 12/2/ 2
11

0
111

0
1111 −++−−= ωφξωφωξ did

c gga  is a complex 

number, cb1  is its conjugate and ( )ccc baA 111 /1 −= . The motion of the higher 
order modes (j>1) is described by Equation (8.2.3) which, in the frequency 
domain, becomes: 

(PSD of vq) 

(a)  (b)  

(c)  
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where ( )sq c
j

~  is the controlled solution and ( )sq j
~  is the uncontrolled one 

calculated with Equation (8.3.2). The expressions of Aj, aj and bj in Equation 
(8.3.5) are the same as in Equation (8.3.3). Equation (8.3.5) can be converted 
back to the time domain as follows: 
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 (8.3.5) 

Figure 8.3 (a) shows the cable normalized mid-span in-plane displacement 
vm(t), under free vibrations, for a given value AΔ. Figure 8.3 (b) shows the 
normalized mid-span out-of-plane displacement wm(t), under the same 
conditions. The uncontrolled solution is calculated by means of Equation 
(8.3.3), while the controlled one is calculated by means of Equation (8.3.4) and 
(8.3.6). 

The MD controller introduces, as expected, an additional damping in the first 
in-plane and in the first out-of-plane cable modes. Such a damping is 
proportional to the control gains gd1

y and gd1
z. At the same time, the control   

action represents a disturbance in the higher modes.  This aspect is pointed out 
in Figure 8.3 (c), which represents the PSD of the quarter-span displacement vq. 
Indeed, the uncontrolled solution mainly posses the frequencies of the first in 
plane mode (3.93 Hz) and of the third one (6.73 Hz). In the controlled case the 
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first in-plane mode is damped out, but the motion of the second in-plane mode 
arises (4.37 Hz). This aspect might even become more relevant when 
nonlinearities take place, due to coupling phenomena. In order to introduce an 
additional damping in the first four in-plane and four out-of-plane modes, the 
control law must be therefore enriched by additional terms. The MPD controller 
is adopted for this purpose and its effectiveness is analyzed below, in the 
framework of large displacements. 
 
8.3.2 Nonlinear free/forced vibrations 

The nonlinear FE model described in Appendix C is here adopted and 
numerical simulations are performed in order to analyze the effectiveness of the 
MPD controller in the case of cable C1. The free in-plane and out-of-plane 
vibrations are considered, at first, at different modal amplitudes. Four distinct 
cases are analyzed, with the in-plane and out-of-plane initial conditions 
assigned to the first two modes, as reassumed in Table 8.1. Small non-zero 
initial conditions are also assigned to higher order modes which may be 
activated by nonlinear couplings. 

The most significant results of the free vibration analysis are represented in 
Figure 8.4. The main modes that take part to the motion are detected through the 
PSD of the quarter-span movements vq and wq. At small vibration amplitudes 
the cable behavior is approximately linear. This means, for instance, that only 
the modes with non-zero initial conditions are involved in the motion. The 
considered cases are such that: cases A and B are approximately in the linear 
field, while cases C and D involve larger displacements, thus enhancing the 
nonlinear phenomena. Out of plane bifurcation is not observed in case A and 
out-of-plane displacements in cases B and C are prevalent with respect to in-
plane ones. 

 
Case A B C D 

lq y /0
1  0.7·10-3 0.0 0.4·10-3 1.6·10-3 

lq z /0
1  0.2·10-3 1.2·10-3 2.3·10-3 0.2·10-3 

Table 8.1. Analysis cases for nonlinear free oscillations 
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Figure 8.4. Nonlinear free vibrations (uncontrolled in grey, controlled in black) 

(a) Case A (b) Case B 

(c) Case c 

(d) Case D (e) Case D 

(f) Case D, PSD of vq (g) Case D, PSD of wq 
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Figure 8.5. Nonlinear vibrations under harmonic parametric excitation 
(uncontrolled in grey, controlled in black) 

(b) Case E, PSD of vq (a) Case E 

(d) Case F, PSD of vq (c) Case F 

(b) Case G, PSD of vq (a) Case G 
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Figure 8.4 shows that a considerable additional damping is introduced in 
both in-plane and out-of-plane modes by the MPD controller. Moreover the 
control effectiveness seems to be independent from the amplitudes of vibration. 
Case D is of particular interest and the results concerning such a case are 
analyzed in Figure 8.4 with higher detail. Figure 8.4 (f) shows that the second 
and the third in-plane modes (having frequencies of 4.37 Hz and 6.68 Hz, 
respectively) also participate to the motion. Moreover a significant spatial 
oscillation occurs in the same case, as observable in Figure 8.4 (e). Figure 8.4 
(g) shows that such a motion is mainly concerning the first out of plane mode 
(2.18 Hz). This is probably due to the bifurcation of the first symmetric in-plane 
mode into a bi-modal spatial oscillation. Finally, Figures 8.4 (f) and (g) show 
that the first three peaks of the PSD of vq and wq are smoothed in the controlled 
case. It must be mentioned that, in the presented results, five nodal observations 
and the use of eight modes in the controller prevent control spillover from 
occurring. Less terms, on the contrary, are seen to determine control spillover at 
large vibration amplitudes. 

Three cases of harmonically forced oscillations are also considered, as 
reassumed in Table 8.2. The external excitation is represented by the horizontal 
harmonic motion of one support Δx0(t) (parametric excitation), having 

normalized amplitude lHEAxx /~
00 ⋅Δ=Δ  and circular frequency ω. The value 

ω1
y, in Table 8.2, indicates the natural circular frequency of the first in-plane 

symmetric mode (ω1
y =24.7 Hz). The amplitude of the imposed horizontal 

displacement is chosen in such a way that the cable dynamics, under forced 
oscillations, is dominated by nonlinear phenomena. The excitation frequencies 

are such that: case E is between the superharmonic ( 5.0/ 1 =yωω ) and the 
primary resonances with the first in-plane mode; case F is close to the primary 
resonance and case H is in resonance with the third in-plane mode. Near zero 
initial conditions are assigned to the system in the three cases. 

The results show that stable motions take place, after the initial transitory, in 
both uncontrolled and controlled cases. In particular, the control action is seen 
able to highly reduce the vibration amplitudes in all the considered cases. Large 
in-plane uncontrolled vibrations are observed in case E, due to the vicinity of 
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the primary resonance (see Figure 8.5 (a)). The PSD of vq in case E, shows that 
the uncontrolled motion mainly posses the forcing frequency (f=3 Hz) plus a 
super-harmonic component f3/2 and a sub-harmonic one f/2. In the controlled 
case the forcing peak and the super-harmonic one are drastically reduced, while 
the small sub-harmonic peak remains almost unchanged. In case F the cable 
motion is characterized by small vibration amplitudes. The uncontrolled motion, 
in such a case, is composed by the forcing frequency (f=4.1 Hz) and the two 
harmonics corresponding to the first two in-plane modes. A small sub-harmonic 
component f/2 is also detected. In this case, therefore, the uncontrolled response 
is quasi-periodic, since it contains incommensurate frequencies (i.e. their ratios 
are irrational numbers). The controlled response, on the contrary, is periodic and 
contains the forcing frequency  plus the subharmonic component f/2. 

 
Case E F G 

0
~xΔ  0.55 0.55 0.55 

y
1/ωω  0.76 1.04 1.70 

Table 8.2. Analysis cases for parametric harmonic excitation 
 

In order to give a deeper insight into the problem, a Galerkin model with 4 
in-plane and 4 out-of-plane degrees of freedom is also adopted, as it practically 
catches the whole dynamics of the system (Ubertini, 2008). Cable C2 is 
considered as the case study. The frequency response curves of the first in-plane 
and out-of-plane modes, obtained by means of an arclength continuation 
implemented in a dedicated software (AUTO 2000 by Doedel, E.J., et al.), are 
reported in Figure 8.6. A harmonic input of normalized amplitude p=0.003 and 

frequency ratio y
1/ωω  enters the equation of the first in-plane or out-of-plane 

mode. Higher order modes are not retained at this preliminary stage. The results 
confirm the capability of the proposed approach to reduce the vibrations of the 
first two modes, in the highly nonlinear regime. In particular, the control action 
introduces a significant additional damping in the system, leading to a strong 
reduction of either the hardening peaks at primary resonance and the 
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superharmonic peaks. It must be mentioned, however, that the control action 
may locally increase the response with respect to the uncontrolled solution, such 

as, for instance, in the region around 7.0/ 1 =yωω . 

 
Figure 8.6. Frequency response curves of cable C2 with amplitude p=0.003 

(uncontrolled response in grey, controlled response in black) 
 

The solutions at primary resonance ( 0.1/ 1 =yωω ) obtained for a larger 
amplitude p=0.005 by means of the 8-dimensional Galerkin cable model, are 
reported in Figures 8.7 and 8.8. In the case of forced in-plane vibrations (Figure 
8.7) a bifurcated spatial motion takes place in the uncontrolled case. The control 
action confirms its capability to stabilize the cable response in its plane. 
However, Figure 8.7 (c) shows that the second in-plane mode takes part to the 
motion in the controlled response, which is not the case in the uncontrolled one. 
This confirms that higher order modes may participate to the motion in the 
controlled case. Figure 8.7 (d) shows that the subharmonic frequency f/2 arises 
in the controlled in-plane harmonic response as a consequence of a period 
doubling bifurcation, f=4.584 Hz being the forcing frequency. The solution at 
primary resonance under out-of-plane harmonic loading is analyzed in Figure 
8.8. The results confirm that the control  action is able to mitigate the spatial 
response of the cable. It must  be observed that subharmonic frequencies do not 
arise in the out-of-plane response,  which posses the only forcing frequency. 
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Figure 8.7. Harmonic vibrations under in-plane loading (ω/ω1=1.0, p=0.005) 

 

 

 
Figure 8.8. Harmonic vibrations under out-of-plane loading (ω/ω1=1.0, p=0.005) 

(a) (b) 

(c) (d) 

(a) (b) 

(c) (d) 
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8.4 Adaptive solution for intelligent cable vibration 
mitigation 

An open loop control strategy and a distributed passive strategy are proposed 
and combined together in a hybrid control solution. The control effectiveness is 
analyzed through a theoretical investigation and an experimental verification 
conducted on the physical cable model C2 presented and identified in Appendix 
C.  
 
8.4.1 Semi-active control policy via nonlinear energy transfer 

In the proposed open loop actuation a transversal vertical control actuator, 
represented by a linear motor, is placed in the vicinity of one of the cable ends 
(at a distance xc) and exerts the control force Fc (see Figure8.9). The aim is to 
mitigate the cable response in the strongly nonlinear regime, i.e. when it is 
characterized by large limit cycles.  

The external excitation is represented by a point load FF applied at a distance 
xf from one of the cable ends (see Figure 8.9). Asymmetry of the external load 
with respect to the cable mid-span ensures excitation of both symmetric and 
anti-symmetric modes.  

 
Figure 8.9. Control architecture 

 
The main idea of the fully open loop control strategy here proposed is to 

exploit the nonlinear couplings between modes, appearing in the analytic 
Equations of motion, for control purposes. The aim is to make the vibration 
energy flow from low order modes to higher order ones. By operating in this 



Filippo Ubertini  Wind effects on bridges: response, stability and control 
 
 

182 

way, the motion is driven towards alternative dynamic regimes characterized by 
lower vibration amplitudes.  

The following open loop control law, based on a sinusoidal transversal 
control force, is adopted: 
 

( )cccc tfFF φπ +⋅⋅= 2sin      (8.4.1) 

where cF  is a user-defined constant. Amplitude, frequency and phase of the 

control force, in Equation (8.4.1), must be chosen as discussed below. Clearly, 
the open loop controller cannot mitigate a linear response and thus the control 
actuator is activated only when the cable is undergoing large amplitude 
nonlinear vibrations. To this end, a convenient representative measure of the 
vibration amplitude must be chosen, depending on the modes that have to be 
controlled. As an example, the amplitude of the vertical movement of the point 
placed at the quarter span of the cable can be adopted as a measure of the 
vibration amplitude considering both the first and the second in-plane modes. 

The capability of the control force to reduce the amplitudes of vibration of 
the system in the strongly nonlinear regime is discussed below by assuming a 
harmonic external excitation FF. However, the presented results can be directly 
extended to the case of non-harmonic external loads.  

The frequency of FF is varied in the vicinity of the primary resonance with 
the first and the second in-plane modes. By operating in this way, the first two 
in-plane modes are directly excited by the external load, although higher order 
modes are also activated. Spatial motions may ensue from dynamic equilibrium 
bifurcations. 

The system identification reported in Appendix C has shown that the cable 
C2 is not far away for the 1:1 internal resonance between the first and the 
second in-plane modes. Moreover, the classic 1:2 resonance between the first 
and the third in-plane modes arises. Thus, a strong dynamic exchange is 
expectable between these modes due to well-known linear and nonlinear 
mechanisms (Rega, 2004).  

Suppose, for instance, that the cable is forced by an external load FF having 
frequency f close to the primary resonance with the first in-plane mode. Then, 
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the motion of the first mode is dominating the response with a leading harmonic 
component of frequency f. In the nonlinear regime superharmonic components 
with frequencies 2f, 3f etc. appear in the responses of higher order modes due to 
the nonlinear (quadratic and cubic) couplings with the first mode, which appear 
in the analytic Equations of motion (see Appendix C). This means that some of 
the energy associated with the motion of the first mode flows naturally to higher 
order modes.  

The proposed control strategy is meant to enhance this behavior by pushing 
the vibration energy towards higher order modes in the form of superharmonic 
components. In order to understand how this mechanism reflects in a reduction 
of the overall cable displacements, let us consider the case in which the 
vibration energy is constant. In such a case, being the kinetic energy 
proportional to the square of the product between the frequency and the 
vibration amplitude, increasing the frequency of the response reflects on a 
reduction of the displacement amplitudes. It must be mentioned, however, that 
the energy of the system is not constant as energy is supplied by the control 
actuator. This circumstance limits the maximum effectiveness of the open loop 
controller and indicates that an optimum value of cF  exists. Moreover, the 

dependence of the energy of the uncontrolled response on the amplitude of 
vibration, i.e. on the region of the dynamic excitation FF, entails that the 
optimum value of cF  is also depending on these parameters.  

In the considered case, the nonlinear couplings between the third and the 
first in-plane modes are enhanced by the 2:1 internal resonance condition. Thus, 
it seems convenient to tune the control force in such a way to make the energy 
flow from the latter to the former. In order to do so, the third mode must be 
excited by the control force such that the harmonic component with frequency fc 
dominates the response of this mode without significantly exciting any other 
mode through linear or nonlinear mechanisms. A possible solution is to choose 
fc as a multiple of the natural frequency of the third mode 3f . The vicinity of 

the 1:1 resonance between the first and the second in-plane modes also ensures 
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that reducing the vibration amplitude of the first mode reflects on a reduction of 
the vibration amplitude of the second mode as well. 

In the considered case study, the frequency of the controller is chosen such 
that 

3
f2

c
f ≅ . In particular, the value fc=18 Hz is assumed ( 75.1

3
f/

c
f = ) 

since it is clear from any natural frequency of the system (see Appendix C) and 
it is neither a multiple of f1 nor of f2. Independence on the phase of the control 
force is desired and thus the value  Φc=0  is assumed without loss of generality. 
 
8.4.2 Cable vibration mitigation via added SMA wires 

A second approach for mitigating the cable response is to increase the modal 
damping of the structural system by wrapping a SMA wire (Casciati et al., 
2008) along the cable. By operating in this way, one achieves a mitigation 
solution which is distributed along the cable and, hence, it is not affected by the 
device localization. Previous tests (Casciati et al., 2008) were realized by 
wrapping the SMA pre-stressed wire once, twice, etc. around the steel cable 
until the configuration offering the best increment in the modal damping value 
was found. In this paper, after having found the best system configuration, the 
cable response under forced in-plane excitation is analyzed, by varying the 
pretension force H in the SMA wire.  

 
8.5 Analytical prediction and numerical validation 

Before describing the experimental results, an analytical prediction and a 
numerical verification of the effectiveness of the open loop control strategy are 
proposed. To this end, a Galerkin model with four in-plane degrees of freedom 
is considered having the characteristics of the identified cable. The nonlinear 
equations of motion of this model are given in Appendix C. The large 
dimensional finite element (FE) model of the system described in Appendix C 
is also adopted. A Rayleigh damping matrix scaled on the experimentally 
identified damping parameters of the cable is assumed in this model. 
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Figure 8.10. Analytic results: time histories of uncontrolled (grey lines) and 

open loop controlled (black lines) motions under harmonically forced 
excitation FF in resonance with the first in-plane mode 

 

 
Figure 8.11. Analytic results: PSD functions of uncontrolled (grey lines) 

and open loop controlled (black lines) motions under harmonically forced 
excitation FF in resonance with the first in-plane mode 

 
The response to primary resonance excitation is studied at first using the 

analytic model. Particularly, the external load FF is chosen to be harmonic in 
resonance with the first in-plane mode. The initial conditions and the amplitude 
of FF are chosen in such a way that the cable attains the maximum response in 
the frequency response curve and that nonlinear phenomena are dominating the 
motion. Figure 8.10 shows the response of the first two in-plane modal 
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amplitudes q1
v and q2

v obtained by integrating the Equations of the Galerkin 
model in time by means of a fourth order time integrator. The uncontrolled 
solution is indicated by grey lines while the controlled solution is indicated by 
black lines. As customary in cable dynamics, the normalized time, in Figure 
8.10, is obtained by multiplying the physical time by the circular frequency of 
the first in-plane mode. 
 

 
Figure 8.12. Numerical results: time histories of mid-span and quarter 

span displacements under harmonically forced excitation FF in resonance 
with the first in-plane mode, before and after the application of the open 

loop control input (top); corresponding PSD of mid-span and quarter span 
displacements (bottom): uncontrolled interval (a), (c), open loop controlled 

interval (b), (d). 
 

 
Figure 8.13. Numerical results: time history of second in-plane modal 

displacement under harmonically forced excitation FF in resonance with 
the second in-plane mode (left); PSD of second in-plane modal 

displacement (right): uncontrolled interval (a); open loop controlled 
interval (b) 
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The results presented in Figure 8.10 emphasize that, as expected, the control 
force is able to strongly reduce the response of the first mode. A significant 
reduction of the amplitude of the second mode is also pointed out. The 
frequency analysis of the obtained results is shown in Figure 8.11 and confirms 
that the control force mainly excites the third mode with significant beneficial 
effects on both the first and the second modes. The presence of superharmonic 
components in the PSD of the second and the third modes is also emphasized, 
thus indicating the relevance of nonlinear phenomena in the cable response. 

Similar results are obtained by means of the FE analysis. Both resonant cases 
with the first and the second in-plane modes are considered in this case. The FE 
analysis reproduces 30 s of uncontrolled forced motion, and successive 30 s of 
controlled forced motion. The equations of motion of the FE model are 
integrated by means of a numerical procedure based on the Newmark method. 
To ensure dynamic equilibrium at the end of the time step, the modified 
Newton–Raphson method is adopted. 

The primary resonant case with the first in-plane mode is considered in 
Figure 8.12. The presented results emphasize the control effectiveness and 
evidence, in the controlled response, the presence of the harmonic component 
with the frequency of the control force (18 Hz). The capability of the controller 
to reduce the response of the second in-plane modal amplitude is shown in 
Figure 8.13. Particularly, the forced resonant case with the second in-plane 
mode is considered in such a case and the effectiveness of the controller in 
reducing the vibrations of this mode is pointed out. The peak corresponding to 
the control force is, in this case, not detected by the PSD analysis since, as 
analytically expected, the controller mainly excites the third in-plane mode. 

 
8.6 Experimental results 

A campaign of experimental tests has been carried out to evaluate the 
effectiveness of the proposed control solutions either separately and combined 
together. To this end, the forced oscillations of the cable under harmonic in-
plane excitation FF have been considered. For every test, the recorded signals 
have a sampling frequency of 250 Hz.  
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The experimental tests have been conducted in three stages: 
 

• stage 1: cable without the wrapped SMA wire;  
• stage 2: cable with the wrapped SMA wire; 
• stage 3: hybrid solution. 

 
8.6.1 Cable without the wrapped SMA wire 

The case of the cable without the wrapped SMA wire is preliminary 
considered. In order to analyze the forced response of the system close to the 
primary resonance with the first in-plane mode the frequency ff of the harmonic 
forcing load FF is tuned, at first, to the value of 5.5 Hz. At this given frequency 
the open loop controlled response is compared to the uncontrolled one. The 
recorded time history of the in-plane mid-span acceleration component is shown 
in Figure 8.14. The presented results evidence the immediate effect which can 
be obtained just after turning on the open loop controller (the controller is 
turned on at time=30s). Figure 8.14 also shows the PSD of the acceleration 
record, which reveals that the control action is capable to reduce the main 
harmonic component of the response as well as to practically eliminate 
superharmonic and subharmonic components. The open loop controller is thus 
seen able to mitigate the nonlinear harmonically forced vibrations of the cable at 
the primary resonance with the first in-plane mode. 

In order to investigate the effectiveness of the open loop controller in 
different regions of external excitation, the frequency response curves (frcs) to 
in-plane excitation are also considered. The frcs represent the amplitudes of the 
steady uncontrolled and controlled responses, normalized to the maximum 
values, as functions of the frequency of the external load FF. The results are 
presented in Figure 8.14 by considering both in-plane and out-of-plane 
accelerations. In the uncontrolled cases two curves are presented which are 
obtained through forward and backward sweepings of the frequency. The 
presented results evidence that the uncontrolled response is significantly 
hardening close to the primary resonance. This circumstance emphasizes that 
the uncontrolled motion is dominated by nonlinear phenomena. The open loop 
controller is seen able to strongly reduce the response of the system for a wide 
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range of frequency values. Moreover, the control action cancels the hardening 
branch and the controlled response exhibits a vertical peak at the primary 
resonance. This last circumstance confirms that, as expected, the effect of the 
open loop controller is to inhibit nonlinear phenomena and to drive the system 
towards a linear behavior. The maximum control effectiveness is obtained, as 
expected, at the primary resonance with the first in-plane mode. 
 

 
Figure 8.14. Cable without the SMA wire: experimental time history of in-plane 
mid-span acceleration record under forced in-plane excitation (ff=5.5 Hz) before 

and after the application of the open loop control input (left); PSD of in-plane 
acceleration (right): uncontrolled interval (a); open loop controlled interval (b) 

 

 
Figure 8.15. Cable without the SMA wire: experimental normalized frcs under in-
plane excitation for uncontrolled (grey lines) and open loop controlled (black lines) 

cases 
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8.6.2 Cable equipped with the wrapped SMA wire 
In the second stage of experimental tests particular attention is paid to the 

union of the SMA wire with the steel cable. The SMA wire (in austenite phase) 
of diameter 1 mm is anchored to the same vertical point of the steel cable, and it 
is fixed at one end by a device that allows to assign a pre-tension force H to the 
wire but not to the cable.  
 

 
Figure 8.16. Stress-strain diagrams (right) for Cu-based SMA wire of 1 mm 

diameter (left) 
 

First of all, the behavior of the system while varying the pre-tension in the 
SMA wire must be examined in order to find the optimal configuration. To this 
end, the harmonically forced case in resonance with the first in-plane mode is 
considered. Initially, H is calculated in order to produce a 1% strain into the 
wire. Then, the pre-tension force H is varied such that the strain in the SMA 
wire assumes values between the 1% and the 2%. It is worth noting that the 1-2 
% interval of strain belongs to the so-called “plateau” of the stress-strain 
diagram represented in Figure 8.16 for the considered shape memory alloy. This 
entails that hysteresis is added by the SMA wire but not stiffness. 

During the experimental test, the mid-span and the quarter span vertical 
displacements as well as the pretension force H have been measured by the laser 
displacement sensors and by the load cell, respectively. The results are 
presented in Figure 8.17 and emphasize that, as a 2% of strain in the SMA wire 
is reached, the amplitude of the response attains a minimum. This circumstance 
entails that the 2% of strain in the SMA wire corresponds to the configuration 
offering the best increment of the modal damping of the cable. The 
corresponding pretension in the SMA wire is thus retained in the following 
experimental tests. In order to stress the hysteretic control mechanism, Figure 



Chapter VIII Control solutions for cable vibration mitigation 
 

191 

8.17 also shows the cycles of the pretension force H plotted versus the mid-span 
and quarter span displacements of the cable. 
 

 
Figure 8.17. Cable with wrapped SMA wire: experimental recorded time history of 
mid-span displacement under forced in-plane excitation (ff=5.5 Hz) while varying 

the pre-tension load in the SMA wire (left); SMA pre-tension force vs. 
displacement diagram (right) for a SMA wire pre-tension corresponding to a 2% 
strain: the in-plane displacement denotes the vertical quarter span (grey line) or 

mid-span (black line) cable displacement 
 

 
Figure 8.18 Experimental normalized frcs under in-plane excitation for 

uncontrolled (grey lines) and passively controlled utilizing wrapped SMA wire 
(black lines) cases 

 
The capability of the SMA wire to reduce the harmonically forced response 

of the cable at different values of the frequency of the external load is pointed 
out in Figure 8.18 where the frcs of the system are presented. The results 
emphasize that the passive strategy guarantees a control performance which is 
comparable to the one of the open loop controller. The presented results also 
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show that, as expected, the SMA wire does not introduce a significant increment 
of stiffness in the cable. Indeed the frequency shift between the first in-plane 
modal frequency of the cable and the frequency value at which, in Figure 8.18, 
the in-plane response of the cable-SMA wire system is maximum is relatively 
small. 

 
8.6.3 Hybrid solution 

The results presented above have shown that the SMA wire introduces a 
significant amount of damping into the system and that the open loop controller 
is able to mitigate the large amplitude nonlinear vibrations of the cable. 
However, the open loop controller cannot mitigate the response in the liner 
regime and becomes effective only when nonlinearities play a primary role. The 
hybrid solution can overcome this drawback. Indeed, in most cases, the added 
damping is sufficient to mitigate the cable motion. Nonetheless, in the most 
demanding cases, the motion may still reach the nonlinear regime. In such 
cases, the open loop controller may inhibit nonlinear phenomena and mitigate 
the cable response. 

The effectiveness of the hybrid solution is investigated at different frequency 
values of the external load. To this end, the frcs of the cable-SMA wire system, 
with and without the open loop controller, are shown in Figure 8.19. The results 
outline that, as expected, the hybrid solution mitigates the peak response of the 
passive case. On the contrary the hybrid solution becomes disadvantageous 
when the cable response is already strongly mitigated by the passive solution. 
This was however expected since, as discussed above, the open loop controller 
is only effective in the nonlinear regime and it should be turned on only when 
the amplitudes of vibration are large. Similar results are evidenced in Figure 
8.20 by comparing the hybrid strategy to the open loop controlled solution 
without the wrapped SMA wire. Particularly, the hybrid strategy is seen able to 
increase the effectiveness of the open loop controller in mitigating the 
vibrations of the cable close to the primary resonance with the first in-plane 
mode. 
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Figure 8.19 Experimental normalized frcs under in-plane excitation for passively 
controlled utilizing wrapped SMA wire (grey lines) and hybrid controlled (black 

lines) cases 
 

 
Figure 8.20 Experimental normalized frcs under in-plane excitation for open loop 
controlled without SMA wire (grey lines) and hybrid controlled (black lines) cases 
 
8.7 Concluding remarks 

An active state controller and a hybrid control strategy for cable vibration 
mitigation are conceived. 

The effectiveness of the active solution is theoretically investigated. 
Analytical explicit solutions are derived under free vibrations, in both 
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uncontrolled and controlled cases. Higher order terms are then introduced in the 
control law, based on a linear quadratic regulator. A large dimensional 
geometric nonlinear FE model is coded to analyze the effectiveness of the 
control strategy and the stability of high order modes. The control action is seen 
able to reduce the cable vibrations in all the considered cases. 

The hybrid control solution is obtained by combining an open loop actuation 
and a distributed passive solution utilizing wrapped SMA wires. The control 
actuator is fully open loop and thus it does not need nonlinear state estimation 
and meets the fundamental requirement of a large control robustness. The 
control force is designed to enhance the energy exchanges between modes 
arising in the strongly nonlinear field and to drive the motion towards more safe 
dynamic regions characterized by lower amplitudes of vibration. An analytical-
numerical investigation is preliminary carried out to confirm the capability of 
the open loop actuator to reduce the harmonically forced nonlinear vibrations of 
the first two in-plane modes. Experimental results are then presented showing 
the effectiveness of the control action for a wide range of frequency values of 
the external load. 

The passive solution is not affected by localization and provides a 
remarkable increment of the cable damping ratios. Experimental results indicate 
that a 2% of strain in the SMA wire guarantees the maximum passive control 
effectiveness. By retaining this optimal pre-tension, the effectiveness of the 
passive solution and of the hybrid solutions are investigated for different 
frequency values of the external excitation. The results evidence that the passive 
solution already guarantees a significant mitigation of the harmonically forced 
nonlinear vibrations of the cable. Moreover, it is confirmed that the hybrid 
strategy takes advantage of the added damping provided by the SMA wire and, 
in the meanwhile, it provides a further mitigation of the cable response in all 
those cases in which the external excitation is particularly severe and 
demanding leading to large amplitude nonlinear vibrations. 
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Chapter 9 
 
 
 

NONLINEAR STATE OBSERVATION FOR 
CABLE DYNAMICS 
 
 
 

Abstract 
The relevant problem of state reconstruction for nonlinear cable dynamics is 

theoretically solved by introducing a suitable nonlinear state observer. The 
feasibility of the adopted observer is investigated and its application to active 
control is finally discussed. 
 

9.1 Introduction 
A very critical point when designing state controllers (Breccolotti et al., 

2007) for cable vibration mitigation is the estimation of the cable state variables 
to be employed in the feedback control law. Usually, in  the technical literature, 
this problem is addressed either by considering heuristic estimates of the state 
variables based on linear combinations of the nodal measurements, or by 
adopting linear representations of the mechanical system and then employing 
standard observation techniques proper of linear systems. A more rigorous 
approach should account for the system nonlinearities in the framework of 
nonlinear control theory (Isidori, 1985). To this end, in order to minimize the 
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number of measurements, a state observer has to be designed. However, the 
presence of quadratic and cubic terms in the equations of motion may likely 
cause observation error instability (Faravelli and Ubertini, 2007; Ubertini, 2007; 
Faravelli and Ubertini, 2008). 

Because of its practical importance, such as in the case of an insufficient 
number of sensors, many recent works were devoted, in the literature, to the 
design of state observers for different kind of nonlinear systems. Without 
aiming at giving an exhaustive literature review on this large topic, some 
relevant references are given in (Isidori, 1985; Dalla Mora et al., 2000; Faravelli 
and Ubertini, 2008). 

In this Chapter one presents a theoretical discussion and some numerical 
results relating to the application a nonlinear state observer for cable dynamics. 
More details on this approach can be found in (Faravelli and Ubertini, 2008). 
The observer is based on the property that the system is observable for zero 
input (drift-observability) and follows the work reported in reference (Dalla 
Mora et al., 2000). The simulations are meant to investigate the observation 
error stability, under different conditions. The non-collocated feedback strategy 
presented in Chapter 8 is the final application of the state observer. 
 

9.2 Governing relations 
The necessary background for modeling the nonlinear dynamics of cables, 

i.e. the nonlinear equations of motion of the continuous system, the Galerkin 
discrete approach and the FE representation of the problem, is summarized in 
Appendix C. Only a few details on state observation for nonlinear dynamical 
systems are therefore given here. 

In order to discuss its applicability to cable dynamics, the main theoretical 
result presented in reference (Dalla Mora et al., 2000) is briefly recalled. Let a 
nonlinear dynamical system be given in first order form, as: 

( )( ) ( )( ) ( )
( ) ( )( )ττ

τττ
xhy

uxgxfx
=

+=&
     (9.2.1) 
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where ( ) nXx ℜ⊆∈τ  is the state vector of length n, f(x(τ)) is a  ( )XC∞  vector 

field,  g(x(τ)) is a ( )1+× nn  matrix whose columns are ( )XC∞  vector fields and 

( ) 1+ℜ⊆∈ nUu τ  is the input vector. In the second expression of equations 

(9.2.1), the vector ay ℜ⊆  is also introduced, which collects, via the ( )XC∞  
function  h(x(τ)), the measured outputs. The case in which y has dimension a=2 
is considered in this Chapter, without loss of generality. 

Assuming that the reader is familiar with the concept of Lie derivative of a 
function ( )xλ~  along a vector field f(x), the Lie derivative of order c will be 

indicated, below, by ( )( )xLc
f λ

~ . It is also worth introducing the following 

definitions of state observation theory, which are also reported in reference 
(Dalla Mora et al., 2000): 
 DEFINITION 9.1 The observation relative degree rj of the j-th output of 
system (9.2.1) in a set nℜ⊆Ω  is an integer such that: 

( )
( ) 0 :

2,,1,0  ,0 :
1 ≠Ω∈∃

−==Ω∈∀
− xhLLx

rcxhLLx

j
r
fg

jj
c
fg

j

K
   (9.2.2) 

The multi-index r=(r1,…,ra) , being a the number of measured variables, is thus 
defined and represents the vector of observation relative degree. 

DEFINITION 9.2 Let r=(r1,…,ra)T be a multi-index such that nsi
a
i =∑ =1  and 

consider the following vector functions: 

( ) ( ) ( ) ( )[ ] ajxhLxhLxhx j
s
fjfjsj
j ,,1  ,1

KK == −H  (9.2.3) 

The following map is then defined: 

( ) ( ) ( ) ( )[ ]xxxx sasss HHHH K21=    (9.2.4) 

The map ( )xsH  is called an observability map in a set nℜ⊆Ω  if it is a 

diffeomorphism in an open set Ω  such that Ω⊆Ω . By looking at equation 

(9.2.4) one can note that the map ( )xsH  is given by successive differentiation 

of the output y for ( ) 0≡τu : 
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( ) ( ) ( )( )11
111 ,, ,,,,, , 1 −−= as

aaa
s

s yyyyyyx K&KK&H   (9.2.5) 

DEFINITION 9.3 Let nℜ⊆Ω  be a compact set and δ be a real positive 

number, the set Ωδ is defined as: Ω∈∀<−ℜ∈ yyxx n  ,: δ . 

DEFINITION 9.4 A system that admits an observability map ( )xsH  in a set 
nℜ⊆Ω  for some multi-index s is said to be drift-observable in Ω. If the system 

is drift-observable in Ω and the maps sH  and 1−
sH  are uniformly Lipschitz in 

Ω and ( )ΩsH , respectively, then the system is said to be uniformly Lipschitz 

drift-observable in Ω. 
The result here recalled is based on the change of coordinates ( )xsH=ξ , 

which transforms the system (9.2.1) into the following form: 

( )( ) ( )( )
( ) ( )τξτ

ξξξξ
Cy

HFLBA ss

=
++= −− 11 HH&

    (9.2.6) 

where ( )( ) ( ) ( )[ ]xhLxhLL n
f

n
fs 21

1 ,=− ξH , [ ]21,2121 AAblockdiagA ssss =ℜ∈ +×+ , 

[ ]21
1 ,21 BBblockdiagB ss =ℜ∈ ×+  and [ ]21

1 ,21 CCblockdiagC ss =ℜ∈ +× , 

where ii ss
iA ×ℜ∈ , is

iB ℜ∈  and is
iC ℜ∈  are Brunowsky matrices (Faravelli 

and Ubertini, 2008). The matrix function ( )( )ξ1−
sH H , in Equation (9.2.6), is 

defined as: 

( )( )
( ) ( )

( ) ( )⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
−−

−−

−

xhLLxhLL

xhLLxhLL
H

s
fg

s
fg

r
fg

r
fg

s

2
1

1
1

2
1

1
1

1

21

21

MMξH    (9.2.7) 

while F  is the following matrix: 
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( ) ( )

( ) ( )

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

+−+−×+−

+−×−+−×−

+−×+−+−

+−×−+−×−

111
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111

1111

221122

222112

221111

221111

0
00
0
00

rsrsrs

rsrrsr

rsrsrs

rsrrsr

I

I
F      (9.2.8) 

If one makes the hypothesis that the system (9.2.1) is observable for zero 
input (drift-observability) in an open set nℜ⊆Ω , the observability map ( )xsH  

is a diffeomorphism from Ω to ( )ΩsH . Its Jacobian Q(x) is thus well defined 

and its calculation is straightforward. In the framework of nonlinear control 
theory, a state observer for system (9.2.1) can thus be written as (Dalla Mora et 
al., 2000): 

( )( ) ( )( ) ( ) ( )( ) ( ) ( )( )( )ττττττ xhyKxQuxgxfx ˆˆˆˆˆ 1 −++= −&  (9.2.9) 
where the over-hat indicates an estimate based on the observed variables, and K 
is a an×  gain matrix. The asymptotic properties of the observation error norm 

( ) ( )ττ xx ˆ−  can be studied by transforming the system (9.2.1) in the form 

reported in Equation (9.2.6), by means of the change of coordinates 
( )xsH=ξ . 

In order to give the stability properties of the observer (9.2.9), let us assume 
that the following hypotheses hold true: 
1) Bounded-input-bounded-state (BIBS) stability: for any bounded input u(τ) 

such that ( ) 0 >∀≤ ττ Muu , ( ) ( ) 00  , ττττ >∀Ω∈⇒Ω∈ xx , where Ω  and 

Ω  are two compact sets such that Ω⊆Ω . 
2) a real positive δ exists such that the system is uniformly Lipschitz drift-
observable in Ωδ, with Lipschitz constants ( )δ

γ ΩsH
 and ( )( )δ

γ
Ω−

ss HH 1 ; 

3) the matrix functions ( )( )ξ1−
sL H  and ( )( )ξ1−

sH H , which appear in equation 

(9.2.6), are uniformly Lipschitz in ( )δΩsH  with Lipschitz constants γL and γH. 

Then for a given positive α a 2×n  matrix K, a constant μ and an input bound 
uM exist such that: 
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( ) ( ) ( ) ( ) ( )0ˆexpˆ xxxx −⋅−≤− 0ατμττ    (9.2.10) 

provided that the initial observation error is such that: 

( ) ( )
μ
δ

≤− 0x̂x 0        (9.2.11) 

where exp(·) denotes the exponential function and it results: 

( )
( ) ( ) ( )( )δδ

γγ
λ
λμ

ΩΩ −=
sssP

P
HHH 1

min

max      (9.2.12) 

where ( )Pmaxλ  and ( )Pminλ  are the maximum and minimum eigenvalues of a 

nn×  matrix P, which is better specified in the following. Without entering in 
the details of the proof reported in reference (Dalla Mora et al., 2000), it is 
worth mentioning that the exponential decay of the observation error is related 
to the existence of a pair (K,P) that solves a H∞ Riccati-like inequality, being P 
an unknown nn×  matrix. This issue can be addressed by choosing the gain 
matrix with the form K=blockdiag[K1, K2], where Ki(λi)=[ki1, ki2, …, kisi]T is the 
vector gain that assigns eigenvalues λi=[λi1, λi2, …, λisi]T to the i-th block Ai-KiCi, 
Ai and Ci being the Brunowsky matrices. If the eigenvalues of each block are 
distinct, this is diagonalized by a Vandermonde matrix V(λi). Here the 
eigenvalues of each block Ai-KiCi are chosen in the form  λi(σ,ρ)=-σ[ρ, ρ2, …, 
ρsi]T, σ and ρ being two positive real numbers. 
 

9.3 State observation for cable dynamics 
 
9.3.1 Nonlinear state observer design 

In order to apply the nonlinear observer (9.2.9) to cable dynamics, the 
equations of the Galerkin model (see Appendix C) must be rewritten in the first 
order form (9.2.1). This can be achieved by defining the state vector 
( ) nXx ℜ⊆∈τ , which has length ( )mkn +⋅= 2 , and the input vector 

( ) 1+ℜ⊆∈ nUu τ  as: 
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( ) ( ) ( ) ( ) ( )(
( ) ( ) ( ) ( ))
( ) ( )Tmcwcwkcvcv

y

T
mk

mk

u

ppqq

ppqqx

ϕϕϕϕπτ

ττττ

τττττ

KKK

&K&&K&

KK

,,,,0,,0,

,,,,,

,,,,,,

111

11

11

=

=

   (9.3.1) 

where the components of vector u are the first in-plane symmetric modal load 
y

1π  and the modal components icvϕ  and icwϕ of the control forces Fcv and 

Fcw (see Chapter 8). The vector field f(x) and the matrix function g(x), that 
appear in equation (9.2.1), in the case of cables reduce to: 
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The crucial point for the derivation of the observer (9.2.9) is to find the 
observability map ( )xsH  and its Jacobian Q(x). In order to do so, one must 

specialize the function h(x) which defines the vector of the observed variables y. 
In the successive developments one considers the case in which y is composed 
by the in-plane and out-of-plane displacements v0 and w0 at a monitored point 
along the cable. Thus, the vector of the measured variables can be written as 

xCy =  where C  is a n×2  matrix (Faravelli and Ubertini, 2008). Looking at 
equations (9.3.2), one can recognize that the vector of observation relative 
degree is r=(2,2)T. Without loss of generality, the observability map ( )xsH  is 

here computed by defining the multi-index s as s=(2k,2m)T. It is worth noting 
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that the relevant result recalled in Section 9.2 does not require reconstructability 
for any input u but only observability for zero input (drift-observability). 
Therefore, it applies also to the case in which s>r componentwise which, 
indeed, is the case of Galerkin cable models with k,m>1. Thus, without loss of 
generality, one here assumes k=m=2 and calculates the necessary Lie 
derivatives for the derivation of ( )xsH  as: 
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where the subscript ,i denotes differentiation with respect to xi. The derivation 
of the single terms of matrix Q(x) is straightforward and their expression is 
reported in (Faravelli and Ubertini, 2008). Clearly, Q results in a state-
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dependent nn×  matrix whose inverse Q-1 must be evaluated numerically as a 
function of the state estimate x̂ , which is indeed essential to preserve the 
relevant asymptotic stability property recalled in Section 9.2. It is also worth 
noting that matrices Q and Q-1  do not depend on the input vector (i.e. are 
independent on the matrix function g). Thus, considering different external 
inputs acting on the system is straightforward and does not affect the reported 
expressions for matrix Q. 

 Of course, the calculation of Q-1, in technical applications, would lead to 
time delays that should be taken into account also in the numerical integration 
of the equations of motion. However, this would lead to a system of differential 
delay equations (DDEs) which would introduce a greater complexity into the 
problem. Analyzing such a point in detail goes beyond the aims of the present 
work, where the numeric calculation of Q-1  is performed at any integration step, 
accounting for the real time value of the state estimate x̂ . Looking at the above 
considerations, the central point for the analytic construction of a nonlinear state 
observer of the form (9.2.9) for cable dynamics is solved. 
 
9.3.2 Observability conditions 

Before going into the numerical results which explore the applicability of the 
state observer (9.2.9) to cable dynamics, a brief discussion on the observability 
of the system is worth doing. Specifically, the sufficient conditions for the 
observability of the cable model linearized in the neighborhood of 0≡x  
(simply referred as linear system) can be stated, in order to properly choose the 
number and the location of the observed variables. Unfortunately, as explained 
below, these conditions result only necessary in the nonlinear regime. 

 The linear system is BIBS stable if and only if all the poles of the transfer 
functions are placed on the left of the imaginary axis. This condition is certainly 
verified in the uncontrolled case while, in the controlled one, a stabilizing 
feedback is required (i.e. the stability condition is imposed on the closed-loop 
transfer functions). Demonstrating that a non-collocated feedback is also 
stabilizing in the nonlinear regime is not as easy as in the linear case. However, 
one could design the feedback strategy in the linear system and assume that the 
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BIBS stability is also valid in the nonlinear case. Numerical results may then be 
adopted to confirm the adequateness of this hypothesis. 

 Assumption 2, regarding the system uniformly Lipschitz drift-observability 
in Ωδ, is rather strong but indeed essential for the proof of the theorem. To show 
this property in a rigorous way, one should proof that ( )xsH  is a Lipschitz 

diffeomorphism from Ωδ to ( )δΩsH , such that the form reported in equation 

(9.2.6) is well defined. Nevertheless, this would require to find the inverse of 
the map ( )xsH , which is an extremely difficult if not an impossible task. 

However, this is rather easy in the linear system. Indeed, by imposing the non-
singularity of the observability matrix, one obtains that the linear system is 
observable in all nℜ , as expected by linear control theory. Thus δ→∞ and the 
observer is stable for any value of the initial error. Unfortunately, the 
observability condition of the linear system is only a necessary condition for the 
local invertibility of ( )xsH  in the neighborhood of 0≡x . This turns out 

immediately by noting that the observability matrix of the linear system 
coincides with Q(0) (i.e. with the Jacobian of ( )xsH  calculated at 0≡x ). As it 

is well-known, the local non-singularity of the Jacobian matrix is only a 
necessary condition for the local invertibility of the map ( )xsH . Therefore no 

proof exists that ( )xsH  is a Lipschitz diffeomorphism (which, indeed, would 

entail invertibility in all ( )δΩsH ) and that assumption 2 holds true. 

Nevertheless, a possible strategy is to impose the sufficient condition on the 
linear system and to assume that assumption 2 is satisfied also in the nonlinear 
case. Numerical results are necessary to confirm, to some extent, the 
adequateness of such an assumption. 

The matrix functions ( )ξH  and ( )ξL , which appear in equation (9.2.6), are 

given by polynomials and therefore are locally Lipschitz in nℜ  and uniformly 

Lipschitz in any compact set of nℜ . Thus assumption 3 is strictly satisfied and, 
according to the theory, the exponential decay of the observation error is 
ensured for suitable Ω and δ, provided that the initial error is sufficiently small. 
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As outlined above, the measured outputs yi=hi(x) can be selected by satisfying 
the condition that the Jacobian Q(x) is nonsingular at the origin 0≡x . For the 

linear Hamiltonian system ( kiv
i ,,1  ,0 K=∀=Ξ  and miw

i ,,1  ,0 K=∀=Ξ ), 

the observability matrix can easily be derived as ( ) [ ]ΨΦ= QQQ ;0 , where: 
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where: 
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In Equation (9.3.5), 0
iφ and 0

iψ  represent the i-th in-plane and out-of-plane 

eigenfunctions of the cable calculated at the monitored point. As already 
mentioned, equation (9.3.4) evaluated for k=m=2 coincides with the expression 
of matrix Q(x), evaluated for 0≡x . The determinant of matrix Q(0) can be 
calculated through the Gaussian elimination. After some computations, the 
following formulas can be given: 
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From equations (9.3.6), one obtains the following observability conditions: 
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As already observed, the conditions stated by equations (9.3.7) are sufficient for 
the linear system, but only necessary in the nonlinear case. The first expression 
of equations (9.3.7) requires the trivial condition that the nodal measurements 
are not located in modal nodes. The second one requires that the in-plane 
natural frequencies are all distinct. Such a condition entails that, if the cable is 
1:1 internally resonant, one in-plane measurement is not sufficient for the 
observability of the system. It is worth noting, however, that one in-plane 
measurement is sufficient when different internal resonant conditions occur, 
such as the 2:1 case encountered in the identification of the physical model 
reported in Appendix C. Nevertheless, if the cable is 1:1 internally resonant, 
two in-plane measurements are at least required. The same condition holds for 
the out-of-plane natural frequencies as well, as stated in the third expression of 
equations (9.3.7). However, this condition is always satisfied for cables since 
the out-of-plane natural frequencies are always distinct as expected by Irvine's 
theory (Irvine and Caughey, 1974). 
 

9.4 Numerical evaluation of the observer 
performances 

With the aim of exploring numerically the applicability of the observer 
(9.2.9) to the nonlinear dynamics of cables, the uncontrolled vibrations of the a 
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sample cable model C2  representing the physical model identified in Appendix 
C, are considered. The system is subjected to a harmonic modal in-plane 

excitation of the form ( )τωωππ 11 /sinM
y = . 

 
9.4.1 Planar motion 

At a first stage of investigation, the superharmonic ( 5.0/ 1 =ωω ) and 

primary ( 0.1/ 1 =ωω ) forced resonant cases are analyzed with a planar model 
having 2 degrees-of-freedom (dofs) by adopting the input bound πM=0.0003. By 
assigning to the system the initial conditions summarized in Table 9.1, 
convergence is achieved when the norm of the initial observation error is close 
to 0.4·10-3 or smaller. The results are presented in Figures 9.1 and 9.2 where 
solid lines denote the state variables of the mechanical system (modal 
amplitudes), while dashed lines denote the estimated ones. 

 

 
 

Figure 9.1. Numerical results with planar model (solid lines indicate the state 
variables of the mechanical system, dashed lines indicate the estimated ones). The 

solid grey line in (c) indicates the steady limit cycle 
 

Figure 9.1 refers to the superharmonic resonant case ( 5.0/ 1 =ωω ), while 

Figure 9.2 refers to the primary resonant case ( 0.1/ 1 =ωω ). In particular, 

(a) (b) 

(c) (d) 

(πM=0.0003, ω/ω1=0.5) 
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Figures 9.1 (a) and (b) show the convergence of the estimated state variables to 
those of the mechanical system in the very initial part of the motion. Figure 9.1 
(c) shows a phase portrait of the motion. As it is visible from such a figure, after 
the initial transitory, the motion  becomes steady on a harmonic limit cycle 
represented by a grey solid line. Clearly, the state variables of the mechanical 
system and the estimated ones share the same harmonic attractor for τ→∞. A 
detailed view of the initial transitory in the phase space, is also reported in 
Figure 9.1 (d), from which one can better evaluate the initial evolution of the 
observation error. 

 

 
 

Figure 9.2. Numerical results with planar model (solid lines indicate the state 
variables of the mechanical system, dashed lines indicate the estimated ones). The 

solid grey line in (c) indicates the steady limit cycle 
 

1/ωω  ( )01q  ( )02q  ( )0ˆ1q  ( )0ˆ2q  ( ) ( )0ˆ0 xx −  

0.5 1.00·10-3 0.10·10-3 0.60·10-3 0.06·10-3 0.40·10-3 
1.0 0.5·10-3 0.10·10-3 0.12·10-3 0.02·10-3 0.39·10-3 
Table 9.1. Analysis cases for in-plane harmonic loading with planar model 

(πM=0.0003, σ=0.04, ρ=14) 
 

Convergence is found to be a little more critic at the primary resonance. In 
this case, analyzed in Figure 9.2, it is necessary to slightly reduce the initial 

(a) (b) 

(c) (d) 

(πM=0.0003, ω/ω1=1.0) 
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conditions (but essentially not the error norm), in order to achieve convergence 
of the observation error ( ) ( )ττ xxev ˆ−= , where the superscript v indicates 

that one is referring to the planar case. This seems to confirm that, as expected 
from the theory, convergence of the observation error is governed by the initial 
conditions and by the amplitudes of vibration. Particularly, given the initial 
conditions of the mechanical system, observation error stability is achieved only 
if the norm ( ) ( )0ˆ00 xxe −=  is sufficiently small. This point is analyzed 

below, in some detail, by considering the more general tridimensional case. 
 
9.4.2 Spatial motion 

Small non-zero initial conditions are always present in technical 
applications, due to the likely effects of ambient vibrations. Nevertheless, they 
are hardly measurable and normally one has no indications about which initial 
conditions should be assigned to the state observer. In order to skip this 
arbitrarily, it is of interest to analyze the case in which the observer starts with 
nil initial conditions ( ( ) 00ˆ ≡x ) while a small perturbation is assigned to the 
mechanical system. Particularly, it is significant to investigate which is the 
upper bound of ( )0x  in order to achieve observation error stability in the 

highly nonlinear regime. 
As preliminary results, two cases of forced primary resonances with 

increasing input bounds are analyzed with the spatial model, as reassumed in 
Table 9.2. The first case is similar to the second one presented in Section 9.6.1, 
in the sense that one assumes πM=0.0003 and roughly the same initial error 
norm. The results of the analysis are represented in Figure 9.3. From the 
presented results one can observe that the participation of out-of-plane modes 
(and in particular of the first one having amplitude p1) does not produce error 
convergence difficulties with respect to the corresponding planar case. 
However, this could be related to the fact that out-of-plane modes are damped 
out after the initial transitory and do not take part to the steady motion. In order 
to better investigate this aspect and to analyze the behavior of the observation 
error in the strongly nonlinear regime, a larger input bound πM  is assumed in 
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the second case. Particularly, the value πM =0.003 is found to be sufficiently 
large such that nonlinear phenomena are strongly enhanced. As an example, the 
frequency response curve of the first in-plane mode, subjected to an in-plane 
harmonic load with amplitude πM =0.003, is reported in Figure 9.4. The results 
are obtained by means of a continuation technique implemented in the software 
AUTO (Doedel et al., 2000). From the presented figure, one can recognize that, 
under the considered amplitude of excitation, the system undergoes large 
vibrations, characterized by the classic hardening primary resonant peak and by 
a relatively large superharmonic resonant peak. 

 

  

 
 

Figure 9.3. Numerical results with spatial model (solid lines indicate the state 
variables of the mechanical system, dashed lines indicate the estimated ones) 
 
Assuming πM =0.003 and ω/ω1=1.0 (second case in Table 9.2) leads to the 

results presented in Figures 9.5 (b)-(d). In such a case a steady motion involving 
also the first out-of-plane mode ensues from a dynamic equilibrium bifurcation. 
The enhanced nonlinearity of the problem requires, in this case, to reduce the 
norm of the initial observation error by roughly 60% with respect to the 
corresponding case with πM =0.0003. This confirms that, as expected from the 
theory, as the input bound increases the upper bound of the initial error norm 
decreases. However, as it can be recognized from Figures 9.5 (b) and (c), a 

(a) (b) 

(c) 

(πM=0.0003, ω/ω1=1.0) 



Chapter IX Nonlinear state observation  for cable dynamics 
 

211 

rapid convergence of the estimated state variables to those of the mechanical 
system is achieved also in this more demanding case. Moreover, as depicted in 
Figure 9.5 (d), both estimated state variables and those of the mechanical 
system converge to the same steady attractor as τ→∞. 

Before exploring systematically the influence of ( )0x  on the stability of 

the observation error, the third case reported in Table 9.2 is worth considering. 
The results of such a case are represented in Figure 9.6 and show a particular 
behavior of the observation error. Namely, after a rapid convergence occurring, 
as expected, in the very initial part of the motion a sudden instability of the 
observation error is evidenced, which is recovered after a while. A similar 
behavior is not expected theoretically but is likely related to numerical errors. 
These last couple with observation errors and lead sometimes to numerical 
convergence failures. This may happen though a high order ODE integrator is 
adopted such as the Runge Kutta method of order 4 here considered. 

 

 
Figure 9.4. Frequency response curve of the first in-plane mode (πM=0.003); solid 

lines denote stable harmonic solutions, dashed lines denote unstable harmonic 
solutions 
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Figure 9.5. Numerical results with spatial model. The solid black line in (a) 
indicates the state of the mechanical system, the dashed grey line indicates the 
estimated state. The grey line and the black line in (b) denote the steady limit 

cycles of the mechanical system and of the estimated state, respectively. The solid 
line in (c) indicates the state of the mechanical system, the dashed line indicates the 

estimated state 
 

 

 
 

Figure 9.6. Numerical results with spatial model (solid lines indicate the state 
variables of the mechanical system, dashed lines indicate the estimated ones) 

(a) (b) 

(c) 

(πM=0.003, ω/ω1=1.0) 

(a) (b) 

(c) (d) 

(πM=0.003, ω/ω1=0.5) 
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1/ωω  Mπ  ( )01q  ( )02q  ( )01p  ( )02p  ( ) ( )0ˆ0 xx −  

1.0 0.0003 0.40·10-3 0.05·10-3 0.01·10-3 0.05·10-3 0.42·10-3 
1.0 0.0030 0.10·10-3 0.05·10-3 0.10·10-3 0.05·10-3 0.16·10-3 
0.5 0.0030 0.20·10-3 0.05·10-3 0.10·10-3 0.05·10-3 0.23·10-3 

Table 9.2. Analysis cases for in-plane harmonic loading with spatial model: nil 
initial conditions are assigned to the observer 

 
In order to better investigate the behavior of the observation error, numerical 

simulations are conducted by varying both the initial observation error norm 
( )0x  (assuming ( ) 00 ≡x ) and the frequency ratio of the harmonic modal 

load. The initial observation error norm is enlarged by increasing the initial 
conditions assigned to the first in-plane mode, which is the most relevant one 
since it is directly forced by the modal load. Small initial conditions of 1·10-5 
are also assigned to the other modes (q2, p1 and p2) to allow possible 
bifurcations to occur. The results are presented in Figures 9.7 (a) and (b), where 
the map of the observation error erms is reported. The heavy computational 
expense of the analysis makes, in this case, a variable order (between 1 and 5) 
Runge Kutta implicit time integrator preferable with respect to the 4-th order 
method. Indeed, the variable order scheme is more computationally efficient 
(the step size and the order are regulated on the basis of the numeric error 
behavior) but essentially as accurate as the 4-th order method. Thus, one adopts 
the variable order integrator for obtaining the results presented in Figure 9.7. In 
this figure the initial observation error norm ( )0x  is indicated by e0 and the 

error erms is calculated as the root mean square (rms) of the norm ( ) ( )ττ xx ˆ−  

in the interval [τmax/2, τmax], τmax being the total duration of the motion. In the 
present case one assumes τmax =100, which is a sufficiently long duration to 
evaluate the long-term observation error behavior. By operating in the above 
described way, possible instabilities caused by the coupling of integration and 
observation errors are also accounted for. Particularly, when numerical 
instability is encountered (the integrator is unable to meet the integration 
tolerances before τmax) one conventionally assigns a value emax to the 
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observation error erms, emax being the maximum value obtained in the 
simulations and denoting observation error instability. Thus, white regions 
(erms=emax) in Figure 9.7 (a), denote instability of the observation error, while 
black regions denote convergence ( ( ) ( ) 0ˆ →− ττ xx ). Figure 9.7 (b), reports 

the regions of numerical instabilities. Specifically, white regions denote 
numerical instability, while black regions denote numerical convergence. In all 
those cases in which the variable order method encounters convergence 
difficulties, the 4-th order method is also adopted. Nevertheless, it is worth 
mentioning that, mostly, the same convergence difficulties are encountered by 
both methods. Below the above described contour plots, one also reports the 
maximum amplitudes of the modal displacements q1 and p1 (which are not 
depending on ( )0x ), evaluated in the interval [τmax/2, τmax]. Regarding these 

two last curves, it must be observed that they are not frequency response curves 
of the system since they are not evaluated in the steady motion. This is the 
reason why, in the said curves, the hardening branch reported in Figure 9.4 
around the primary resonance does not appear. Nevertheless, the behavior of the 
observation error is not affected by the steady amplitudes of vibration, but it is 
mainly governed by the transient phase. Thus, the amplitudes q1 and p1, reported 
below the convergence maps in Figure 9.7, give a good indication of the 
potential effect of the vibration amplitudes on the observation error stability. 

From Figures 9.7 (a) and (b) one can observe that, as expected, there is an 
upper bound of ( )0x  above which convergence of the observation error and 

numeric stability become critic. However, several white regions are also visible 
below the above said threshold. Particularly,  some of them are distributed in 
the interval 0.7<ω/ω1<1.0, which is probably related to the large values that q1 
assumes in this region. Nevertheless, most of the said regions of instability 
(either numeric or related to the observer) appear at large frequencies (in the 
interval 1.3<ω/ω1<1.6), where the vibration amplitudes are relatively small. 
This indicates the high sensitivity of the system to the frequency content of the 
input. Such a circumstance is probably related to the fact that, locally, ( )xsH  is 

not invertible (and thus it is not an observability map for the system). This 
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entails that the form reported in equation (9.2.6) is locally not well defined and 
matrix ( )xQ  becomes singular or nearly singular, leading to either numeric or 
observation error instabilities. This point is obviously hardly predictable and 
represents the main shortcoming of the proposed approach in technical 
applications. 
 

 
Figure 9.7. Map of the root mean square erms of the error norm evaluated in the 
interval [τmax/2,τmax] as a function of ω/ω1 and of the initial error norm e0: (a); 

numeric convergence map (white regions denote numeric instability): (b) 

 
9.5 Application of the observer to active control 

The natural applicability of state observation is represented by non-
collocated active and semi-active control policies. Within this framework, the 
estimated state variables are employed in the control law which is adopted to 
calculate the feedback actions that stabilize the cable motion. In order to 
investigate, to some extent, the applicability of the nonlinear observer to the 
structural control of cables, the feedback strategy described in Section 9.3 is 
here combined with the nonlinear observer. Nevertheless, the considered control 
strategy does not limit the generality of the proposed approach, which would 
apply to every kind of active or semi-active control, such as, for example, the 
well-known longitudinal strategy studied in references (Susumpow and Fujino, 
1995; Gattulli et al., 1997; Pasca et al., 1998; Gattulli and Vestroni, 2000; 
Gattulli et al., 2008). 

In order to demonstrate, to some extent, the applicability of the nonlinear 
state observer to the considered feedback control strategy, the primary forced 

(a) (b) 
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resonant case with input bound πM=0.003 (second case in Table 9.2) is 
considered. The results of the analysis are represented in Figures 9.8 and 9.9. 
Particularly, Figures 9.8 (a) and (b) represent the time histories of the 
uncontrolled and control-with-observer cases, while Figures 9.8 (c) and (d) 
represent the evolution in time of the observation error norm ( ) ( )ττ xxe ˆ−= . 

Figure 9.8 (d) represents a detailed view of e vs. τ in the initial part of the 
motion. In such a figure one evidences the peculiar behavior of e which, at the 
beginning of the motion increases above the initial value and then rapidly 
decreases. Regarding this last point, it must be also mentioned that both 
uncontrolled and controlled cases require the same upper bound of the initial 
error norm (roughly equal to 0.16·10-3) in order to achieve observation error 
convergence. This seems to indicate that observation error stability is not 
affected by the presence of the control forces. 

 

 

  
 

Figure 9.8. Controlled vibrations with spatial model (black lines indicate the 
control-with-observer case, grey lines indicate the uncontrolled case) 

  
The uncontrolled and controlled (with observer) steady limit cycles are 

reported in Figure 9.9 (a). From the presented results one can observe that the 
steady controlled motion is stabilized in the vertical plane (the bifurcation 
leading to a spatial motion is not occurring). This confirms the capability of the 
proposed control law to mitigate the nonlinear cable vibration, with only two 
nodal measurements. The expected equivalence of the control-with-observer 

(a) (b) 

(c) (d) 

(πM=0.003, ω/ω1=1.0) 
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solution with the ideal case in which all the state variables are known, is 
evidenced in Figure 9.9 (b). 

The presented results emphasize that the observer guarantees optimal control 
by minimizing the nodal measurements. This, in fact, is a relevant point since, 
without employing state observation, the minimal number of nodal 
measurements may become unsustainable (equal or greater than the considered 
modal amplitudes). On the contrary, in the with-observer case, one may, in 
principle, estimate an infinite number of modal amplitudes with only two 
measurements. It must be noted, however, that no stabilizing feedback can be 
calculated in all those cases in which the observation error becomes unstable or 
the input is unknown (such as, for example, when wind and other external 
excitations couple). Nevertheless, a possible adaptive strategy to overcome 
these limitations is to switch in real time to a collocated strategy (no observer 
needed) until observation error stability is recovered. The most trivial collocated 
strategy that one could choose, is to make the device work as a passive one. 

 

 
 

Figure 9.9. Controlled vibrations with spatial model. The black line in (a) indicates 
the steady limit cycle of the control-with-observer solution, the grey line indicates 

the one of the uncontrolled solution. The black dots in (b) indicate the control-
with-observer solution while the grey line represents the theoretical case in which 

the entire state is known 
 

9.6 Concluding remarks 
A nonlinear state observer is designed analytically to be adopted in active 

state control policies for nonlinear cable dynamics.  

(a) (b) 

(πM=0.003, ω/ω1=1.0) 
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A discussion on the observability of the system shows that two measured 
variables (one in-plane and one out-of-plane) are sufficient to construct an 
asymptotic state observer for the linear system if the cable is not 1:1 internally 
resonant. When the cable is at one crossover point, the minimum number of in-
plane measurements is two. In the nonlinear regime, further conditions are 
required, which must be numerically verified. Nevertheless, the observation 
error stability is not guaranteed in every case for two fundamental reasons: the 
initial error and the input bound have to be sufficiently small; state estimation 
and time integration errors may couple thus leading to numerical instabilities. 

The behavior of the observation error is investigated numerically utilizing a 
four dimensional Galerkin model. In order to avoid arbitrarily, nil initial 
conditions are assigned to the  observer, whilst small initial perturbations are 
assigned to the mechanical system. The results show the feasibility of the 
observer for the purposes of the study. Namely, the minimal number of 
measurements allows the description of the entire state with exponential rate 
convergence of the observation error. This entails obvious benefits in the fields 
of active and semi-active feedback control. However, a significant sensitivity of 
the observer on the initial conditions and on the frequency content of the input 
is evidenced. In particular, as expected by the theory, convergence of the 
observation error becomes critic by enlarging the norm of the initial error above 
a certain threshold which obviously increases as the input bound decreases. 
Nevertheless, observation error instabilities also appear below the said 
threshold, even in dynamic regions in which the motion is characterized by 
relatively small amplitudes of vibration. This circumstance is mostly evidenced 
for large frequency values and it is either related to numeric errors in the 
calculation of the inverse of the state dependent observability matrix or, more 
suitably, on the local non-invertibility of the observability map. This point 
constitutes the main shortcoming of the proposed approach which, however, can 
be easily overcome in control applications by adopting suitable adaptive 
strategies.  
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CONCLUDING REMARKS 
 

The thesis analyzes wind effects on cable-supported bridges, with emphasis 
given to the structural response, the aeroelastic stability and the main control 
priorities arising within this context.  

The work is organized into three parts. The first part, including Chapters 0-2, 
summarizes the basic aspects of cable-supported bridges, devoting a special 
care to structural modeling (Chapter 1) and wind simulation (Chapter 2). The 
second part, including Chapters 3-6, focuses on the dynamic behavior of cable-
supported bridges subjected to wind action. Particularly, Chapters 3 and 4 are 
devoted to buffeting response analysis, while Chapters 5 and 6 deal with the 
aeroelastic stability of cable-supported bridges. The third part of the thesis 
(Chapters 7-9) is entirely devoted to vibration control. Namely, two major risks 
in the field of wind-excited vibrations of bridges are identified in the onset of 
the flutter instability of the deck and in the excessive vibrations of long cables 
(especially in cable-stayed configurations) which may be originated either by 
dynamic instabilities or by ambient loads. Two suspension bridges are mainly 
considered as the case studies: the Tsing Ma Bridge and the New Carquinez 
Bridge. The main structural features of these bridges are presented in Appendix 
A. 

An effort is made to balance brief literature reviews, original theoretical 
achievements, numerical investigations and experimental results. The main 
findings and original contributions of the work can be summarized as follows: 
 
Part 1: Basic aspects of cable-supported bridges 
 

Structural system: 
 

- The capability of reduced dimensional numerical finite element models 
of long-span bridges to capture a large number of linear normal modes 
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identified from field measurements and to correctly reproduce the 
stiffening nonlinear behavior of the deck, is investigated with reference 
to the case study of the Tsing Ma Bridge, located in Hong Kong, China. 
Particularly, a sort of “minimal” macro-level model is achieved by 
properly simplifying a high dimensional numeric scheme corresponding 
to an accurate replication of the real structure. Reduced dimensional 
models are seen to guarantee a strong reduction of the computational 
effort along with an accurate agreement with the full order model for 
the purposes of the study. 
 
Wind excitation: 
 

- The digital simulation of the turbulent wind velocity field in high 
dimensional simulation domains requires a special attention to reduce 
the memory allocation and the computational effort. A numerical 
framework is proposed, at first, to handle digital wind simulations in a 
properly organized way. Afterwards, a comparative study between three 
relevant existing simulation techniques suggests the use of a simplified 
numerical procedure based on the proper orthogonal decomposition of 
the spectral matrix of the process. The comparative study accounts for 
computational efficiency and for the accuracy in preserving the 
frequency content and the coherence level of the target process. 

 
Part 2: Fundamental aspects of the dynamics of cable-supported bridges 
 

Buffeting response: 
 

- Numerical simulations, conducted through a macro-level finite element 
model of the Tsing Ma Bridge, China, show that unsteady aerodynamic 
effects, adequately modeled by means of time domain representations 
of aeroelastic derivatives, may play a significant role in the buffeting 
response of bridges regardless the level of external excitation. The 
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analysis also reveals that these effects are not fully captured by quasi-
steady representations of  the aerodynamic loads. Indeed, the quasi-
steady formulation results to be slightly conservative for the considered 
case study. 
 

- A computational framework accounting for output only system 
identification, digital wind simulation based on in-site measurements 
and finite element model updating via optimization techniques is 
established and applied to the case study of the New Carquinez Bridge 
located in San Francisco, California. The proposed approach reveals to 
be an accurate tool for predicting the buffeting response of bridges if 
compared to field measurements. The model is thus ready to be used in 
online monitoring systems as well as a mean for safety evaluations or as 
a source of pseudo experimental data. 
 
Aeroelastic stability: 
 

- A simple treatment of the time domain representation of self-excited 
aeroelastic loads via the use of indicial functions allows to rewrite the 
flutter equations of bridge decks in the form of a fully analytical system 
of ordinary differential equations without integral terms. This permits 
the critic condition to be solved by simply evaluating the eigenvalues of 
a non-symmetric matrix operator. This approach is seen to be in perfect 
agreement with the more involved frequency domain approach 
requiring an iterative search of the Hopf bifurcation point. In the 
meanwhile, the time domain model allows to incorporate non-linearities 
and turbulence effects into the flutter problem, which are traditionally 
neglected by frequency domain methods. 
 

- Time domain aeroelastic stability analysis of bridges using 
tridimensional finite element models of the structure is probably the 
most accurate and physically relevant approach to assess the level of 
safety against aeroelastic instabilities, fully accounting for structural 
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nonlinearities and multimodal participations. Two main applications of 
this approach are proposed with reference to the case study of the Tsing 
Ma Bridge. 
 

- The type of system nonlinearities judge on the nature of the postcritic 
behavior of the bridge ensuing from a flutter bifurcation. Indeed, this 
last can be either of the benign supercritical nature (stable postcritic 
response) or of the more dangerous subcritical one (unstable postcritic 
response). Numerical simulations show that, in the case of an unstable 
postcritic behavior, turbulence effects may play a significant role on the 
system response. Indeed, fluctuating wind velocities modeled as 
stochastic Gaussian processes partially correlated along the bridge, are 
seen to destabilize the structural response slightly below the critic 
velocity and to shorten the route towards extremely large displacements 
leading to structural failures. 
 

- Experimental data scattering in wind tunnel experiments must be 
incorporated in the aeroelastic stability analysis which thus assumes a 
probabilistic meaning. A direct Montecarlo simulation indicates that 
assuming a Gaussian variability in the input (aeroelastic derivatives) 
reflects on a strongly non-Gaussian outcome (critic velocity). Namely, 
the probability density function of the predicted critic velocity is seen to 
assume a dangerous right skew shape as the model uncertainty is 
increased. This entails that common levels of experimental uncertainties 
could lead to unsafe predictions of the critic flutter velocity. 

 
Part 3: Advanced aspects of the dynamics of cable-supported bridges 
 

Suppression of cable galloping and bridge flutter: 
 

- Passive control solutions based on the use of tuned mass dampers are 
investigated with the aim of suppressing aeroelastic instabilities (cable 
galloping and bridge flutter). These passive solutions are seen to 
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guarantee satisfactory control performances despite their simplicity and 
economical convenience. 

 
- With the aim of mitigating control sensitivity to mistuning effects, a 

multiple tuned mass damper is conceived for suppressing the 
occurrence of flutter instabilities in bridge decks. The effectiveness of 
such a control policy is analytically studied in the time domain by 
adopting the representation of self-excited loads via indicial functions 
approximated by exponential filters. The results seem promising 
towards the application of this strategy in a practical case. 
 
Cable vibration mitigation: 
 

- The problem of cable vibration mitigation is studied in the last two 
Chapters in some details, devoting a special care to the quite involved 
nonlinear phenomena. Indeed, long stay cables exhibit complex 
nonlinear behaviors even in very taut configurations, which must be 
attentively modeled in the analysis. After collecting the main literature 
findings on nonlinear cable dynamics, system identification of a 
physical cable is preliminary performed devoting a special care to 
detecting possible internal resonance conditions. 
 

- Analytical tools and numerical simulations show that an active state 
controller, proper of linear systems, can introduce a large amount of 
damping and stabilize  the response of the system even in the strongly 
nonlinear regime. However, in order to reduce the number of 
monitoring sensors, a suitable nonlinear state observer must be designed 
to track the state of the system during the motion. 
 

- State estimation in nonlinear cable dynamics is addressed in details via 
analytical and numerical approaches. Analytical results show that one 
in-plane and one out-of-plane measurements are sufficient in order to 
capture the entire state of the system, provided that the cable is not 1:1 
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internally resonant. In the vicinity of one crossover point two in-plane 
measurements are at least required. It must be mentioned, however, that 
the observability conditions of the system, which are sufficient for the 
linear case, result only necessary in the nonlinear regime. 
 

- An analytical nonlinear state observer for cable dynamics is designed on 
the basis of reduced order nonlinear cable models derived by means of 
the Galerkin approach. The observer appears to be feasible for semi-
active or active control applications, as it is discussed through 
numerical simulations. 
 

- An innovative hybrid control strategy for cable vibration mitigation is 
finally proposed and its effectiveness is analyzed through a theoretical 
investigation and an experimental validation. The control strategy 
combines a distributed passive solution, utilizing wrapped shape 
memory alloy wires, with a localized open loop actuation. The shape 
memory alloy wire is pre-tensioned up to an optimum value which 
maximizes the equivalent damping introduced into the system. The 
open loop actuation aims at mitigating the cable displacements by 
introducing energy into the system instead of taking energy out of it. To 
this end, a simple sinusoidal control law is designed to enhance the 
energy exchange between modes by exploiting nonlinear internal 
resonance conditions of the cable. This control policy is seen able to 
strongly reduce the response of the system in both linear and nonlinear 
regimes. Moreover, the proposed approach does not necessitate state 
reconstruction, thus meeting the fundamental requirement of a large 
control robustness.    
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APPENDIX A 
 
 
 

DESCRIPTION OF THE CASE STUDY 
BRIDGES 
 
 
 

Abstract  
The structural complexity of long-span cable-supported bridges requires 
multilevel and systemic approaches for design, construction, monitoring, 
maintenance and rehabilitation purposes. After briefly discussing the basic 
notions for complex structures, the main structural features of the two case 
study bridges analyzed in this thesis are presented. The two case studies are: the 
Tsing Ma Bridge, located in Hong Kong, China, and the New Carquinez 
Bridge, located in San Francisco, California.  
 

A.1 Basic notions for complex structures 
Cable-supported bridges are complex structural systems whose dominating 

character depends on the interrelationships between the parts. This complexity 
has pushed the engineers to develop new “organized” approaches and ways of 
thinking to handle design, construction, monitoring and maintenance of these 
structures.  

Primarily, the traditional prescriptive design approach, in which the structure 
must satisfy some design targets, has revealed to be unfeasible for the design of 
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complex structural systems. To this end, the general framework of the 
performance based design, relying on the definition of “what a structure is 
expected to do” instead of “how it should be constructed” (Gibson, 1982), was 
recently applied to the case of a long-span suspension bridge (Giuliano, 2007). 
Within this context, different performances exhibit interconnections with each 
other and are influenced by several factors thus making the definition of a 
unified index of quality particularly useful. To this end the concept of system 
dependability was introduced (Bontempi, Gkoumas and Arangio, 2005) which 
can be interpreted as the availability of performances (attributes) and its 
influencing factors (threats). 

Within the performance based design of complex structural systems, 
traditional approaches based on input-output relations should be integrated by 
the tools of System Engineering and Knowledge-Managements Sciences. This 
allows to handle the design variables and all the involved uncertainties in a 
properly organized way which can be generally referred to as Systemic 
Approach (Giuliano, 2007). This approach relies on a methodological 
simplification of the problem leading to a series of decompositions in which the 
capabilities of the system  are explored. Following such an approach the 
complexity of the system is organized into a so-called multilevel complexity 
which can be simplified through a formal operation of hierarchical layering. 

 
A.2 Structural decomposition of cable-supported 
bridges 

Global performances of cable-supported bridges are usually affected by local 
behaviors. Thus, a multilevel layering is required to decompose the structure in 
a proper number of substructures which should satisfy performance 
requirements both at the global and at the local scales. This representation 
makes use of a distinction of different levels of the system from the global 
(macro-level) to the local (micro-level) scales. 

For the purposes of the study, i.e. for analyzing global and global/local 
responses of cable-supported bridges, the structural decomposition represented 
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in Figure A.1 is adopted. It is implicit that the structural components which are 
included in the different layers depend upon the problem under investigation. 
As an example, being interested in the dynamic behavior of cable-supported 
bridges, the scale of the problem corresponds to the scale of the whole structure. 
Thus, for instance, a tower saddle can be considered as a micro-level 
component, though a saddle itself could be decomposed into plates, welded 
joints, connections and so forth. 
 

 
Figure A.1. Structural decomposition of cable-supported bridges 

 
The hierarchical organization of the structural system depicted in Figure A.1 

directly reflects on the need of developing multi layered mathematical models. 
Namely, global models are adopted to describe the global response at the 
macroscopic scale using a reasonable number of degrees of freedom. More 
refined models can then be used to assess local behaviors at the meso and micro 
scales, such as, for instance, the vibrations of bridge stays. It is worth noting 
that structural decomposition can be an effective tool for developing 
substructure models at the meso scale. Nevertheless, substructuring is not 
always allowed since global/local interactions, such as those between the deck 
and the stays of a cable stayed bridge, are usually neglected by substructure 
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models though they may play a significant role in the behavior of local elements 
at the meso scale. 
 

A.3 The Tsing Ma Bridge 
The Tsing Ma Bridge, located in Hong Kong, China, is a suspension bridge 

that crosses the Ma Wan Channel and links the Tsi Yi Isle to the Ma Wan Bay 
(see Figure A.3). Due to its inherent complexity, all the concepts presented in 
the previous sections can be directly applied to the case of this structure.  

 

 
Figure A.3. The Tsing Ma Bridge 

 
The technical and scientific relevance of the Tsing Ma Bridge is motivated 

by numerous reasons. Among those, the Tsing Ma is the world’s longest span 
suspension bridge carrying both road and railway traffic and the world’s largest 
deck carrying rail traffic. Besides, the bridge is located in a strong typhoon 
region that exposes the structure to extremely severe conditions, such as the 
York Typhoon occurred in 1999. For this reason, a wind and structural health 
monitoring system (WASHMS) has been installed on the bridge since the year 
of its completion (Wong, 2004). The WASHMS system has also given the 
chance of accessing a richness of field measurement results, regarding both the 
structural response (strains, displacements and accelerations) and the wind field 
(wind velocities). These results provide a distinctive opportunity to examine the 
dynamics of the Tsing Ma Bridge and to investigate the reliability of the 
numerical models for predicting its behavior. 
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The main span of the Tsing Ma Bridge is 1377 m in length and the overall 
length of the bridge is 2160 m (see Figure A.4 (a)). The two main cables have a 
diameter of 1.1 m and are 36 m apart. The towers have a total height of 206 m, 
measured from the base level to the tower saddle. The bridge deck is suspended 
by steel hangers in the Ma Wan side and in the main span and supported by 
three piers on the Tsing Yi side. In this side hangers are therefore missing and 
the two main cables behave as free stays (Ni et al., 2004). 

 

 

 
Figure A.4. Main geometry of the Tsing Ma Bridge (a); decking system (Li and 

Chan, 2006) (b) 
 
Each of the two main cables is composed by 91 strands of parallel 

galvanized steel wires in the main span and by 97 strands in  the side spans. The 
number of wires per strand is 360 or 368, resulting in a cross sectional area of 
0.759 m2 in the main span and of 0.801 m2 in the side spans. The cables are 
formed by means of the traditional aerial spinning technique. Each hanger is 
made of four wire ropes of 76 mm diameter, that pass over the clamps on the 
main cables and are then attached to the chords by steel sockets. The 
longitudinal distance between each suspender unit is 18 m. 

The bridge deck is a two-level hybrid steel structure, consisting of two 
longitudinal trusses and Vierendeel cross frames (see Figure A.4 (b)). Stiffening 

(a) 

(b) 
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steel plates complete the deck section that carries a dual three-lane highway on 
the upper level and two railway tracks and two carriageways on the lower level.  

Each tower of the bridge is composed of two reinforced concrete legs and 
four deep pre-stressed concrete beams. Two hollow shafts are symmetrically 
arranged inside each leg, form the level of the top beam to a point located 
approximately 15 m above the base level. The towers are built on massive 
reinforced concrete slabs found on competent rock. All the supporting piers in 
the side spans are reinforced concrete structures founded on reinforced concrete 
pad footings, laying on competent rock. 
 
A.4 The New Carquinez Bridge 

The New Carquinez Bridge (NCB), also named the Alfred Zampa Memorial 
Bridge, is a suspension bridge completely built in 2003, which links Vallejo 
with Crockett in California over the Carquinez Strait (see Figure A.5). It 
consists of  a main span of 728 m and two side spans of 147 m (southern) and 
181 m (northern), respectively.   

 

 
Figure A.5. The New Carquinez Bridge (from (Conte et al., 2008)) 
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The New Carquinez Bridge is the longest suspension bridge that has been 
built in the United States since the 1960s and it is the first suspension bridge in 
the world with concrete towers in a high seismic zone (Conte et al., 2008). The 
design of the New Carquinez Bridge is characterized by the orthotropic 
aerodynamic steel deck, the reinforced concrete towers and the large-diameter 
drilled shaft foundations. The closed steel box girder of the deck is light, 
durable, and has low-maintenance expenses. The shape of the deck section was 
optimized through wind tunnel experiments in order to provide aerodynamic 
stability and low drag. The deck is continuous through the towers, with 
expansion joints located at the ends of the side spans.  
 

 
Figure A.6. Location of sensors installed on the New Carquinez Bridge (from 

(Ubertini et al., submitted)) 
 

As a part of the California Strong Motion Instrumentation Program, 76 
accelerometers were placed over the New Carquinez Bridge including towers, 
piers, abutments, anchorages, piles and deck. The records of a set of ten 
accelerometers located on the northern half of the deck have been used in 
Chapter 4 to collect structural responses of the bridge and to examine its 
dynamical behavior under operating conditions. Figure A.6 displays the 
locations of such ten accelerometers (six in vertical, three in transverse, and one 
in longitudinal directions) with the addition of one anemometer at the mid-span.  
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The reinforced concrete towers are certainly the main architectural and 
aesthetic assets of the bridge. Their height reaches approximately 125 m above 
the water level. Reinforced frames are allocated at the corners of the cellular 
shafts in order to improve seismic ductility. According to the adopted seismic 
standards, the towers were designed to remain elastic during earthquakes of 
average intensity, with some exceptions at their lower sections (Conte et al., 
2008). The towers are founded on pile caps supported by drilled shaft 
foundations which were subjected to the same seismic standard adopted for the 
towers. Particularly, each tower is supported by 12 shafts, with a maximum 
length of about 90 m. On the south span, a transition pier supports the end of the 
steel deck girder, houses tie downs of the cables, and supports the end of the 
south viaduct. This pier is structurally and architecturally similar to the main 
towers, with cellular reinforced concrete shafts and pile foundations. The cable 
anchorage at the south span is a massive concrete anchor block combined with 
piles. On the contrary, the north cable anchorage transfers the tension of the 
cables to the ground by direct bearing on the underlying rock.  
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APPENDIX B 
 
 
 

STATIC AND MODAL ANALYSIS USING 
REDUCED DIMENSIONAL MODELS OF 
SUSPENSION BRIDGES 
 
 
 

Abstract 
The large dimensional TMC model of the Tsing Ma Bridge has been 

presented in Chapter 1 and validated on the basis of static and modal results. 
Two simplified models (TMR and TMS models) have also been presented in 
Chapter 1 and their capability to give similar results to the TMC model has been 
discussed. The results of the static and modal analysis conducted by using TMR 
and TMS models are here reported.  
 

B.1 Static and modal results using the Tsing Ma 
Reduced (TMR) model 

The deformed configuration of the bridge under dead loads, calculated via 
nonlinear static analysis using the TMR model, is presented in Figure B.1. 
Table B.1 presents a comparison between the vertical reactions calculated using 
the TMR model and those obtained by using the TMC model. Table B.2 
presents the comparison between the natural frequencies of the bridge 
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calculated using the TMR model and those obtained experimentally by Xu and 
Ko (1997). The corresponding mode shapes are shown in Figures B.2 and B.3. 
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Figure B.1. Computed (TMR) vertical displacements under dead loads  
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Figure B.2. First 2 transverse,  vertical and torsional mode shapes predicted by the 

TMR model 
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(TMR mode 1,  f=0.071 Hz ) (TMR mode 4,  f=0.169 Hz ) 

(TMR mode 2,  f=0.116 Hz ) (TMR mode 3,  f=0.140 Hz ) 

(TMR mode 11,  f=0.266 Hz ) (TMR mode 14,  f=0.306 Hz ) 
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Model Vertical Reaction (kN) Cable Horizontal Tension (kN) 
TMC 2245300 388863 
TMR 2288600 388169 
Δ (%) 1.9 0.2 

Table B.1 Comparison between static results obtained with the TMC and the TMR 
models 

 
Vertical Modes 

Bridge Mode  TMR Xu & Ko, 1997 Δ (%) 
2 0.116 0.113 2.6 
3 0.140 0.130 7.1 
5 0.188 0.184 2.1 
9 0.241 0.241 0.0 

12 0.299 0.284 5.0 
15 0.321 0.327 1.8 

Transverse Modes 
Bridge Mode TMR Xu & Ko, 1997 Δ (%) 

1 0.071 0.069 2.8 
4 0.169 0.164 2.6 
6 0.210 0.214 1.9 
7 0.228 0.226 0.9 
8 0.232 0.236 1.7 

10 0.241 0.240 0.4 
16 0.341 0.336 1.5 
17 0.351 0.352 0.3 
19 0.387 0.381 1.5 

Torsional Modes 
Bridge Mode TMR Xu & Ko, 1997 Δ (%) 

11 0.266 0.267 0.4 
14 0.306 0.320 4.4 

MEAN DIFFERENCE Δmean (%) 2.2 
Table B.2 Computed (TMR) vs. measured natural frequencies 
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Figure B.3. Comparison between the 13th mode predicted by the TMR model and 

the 14th mode predicted by the TMC model 
 

B.2 Static and modal results using the Tsing Ma Spine 
(TMS) model 

The deformed configuration of the bridge under dead loads, calculated via 
nonlinear static analysis using the TMS model, is presented in Figure B.4. Table 
B.3 presents a comparison between the vertical reactions calculated using the 
TMS model and those obtained by using the TMC model. Table B.4 presents 
the comparison between the natural frequencies of the bridge calculated using 
the TMS model and those obtained experimentally by Xu and Ko (1997). The 
corresponding mode shapes are shown in Figures B.5 and B.6. 

 
-.134482    
-.089707    
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.178943     
.223718     
.268493     
.313268     
.358043     
.402818     
.447593     
.492368     
.537143     
.581918     
.626693     
.671468      

Figure B.4. Computed (TMS) vertical displacements under dead loads with pre-
tensioned cables 

 
 

(TMC mode 14,  f=0.281 Hz ) (TMR mode 13,  f=0.304 Hz ) 

-0.134 m 
 
 
 
 
 
 
 
0.671 m 
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Model Vertical Reaction (kN) Cable Horizontal Tension (kN) 
TMC 2242200 388870 
TMS 2238700 377666 
Δ (%) 0.16 2.9 

Table B.3 Static results obtained using TMC and TMS models 
 

Vertical Modes 
Bridge Mode  TMS Xu & Ko, 1997 Δ (%) 

2 0.118 0.113 4.2 
3 0.141 0.130 7.8 
5 0.191 0.184 3.7 

10 0.247 0.241 2.4 
13 0.303 0.284 6.3 
15 0.332 0.327 1.5 

Transverse Modes 
Bridge Mode TMS Xu & Ko, 1997 Δ (%) 

1 0.069 0.069 0.0 
4 0.162 0.164 1.2 
6 0.207 0.214 3.3 
7 0.224 0.226 0.9 
8 0.228 0.236 3.4 
9 0.236 0.240 1.7 

16 0.337 0.336 0.3 
17 0.346 0.352 1.7 
20 0.380 0.381 0.3 

Torsional Modes 
Bridge Mode TMS Xu & Ko, 1997 Δ (%) 

11 0.264 0.267 1.1 
14 0.306 0.320 4.4 

MEAN DIFFERENCE Δmean (%) 2.6 
Table B.4 Computed (TMS) vs. measured natural frequencies 
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Figure B.5. First 2 transverse, vertical and torsional mode shapes predicted by the 

TMS model 
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Figure B.6. Comparison between the 12th mode predicted by the TMR model and 

the 14th mode predicted by the TMC model 

(TMS mode 12,  f=0.292 Hz ) (TMC mode 14,  f=0.281 Hz ) 

(TMS mode 1,  f=0.069 Hz ) (TMS mode 4,  f=0.162 Hz ) 

(TMS mode 2,  f=0.118 Hz ) (TMS mode 3,  f=0.141 Hz ) 

(TMS mode 11,  f=0.264 Hz ) (TMS mode 14,  f=0.306 Hz ) 
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APPENDIX C 
 
 
 

MODELING AND IDENTIFICATION 
STRATEGIES FOR CABLE DYNAMICS 
 
 
 

Abstract 
A brief insight to cable dynamics is given with a particular care to the 

experimental identification phase. To this end, after introducing the problem 
with the necessary theoretical background, a linear modal representation of a 
physical suspended cable is identified via dynamic testing by devoting a special 
care to detecting possible internal resonance conditions.  

 
C.1 Introduction 

The behavior of an arbitrarily sagged cable (such as bridge stays, 
transmission power lines, mooring cables and so on) can be modeled as a 
prestressed mono-dimensional linearly elastic continuum with no flexural, 
torsional or shear stiffness, as early outlined by Luongo et al. (1984). Different 
elastic cable theories were developed referring to either small-sag or large-sag 
cables. In the former case, particularly suitable for the analysis of cable stays, 
the analytical continuum formulation is simplified by the parabolic assumption, 
as outlined by Benedettini et al. (1995), while in the latter case discrete 
formulations and numerical methods are mostly used. Nearly all of the cable 
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discrete models available in the literature were formulated through a space 
discretization based on the Galerkin approach. This issue is addressed by 
expanding the displacement functions in the space of the linear eigenfunctions, 
early obtained in the paper by Irvine and Caughey (1974). By retaining a finite 
number of degrees of freedom (DOFs, i.e. modal amplitudes), the cable 
vibration is thus described by a system of nonlinear ordinary differential 
equations (ODEs). A fairly systematic analysis of the influence of the number 
of modes retained in the discrete model on the accuracy of the predicted 
nonlinear response was carried out by Arafat and Nayfeh (2002).  

Among the numerical approaches, many papers focused on the finite element 
method (FEM) applied to cable modeling in the framework of large 
displacements (e.g., Cluni et al. 2007).  

The nonlinear dynamics of cables was widely investigated in the literature 
and the most important aspects on this topic were summarized in two recent 
review articles by Rega (2004). The former was mainly focused on cable 
dynamics modeling, while the latter dealt with deterministic nonlinear 
phenomena that arise in the cable motion. Among those, some are worth citing, 
such as the well known bifurcation of the first in-plane mode into a bi-modal 
spatial oscillation (Larsen and Nielsen, 2004) and the complex behavior of 
multiple internally resonant cables (Nayfeh et al., 2002). 
 
C.2 Modeling the nonlinear dynamics of cables 
 
C.2.1 Continuous equations of motion 

Let us consider the motion of an inclined elastic cable hanging in the vertical 
plane Oxy (see figure C.1). The cable chord coincides with the Ox axis and 
defines the angle θ with the horizontal direction. The Oz axis is parallel to the 
out-of-plane direction. The cable is assumed to behave as an ideal string with no 
bending, shear or torsion rigidities. Its static configuration C0 is described by the 
function y(s), s being the curvilinear abscissa defined along the cable. The 
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displacements u, v, and w in the coordinate directions define the general 
dynamic varied configuration C1. 

 
Figure C.2. Initial and dynamic varied cable configuration 

 
Under the assumption of small sag d to span l ratio, the infinitesimal 

curvilinear abscissa element ds can be approximated by dx and the static 
configuration C0  is described by the parabola: 
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The equations of motion of the continuous system, under distributed time 
varying loads px(x,t), py(x,t) and pz(x,t), are described by three well-known 
partial differential equations (PDEs) of the form (Benedettini et al., 1995): 
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where E is the Young modulus, A is the cross section, H is the horizontal 
reaction at the boundary, m, cu, cv, cw are the mass and damping coefficients per 
unit length  and e is the second-order truncation of the cable elongation: 

( ) ( )22

2
1, wvvyutxe ′+′+′′+′=       (C.2.3) 

Equation (C.2.3) represents the Lagrangian strain measure of the cable modeled 
as a mono-dimensional linearly elastic continuous with no flexural, torsional or 
shear rigidities. In equations (C.2.2) and (C.2.3) a dot and a prime indicate 
respectively derivatives with respect to time t and to the abscissa x. By 
assuming that the gradient of u in equation (C.2.3) is negligible with respect to 
the gradients of the transversal components ( wvu ′′<<′ , ), that 1<<′y and that 

1/ <<EAH , the horizontal component u(x,t) of the dynamic displacement can 
be eliminated through a standard condensation procedure. This leads to the 
definition of a uniform strain ( )te  as: 
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Equation (C.2.4) corresponds to the assumption that the additional dynamic 
cable tension h(t) is spatially uniform, namely ( ) ( )teEAth = . Equations (C.2.2) 
are thus reduced to a system of two integral-differential equations of motion, 
involving the vertical and the out-of-plane displacements v(x,t) and w(x,t): 
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The problem is completed by homogeneous boundary conditions. 
 
C.2.2 Reduced nonlinear analytical models 

Reduced nonlinear models can be derived from equations (C.2.4) and (C.2.5) 
through the standard Galerkin procedure. This is achieved by expanding the 
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cable displacement functions v and w in the space of the in-plane and out-of-
plane modal shapes. To obtain non-dimensional equations, the normalized time 

1ωτ ⋅= t  and abscissa ( ) lxx /cos~ ϑ=  are introduced, where 1ω  is the natural 
circular frequency of the first in-plane mode, calculated by Irvine’s theory 
(Irvine and Caughey, 1974). The modal coordinates ( )τv

iq  and ( )τw
iq , are thus 

defined as: 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )∑

∑
∞

=

∞

=

=

=

1

1

cos,

cos,

k

w
kk

i

v
ii

q
l

w

q
l

v

τχψϑτχ

τχϕϑτχ

     (C.2.6) 

where ( )χϕi  and ( )χψ k  are the i-th and k-th in-plane and out-of-plane linear 

cable eigenfunctions. In practical applications the summations reported in 
equations (C.2.6) are truncated to i,k=n/2, being n a small (even) number 
(usually 2 or 4). A system of n nonlinear ODEs is then written by substituting 
equations (C.2.6) into equations (C.2.4) and (C.2.5): 
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where the in-plane cable circular frequencies can be obtained as 
( )iiijiv baa 110

2 +=ω , while iwω  are the out-of-plane circular frequencies. The 

constant elongation term e , in equation (C.2.7), is given by: 
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The expressions of the coefficients a0ij, a1i, a2j, a3i, b1j, b2ij, b3k and of the 
normalized modal loads piv and piw can be found in (Gattulli et al., 2004). In the 
linear part of Equations (C.2.7) off-diagonal terms jiij baa 110 +  vanish due to 

the orthogonality of the eigenfunctions. Nevertheless modal coupling arise in 
the nonlinear part, due to quadratic and cubic nonlinearities. In particular an 
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out-of-plane motion is always coupled with an in-plane one, due to second order 
effects. Moreover the elongation term e  enters only parametrically the out-of-
plane and the antisymmetric in-plane modes, which therefore generates only 
second order tension increments. 
 
C.2.3 FE models 

Reduced Galerkin models apply to shallow cables for which the 
condensation hypothesis can be made. A way to circumvent such a limitation is 
represented by the FEM method which apply to arbitrarily sagged cables. 
Different finite elements were employed in the literature to reproduce the 
dynamics of suspended cables. Three nodes isoparametric elements, which 
account for the curvature of the cable, were utilized in references (Desai et al. 
1988; Desai et al., 1995; Gattulli et al., 2004) while tridimensional geometric 
nonlinear trusses were utilized, for instance, by Cluni et al. (2007). Beam 
elements (with various shape functions and integration points) can also be 
employed in order to account for the effective bending, shear and torsion 
rigidities of the cables. Indeed those rigidities, traditionally neglected in the 
literature on cable dynamics, may become significant in special cases such as 
bending near the terminations. 

Once the adopted finite element has been chosen, the vector of n degrees of 
freedom U is defined and the equations of motion, in the framework of large 
displacements and arbitrary (small or large) strains, are written following the 
classic Updated Lagrangian approach: 

( ) ( ) ( ) ( )( ) ( )ttttt FUUQUCUM =++ &&&& ,     (C.2.9) 

where M is the mass matrix, C is the damping matrix, ( ) ( )( )tt UUQ &,  is the 

vector of generalized restoring forces and ( )tF  is the vector of nodal loads. 
Within the framework of large displacements, vector Q is expressed by the 
following equation: 

( ) ( )( ) ( )( )[ ] ( )tttt UUKKUUQ TE +=&,                (C.2.10) 
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where EK and ( )( )tUKT  are the elastic and geometric tangent stiffness 
matrices respectively. 

The time integration of Equation (C.2.9) can be carried out through the 
Hilber-Hughes algorithm. With such an approach the scalar parameter α is 
introduced for controlling the numerical damping of higher modes without 
reducing the algorithm accuracy. The equations of motion at time t+Δt, are thus 
written with temporal averaging (trough the scalar parameter α) of the stiffness, 
damping and force terms: 
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             (C.2.11) 

Since Equation (C.2.11) is non-linear, due to the presence of the geometric term 
( )( )tt Δ+UK T , its numerical solution requires an iterative procedure. This 

issue can be addressed by adopting the Newton-Raphson scheme, with a linear 
initial estimate of the vector of restoring forces ( )tt Δ+Q  as a function of the 

displacement increments ( )tt Δ+ΔU : 

( ) ( ) ( )( )[ ] ( )tttttt Δ+Δ++=Δ+ UUKKQQ TE               (C.2.12) 
Equation (C.2.12) is substituted into equation (C.2.11) and the iterative equation 
is obtained through the generalized trapezoidal finite difference scheme. The 
vector of displacement increments ( )tt Δ+ΔU  is thus calculated iteratively 
until the error σk at the k-th iteration satisfies: 

σδδσ ~<= Tkk

Tkk
k

UU
UU                           (C.2.13) 

where ( ) ∑ ==Δ+Δ kk
itt UU δ1 and σ~  is a suitably small given tolerance. The 

above described method is second order accurate (Cluni, 2004).  
A comparison between analytical Galerkin models and numerical FE models 

was conducted by Gattulli et al. (2004). This comparison showed the feasibility 
of the FEM procedures to catch most of the coupling and bifurcation 
phenomena occurring in the cable response. Moreover, it was emphasized that 
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an analytic Galerkin model (GAL model) with 4 DOFs (two in-plane and two 
out-of-plane modal amplitudes) is usually sufficient to describe the non-linear 
dynamics of the system with a high accuracy. 
 
C.3 Cables as parts of complex structures 

Since cables are usually parts of complex structures, such as cable-stayed 
and suspension bridges, their interaction with the whole structural system 
cannot a-priori be disregarded. Nevertheless, at a first stage of approximation, 
cable-structure interaction can be neglected when the fundamental modes of the 
cables are uncoupled from the vibration of other structural components (i.e. the 
modes involving the vibration of cables are local modes). The main 
consequence of this assumption is that the cable motion can be studied using 
substructure models such as those presented in Section C.2. As an example, this 
point is discussed with reference to the main cables of the Tsing Ma Bridge on 
the Tsing Yi lateral span. Indeed, as described in Appendix A, suspenders are 
missing in this side of the bridge and the cables behave as free stays. The 
geometric characteristics of the considered cables are summarized in Table C.1.  

 
d/L Θ (°) A (m2) L (m) λ2/π2 

0.005 27.83 0.8007 293.2 0.058 
Table C.1. Characteristics of the main cables on the Tsing Yi lateral span 

 
Cable feature IRVINE’S TH. COMPUTED Δ (%) 

H (kN) 389910 388863 0.3 
Cable Mode IRVINE’S TH. COMPUTED Δ (%) 
1st Out Plane  0.397 Hz 0.407 Hz 2.5 
1st In Plane  0.407 Hz 0.411 Hz 1.0 

2nd Out Plane 0.795 Hz 0.813 Hz 2.2 
2nd In Plane  0.795 Hz 0.815 Hz 2.4 

3rd Out Plane  1.192 Hz 1.218 Hz 2.1 
3rd In Plane  1.192 Hz 1.220 Hz 2.3 

Table C.2. Computed vs. analytical horizontal reaction H and natural frequencies 
of the main cables on the Tsing Yi lateral span of the Tsing Ma Bridge 
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Figure C.2. First 6 computed (TMC model) mode shapes of the Tsing Yi free 

cables 
 

Figure C.2 shows 6 local modes involving the cables and obtained from the 
modal analysis of the whole bridge conducted using the TMC model described 
in Chapter 1. The shapes of these modes correspond to those of the first six 
cable modes expected from Irvine’s Theory (Irvine and Caughey, 1972). A 
good agreement is also found between the natural frequencies of these modes 
and the values predicted by Irvine’s Theory, as reported in Table C.2. Indeed, 
the residual small percentage differences, close to 2%, can be attributed to the 
presence of flexural rigidity that is incorporated in the TMC model but is 
disregarded by Irvine’s Theory.  

Global bridge modes involving cable motions are also detected. This is the 
case of modes 22 and 25 which are shown in Figure C.3. However, these modes 
are high order modes of the deck and their effects can be neglected in many 

(TMC mode 84,  f=1.218 Hz) (TMC mode 86,  f=1.220 Hz) 

(TMC mode 54,  f=0.813 Hz) (TMC mode 56,  f=0.815 Hz) 

(TMC mode 24,  f=0.407 Hz) (TMC mode 26,  f=0.411 Hz) 
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practical cases. Thus, since the main modes of the cables are local modes or at 
least are not interacting with any fundamental low order mode of the deck, 
cables-structure interaction can be neglected in the presented case with a good 
approximation.  

 

X

Y

Z X

Y

Z

 
Figure C.3. 22nd and 25th bridge modes (TMC model), evidencing coupling between 

deck and cables vibrations 
 
C.4 Experimental identification of a physical cable via 
dynamic testing 

The identification of the natural frequencies and damping ratios of a physical 
cable is presented. The singular value decomposition (SVD) of the spectral 
matrix of the measurements is adopted to identify the natural frequencies of the 
system since this technique allows to detect possible internally 1:1 resonant 
modes. Wavelet analysis is adopted to identify the modal damping ratios.  

 

 
Figure C.4. From the left: physical cable, detailed view of the anchor with mounted 

load cell, laser displacement sensor, crossbow triaxial accelerometer 

(TMC mode 22,  f=0.402 Hz ) (TMC mode 25,  f=0.409 Hz ) 
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The observability conditions of the system were reported in (Faravelli and 
Ubertini, in press) and in Chapter 9, thus showing that one in-plane and one out-
of-plane observations are sufficient to identify the natural frequencies of the 
system provided that the cable is not 1:1 in-plane internally resonant. At the so-
called crossover points (1:1 in-plane internal resonance conditions) two in-plane 
observations are at least required. For this reason, two well-posed in-plane 
measurements have been adopted in the experimental tests, as described in 
Section C.4.1. 
 
C.4.1 Experimental setup 

An experimental suspended cable model is here considered (see Figure C.4) 
with span length L=2.36 m. The cable is supported at its ends by two identical 
devices, each one having a spherical joint, of the Tescubal type, fixed to rigid 
supports placed at the same height. The anchorages are realized by inserting the 
end threaded parts of the cable in the spherical joints. Two laser sensors, type 
Wenglor, allow to measure the vertical movements v0 in the in-plane direction 
and w0 in the out-of-plane one, of a point placed in the middle of the cable span 
L. Two tri-axial accelerometers, Crossbow LF type, are fixed to the cable 
approximately to the three quarters of the span and to the one fifth of the span, 
respectively. The accelerometers record the acceleration time history signals 
both in the vertical in-plane and in the transversal out-of-plane directions of the 
two application points. The possibility of detecting 1:1 internally resonant 
modes is thus ensured by the observability conditions. 

The cable, made by a stainless steel wire of diameter 2 mm, has an elastic 
modulus E roughly equal to 85000 MPa. The cable mounts six equally-spaced 
spherical masses. One of the two anchorages is ‘‘dead’’, while the other end 
allows to vary the tension in the cable by a screw, connected to the cable 
through a bearing ball. The unit mass of the cable is 0.02 kg/m, which 
corresponds to a weight of 0.46 N. Each of the spherical masses adds a weight 
of 1.42 N. The total static weight for the length unit is q = 3.805 N/m. The 
initial configuration chosen for the cable has a sag f =2.0 cm, which corresponds 
to a taut rope with a static shooting to the supports H =133.8 N. 
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C.4.2 System identification 
The modal identification of the cable (spectral components and damping 

ratios) has been carried out in free/forced oscillations and small displacements. 
As it was reported in reference (Faravelli and Ubertini, 2008), the analysis of 
the acceleration measurements guaranteed a higher accuracy with respect to the 
analysis of displacement measurements. Thus, for the seek of brevity, one here 
only reports the results obtained by using accelerometer records. 
 

 
Figure C.5. Time history signals of in-plane acceleration (Ch1) and out-of-plane 

acceleration (Ch3) in free vibration tests: (a) and (b) 

 
Figure C.6. Singular values of spectral matrix of the acceleration records. In-plane 

test: (a); out-of-plane test: (b) 

 
Figure C.7. Time history signal of in-plane acceleration (Ch3) under forced white 

noise excitation: (a); singular values of the spectral matrix of the acceleration 
records: (b) 

(a) (b) 

(a) (b) 

(a) (b) 
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Two tests have been carried out. The former test consists in free in-
plane/out-of-plane oscillations. In this case, particular care was devoted to exert 
the external impulse so as to excite also the anti-symmetric modes. The external 
impulse was provided by a linear motor. The latter test consists in forced in-
plane oscillations exerted by a linear motor which applies a white noise 
excitation to the cable. In this case a particular care was posed to apply the 
dynamic force to the cable without contact in such a way not to modify the 
structural system. This has been achieved by mounting a ring on the edge of the 
linear motor which was sufficiently larger than the cable diameter. The cable 
passed through the ring which was moved by the linear motor and excited the 
cable by simply impacting on it.    

Each acquisition has a duration varying from 10 to 30 s and the sampling 
frequency, for all the measured data, is 250 Hz. For every test, the following 
sets of voltage data were recorded: six accelerations (Channels (Ch) 1 to 6) in 
the coordinate directions and two displacements (in-plane vertical and out-of-
plane, Channels 7 and 8) at the cable mid-span. 

The time history signals (voltage signals) of Ch 1 and Ch 3 are represented 
in Figure C.5. In order to identify the natural frequencies of the system, the 
frequency dependent singular values of the spectral matrix of the acceleration 
records have been calculated. By repeating the tests three times, the peaks of the 
singular values corresponding to the natural frequencies of the cable have been 
identified. When modes are well-separated the first singular value S1 is much 
larger than the remaining ones. However, if in correspondence of one peaks two 
singular values reach approximately the same value, two 1:1 internally resonant 
modes are detected. 

Figure C.6 (a) represents the two singular values S1 and S2 of the 2×2 
spectral matrix composed by the PSD functions of the two in-plane acceleration 
records. As emphasized by the presented results, S1 is much larger than S2 in 
correspondence of the first three in-plane frequencies f1, f2 and f3. Therefore, 
each peak corresponds to a single vibration mode and no 1:1 in-plane resonant 
modes are detected within the considered frequency interval. The same 
approach has been applied also to the results of the in-plane forced vibration 
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tests which are represented in Figure C.7 and gave similar results. The first 
singular value of the spectral matrix of the out-of-plane acceleration 
measurements under free vibrations is represented in Figure C.6 (b). In this 
case, comparing S1 to S2 is not necessary since, according to Irvine’s theory, 
out-of-plane modes are always well-separated.  

 

 
Figure C.8. Approximate location of the physical model in the Irvine’s spectrum 

 
In-plane frequencies (Hz) Out-of-plane frequencies (Hz) 

f1=5.25 
f2=7.30 
f3=10.31 

f1=4.03 
f2=7.63 
f3=11.05 

Table C.3 Identified natural frequencies of the physical cable 

 
The results of the system identification are reported in Table C.3, while 

Figure C.8 represents the approximate location of the physical model in the 
Irvine’s spectrum (Gattulli, 2007). It is worth mentioning that the cable is not 
far away from the 1:1 internal resonance between the first and the second in-
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plane modes (f2/f1=1.39) and very close to the 2:1 internal resonance between 
the third and the first in-plane modes (f3/f1=1.96). As commented in Chapter 8, 
this circumstances have strong influences on the nonlinear dynamic behavior of 
the system and can be exploited in order to design a suitable control strategy for 
vibration mitigation purposes. 

 
C.4.3 Damping identification via Wavelet analysis 

Since 1:1 internally resonant in-plane modes are not detected, the modal 
damping parameters have been measured via wavelet analysis of the 
accelerations under free vibration tests. Details on this approach can be found in 
(Faravelli and Ubertini, 2008). 

Figure C.9 represents the logarithm of the modulus of the wavelet transform 
along the ridges corresponding to the first in-plane (W2) and out-of-plane (W1) 
modes. Usually Wi are referred to as wavelet skeletons. As reported in reference 
(Faravelli and Ubertini, 2008) the modal damping ratios are proportional to the 
slopes of the wavelet skeletons.  

After performing three experimental tests, under free spatial vibrations, the 
damping ratios ξi of the first three in-plane and out-of-plane modes have been 
identified. Particularly, for each test, one identified three values of the modal 
damping ratios, corresponding to three distinct intervals in which the wavelet 
skeletons were subdivided. The damping ratio ξi of the i-th mode was calculated 
as the mean value of the results obtained in the different intervals. The obtained 
results are summarized in Table C.4. 

 

 
Figure C.9. Time-variation of wavelet modulus along the ridges corresponding to 

the first in-plane and out-of-plane modes: (a) and (b) respectively 

(a) (b) 
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In-plane modes Out-of-plane modes 
ξ1=0.0198 
ξ2=0.0152 
ξ3=0.0110 

ξ1=0.0156 
ξ2=0.0196 
ξ3=0.0098 

Table C.4 Identified modal damping ratios via wavelet analysis 

 
C.5 Damping effects on nonlinear cable response 

It is of interest to analyze how damping uncertainties reflect on the nonlinear 
response of cables. To this end, the frequency response curves of the first in-
plane and out-of-plane modes of the physical cable identified in Section C.3 
have been calculated by means of a continuation technique implemented in a 
dedicated software (AUTO2000) (see Figure C.10). A nonlinear Galerkin model 
with two degrees of freedom has been adopted in the simulation, assuming that 
the response of the considered modes is weakly influenced by the neglected 
higher order modes. 

The results presented in Figure C.10 (a) refer to a harmonic in-plane 
excitation of normalized amplitude p and frequency ratio Ω with respect to the 
first in-plane cable frequency. The amplitude q2 of the harmonic response is 
represented as a function of Ω. Three different values of the damping ratios are 
assumed, by reducing the maximum experimentally measured value ξ2=0.026 
by 25% and 50%. As it can be observed from such a figure, a softening-
hardening behavior of the system is observed around the primary resonance 
(Ω=1). Super-harmonic resonant peaks are also observed at Ω=1/2, Ω=1/4, etc. 
Those circumstances indicate that the cable behavior is essentially nonlinear, 
even at low vibration amplitudes. The figure also shows that reducing the 
damping ratio reflects on a drastic cut-off of the cable hardening harmonic 
branch around the main resonance. Consequently, the frequency range in which 
the cable may undergo the largest displacements is also cut-off. Analogous 
results are presented in Figure C.10 (b), with reference to the out-of-plane 
harmonic vibrations. 

A Gakerkin model with 4 in-plane and 4 out-of-plane degrees of freedom 
has also been considered. Figure C.11 shows the phase plane projections of the 
steady harmonic limit cycles obtained, under in-plane harmonic excitation, for 
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Ω=1.1. As one can observe from such a figure, depending on the initial 
conditions, the system, at the considered amplitude of excitation, may undergo a 
bifurcated spatial motion involving the out-of-plane mode q1. Nevertheless, if 
one slightly increases the damping of the system, the limit cycle is destroyed 
and the out-of-plane bifurcation does not appear. In contrast, a reduction of the 
damping of the system reflects on a larger participation of the out-of-plane 
mode. 

 

 
 
Figure C.10. Frequency response curves of the first in-plane (q2) and out of plane 

(q1) modes assuming different modal damping ratios (p=0.003) 

 
Figure C.11. Phase plane projections of relevant harmonic limit cycles for different 
damping ratios (Ω=1.1, p=0.002) 
 

(a) (b) 
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C.6 Concluding remarks 
After recalling the necessary background for modeling the nonlinear 

dynamics of cables, the modal identification of a physical cable via an output 
only technique has been conducted in the laboratory environment. As discussed 
in Chapter 9, the observability conditions of the system are satisfied by 
installing two in-plane and one out-of-plane sensors. The results emphasize that 
the cable is placed on the left of the first crossover point and it is close to the 2:1 
internal resonance between the third and the first in-plane modes. Modal 
damping ratios have been identified via wavelet analysis. 
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