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Chapter 1Introdu
tion and motivation
Topology optimization is nowadays a fertile area of resear
h 
on
erned withthe topi
al issue of de�ning the best design that solves an assigned phys-i
al problem with pres
ribed performan
e requirements or other kind ofrestraints. This general 
on
ept may be applied to di�erent pra
ti
al 
on-texts and industrial appli
ations, where, already in an early stage of thedesign pro
ess, questions as �nding an optimal lay-out topology in termsof stati
 or dynami
 sti�ness, 
ost, assigned stru
tural performan
es and soon must be a�ordably answered. Sin
e the pioneering paper [13℄ where thetopology optimization 
on
ept was introdu
ed as an innovative and pow-erful approa
h to stru
tural design, many steps have been taken in severaldire
tions. The legalization of one of the most used material interpolationlaws, the SIMP (Solid Isotropi
 Material with Penalization) approa
h [15℄,from the standpoint of 
onstitutive theory appears to be a key step towardthe a

eptan
e of topology optimization within the designers 
ommunity.Furthermore, a few re
ent results on the existen
e and uniqueness of thesolution to the optimal design problem have provided the entire formula-1



2 Topology optimization using mixed �nite elementstion with a sound mathemati
al basis [98℄. Topology optimization may be
onsidered as a mature dis
ipline espe
ially from the point of view of theappli
ations, sin
e new grounds have been explored, moving from the orig-inal �eld of stru
tural design towards new bran
hes as material design ormultiphysi
s problems, even if many of the early topi
s remain quite a
tualand still open, in view of innovative a�ordable solutions.This development, a
hieved over more than twenty years of resear
h andappli
ations, is not only made of advan
es in mathemati
s, te
hnology andmaterial me
hani
s, but is also due to the e�orts made within the �eld of theso 
alled 
omputational s
ien
es. Many interests have been in fa
t dire
tedtowards this topi
 with the aim of providing numeri
al instruments ableto solve the 
omputational di�
ulties 
on
erned with the optimal topologyformulations and to su

essfully menage large�s
ale problems. An extensiveliterature has been produ
ed regarding minimizer algorithms used to solvethe optimum problem, i.e. CONLIN [49℄ or MMA [137℄, or referring to thesolution of the numeri
al instabilities su
h as the 
he
kerboard phenomenon[130℄. One of the 
ru
ial aspe
ts of the more 
ommonly used solving me-thodologies 
on
erns the �nite element approa
h. Most of the works referto the adoption of displa
ement�based �nite element methods, while notso many other dis
retization strategies have been so far investigated, withthe ex
eption of the interests re
ently dire
ted to non�
onforming �nite el-ements [65℄ or displa
ement�pressure dis
retizations [129℄.Within su
h a s
enario, the aim of this work is to propose alternative for-mulations for topology optimization by distribution of isotropi
 material,relying on bidimensional mixed �nite element s
hemes and exploiting the



Chapter 1: Introdu
tion and motivation 3bene�ts that these methods may provide on several topi
s of the optimaldesign dis
ipline.The variational prin
iple of Hellinger�Reissner is herein used and two dualformulations presented and dis
retized. The �rst one is simpler and uses
lassi
al polynomial �nite elements to approximate a regular displa
ement�eld and a pie
ewise dis
ontinuous stress �eld. Conversely, the dual formu-lation, often referred to as truly�mixed in the literature [21℄, interpolates dis-pla
ements with dis
ontinuous fun
tions while regular ones are used for thestresses. The adoption of these �nite element te
hniques within a topologyoptimization framework has dire
t 
onsequen
es on the numeri
al stabilityand on 
onvergen
e features of the method. These issues are �rstly inves-tigated with spe
ial regard to the 
he
kerboard problem and the adopteddis
retizations for the density �eld. Ex
ept for this te
hni
al aspe
t, mixeds
hemes have two important properties that may be usefully exploited in atopology optimization 
ontext, i.e.:
• the a

ura
y in the evaluation of stresses, due to the additional dis-
retization of the stress �eld, that does not 
all for any post-pro
essingte
hnique typi
al of displa
ement-based �nite elements;
• the 
apability of passing the inf-sup 
ondition, for the �truly�mixed�formulation, even in the 
ase of in
ompressible material, feature thatis not shared by 
ommonly used displa
ement-based dis
retizations.In the present work the �rst feature is exploited to deal with the still openproblem of �nding the optimal topology with lo
al stress 
onstraints on ma-terial strength [46℄. Managing this topi
 the so�
alled singularity problem[117℄, a numeri
al trouble that often prevents form 
onvergen
e to expe
ted



4 Topology optimization using mixed �nite elementsglobal minima, is also fa
ed and a novel methodology, referred to as qp�approa
h, is presented and analyzed within the proposed formulations withthe aim of providing an alternative solution to the problem.The se
ond of the above two main features is 
onversely exploited in thesequel to �nd optimal designs for in
ompressible materials, providing thenumeri
al robustness needed to handle the in
ompressibility property withinan optimization 
ontext. Sin
e these materials have re
ently been used indi�erent appli
ations mainly 
on
erned with vibration issues and aseismi
design, alternative topology optimization formulations are presented andtested not only in a stati
 framework but also within eigenvalue�based me-thodologies for dynami
 design. The 
apability of the truly�mixed methodto pass the inf�sup 
ondition even in presen
e of in
ompressible materialis moreover used to model �uid phases with the aim of solving pressure�load problems, moving from the approa
h re
ently proposed in [129℄. Thea

ura
y in the evaluation of the stress �eld is exploited in this 
ontextto propose an alternative methodology against the a
hievement of �nal de-signs that present 
avities whose boundaries are a
ted upon by hydrostati
pressure. This kind of topologies may be in fa
t of no pra
ti
al use within
ertain appli
ations.The outline of the work is as follows. Chapter 2 introdu
es the basi
 
on-
epts of the topology optimization dis
ipline, presenting the state of theart in terms of methods and appli
ations further dealt with, in the sequelof the work. Chapter 3, after a �rst insight on fundamentals of the �-nite element method, is mainly 
on
erned with theoreti
al and numeri
alissues related to mixed �nite elements, deriving both the 
ontinuous and



Chapter 1: Introdu
tion and motivation 5the dis
rete forms of the dual formulations that des
end from the varia-tional prin
iple of Hellinger�Reissner. Chapter 4 ta
kles the 
he
kerboardproblem and other numeri
al issues related to the adoption of the intro-du
ed mixed �nite elements formulations along with alternative 
hoi
esin terms of density dis
retizations. In this regard, preliminary optimiza-tions that maximize the sti�ness of the stru
tures are performed, a

ordingto the 
lassi
al framework of topology optimization for minimum 
ompli-an
e. Chapter 5 and Chapter 6 are 
on
erned with the resear
h of optimaltopology with lo
al stress 
onstraints. The �rst of the two 
hapters refersto the singularity problem, presenting the qp�approa
h, its features and nu-meri
al 
omparisons with respe
t to the 
lassi
al ε�relaxation [35℄, that isthe traditional methodology applied to over
ome the numeri
al di�
ultiesrelated to the arising of the stress singularity phenomenon at zero density.The se
ond one is mainly 
on
erned with the implementation of stress 
on-straints that exploit both the mixed �nite element dis
retizations withina minimum 
omplian
e optimization framework. Di�erent optimal designsa
hieved with and without stress 
onstraints are presented and analyzedfrom the point of view of their me
hani
al behavior. Pe
uliar attentionis moreover paid in this 
ontext to the topologies obtained by means ofthe truly-mixed dis
retization in 
omparison with those found by the dualmixed setting. Chapter 7 presents the topology optimization of in
ompres-sible media for maximum sti�ness, along with the numeri
al di�
ulties thatmay be en
ountered in the resear
h of pure 0�1 designs under plane strain
onditions. Relevant material interpolation strategies are introdu
ed andtested to solve this problem. Furthermore, di�erent families of designs arepresented, 
omparing plane strain and plane stress 
onditions for 
ases of



6 Topology optimization using mixed �nite elements
ompressible and in
ompressible material design, thus pointing out pe
uliarme
hani
al di�eren
es related to the in
ompressibility feature. Chapter 8exploits the 
apability of handling topology optimization of in
ompressiblematerials to propose alternative eigenvalue�based formulations that may beused to deal, within a simpli�ed setting, with typi
al aseismi
 isolationsproblems, as the preliminary design of bi�material aseismi
 bearing devi
esfor whi
h a suitable multi�phase material interpolation is derived. Chapter9 implements the truly�mixed dis
retization within the approa
h originallyintrodu
ed in [129℄ that is based on the modeling of a phase of �uid mate-rial in order to 
ope with pressure�load problems. An alternative te
hnique,exploiting the imposition of stress 
onstraints on the in
ompressible phase,is herein proposed and tested to avoid the a
hievement of �nal designs thatpresent undesired 
avities �lled with �uids. Chapter 10 summarizes thework, pointing out the main issues and results dis
ussed in the previous
hapters and presenting ideas for future developments.



Chapter 10Con
lusions
The work has addressed the issue of introdu
ing and exploiting the adop-tion of mixed �nite elements for plane linear elasti
 problems within theframework of topology optimization by distribution of isotropi
 material.As detailed in Chapter 2, the topology dis
ipline is a relatively re
ent butwell�established resear
h �eld that provides designers with numeri
al pro-
edures having the aim of a
hieving optimal designs for several appli
ations.A 
ru
ial aspe
t of the methodology relies on the 
hoi
e of the �nite ele-ments s
hemes used in the dis
retization of the �elds involved in the solutionof the elasti
ity equation. With respe
t to this subje
t, most of the tradi-tional approa
hes rely on 
lassi
al displa
ement�based te
hniques and notso many alternatives have been so far investigated.To this purpose, Chapter 3 has introdu
ed the variational prin
iple ofHellinger�Reissner that has been herein exploited to derive two dual weakformulations of the elasti
ity problem. The �rst one uses 
lassi
al poly-nomial �nite elements to approximate a regular displa
ement �eld and apie
ewise dis
ontinuous stress �eld. The se
ond one, often referred to as353



354 Topology optimization using mixed �nite elementstruly�mixed, 
onversely interpolates displa
ements with dis
ontinuous fun
-tions while stresses with regular ones. Both the formulations have beenimplemented in dis
retized forms, having the aim of pointing out the mainbene�ts of the mixed approa
h with respe
t to 
lassi
al displa
ement�based�nite elements. The independent interpolation of stresses, a

ording to thedegree of approximation of the adopted shape fun
tions, provides in fa
t anin
reased a

ura
y in the evaluation of the relevant stress �eld but also ofthe displa
ement one. Furthermore, a few mixed approximations are able topass the inf�sup 
ondition even in 
ase of in
ompressible material thus pro-viding a robust analysis tool that does not en
ounter the well�known lo
kingphenomenon. Both these advantages are shared by the herein implementeddis
retization of the truly�mixed formulation, based on the Johnson Mer
ier
omposite triangle.Within a topology optimization framework, the 
oupling of displa
ement(and stress) approximations with density interpolation s
hemes may ge-nerate or resolve numeri
al instabilities of the pro
edure. Chapter 4 hasaddressed this topi
, presenting and investigating the dual frameworks thatexploit the above 
ited mixed �nite element s
hemes. While the �rst one hasshown features that are similar to equivalent displa
ement�based approa
h,the truly�mixed setting has not experien
ed the well�known 
he
kerboardproblem, when 
oupled with an element�based dis
retization. However, notto in
rease the 
omputational burden tied to the adoption of mixed s
hemes,the nodal�based density setting has been shown to be an a�ordable 
hoi
efor the appropriate des
ription of the layout of �nal designs, exploitingmoreover pe
uliar bene�ts on the issue of length s
ale 
ontrol. Withinthe 
lassi
al framework of topology optimization for minimum 
omplian
e



Chapter 10: Con
lusions 355problem the truly�mixed s
heme has shown an high a

ura
y of the a
hievedresults and robustness against instabilities.The numeri
al assessment of these basi
 features has therefore allowed theextension of the mixed optimization framework towards the exploitation ofthe bene�ts pe
uliar to the �nite element s
hemes, in order to deal withstress�
onstrained problems and topology optimization involving in
om-pressible media.Preliminarily to the former issue, Chapter 5 has addressed the deli
ate
onvergen
e di�
ulty that a�e
ts stress 
onstraints imposition, i.e. thesingularity phenomenon. For the solution, an alternative method, 
alled
qp�approa
h, has been herein introdu
ed and 
ompared to the 
lassi
al
ε�relaxation. Among its features, the pe
uliar advantage 
onsists in thesmoothness of the manipulation introdu
ed on 
onstraints equations, thatimproves 
onvergen
e features and does not involve full density range, thuseventually allowing for non�iterative design pro
edures.The methodology has been largely exploited in Chapter 6, where the mini-mum 
omplian
e setting based on mixed �nite elements has been applied in
onjun
tion with a set of lo
al stress 
onstraints. The investigations havepointed out the remarkable di�eren
es that may be found 
omparing designsa
hieved with and without the in
lusion of stress 
onstraints. Pe
uliar at-tention has been paid to the des
ription of the implemented imposition ofthe lo
al stress requirements, that gain in a

ura
y and numeri
al tra
tabil-ity due to the independent interpolation of the stress �eld. A suitable me-thodology has been furthermore developed in order to exploit the a

ura
yand fast 
onvergen
e of JM�based approa
h in stress 
onstraints enfor
e-ment, without paying the expe
ted in
rease in terms of 
omputational 
ost.



356 Topology optimization using mixed �nite elementsThe methodology, that involves only the average degrees of freedom of theadopted truly�mixed dis
retization, has been shown to produ
e feasible re-sults that exhibit an improved me
hani
al behavior with respe
t to the onesa
hieved by the dual less a

urate approximation.To exploit the 
apability of JM dis
retization to robustly deal with thein
ompressibility feature, Chapter 7 has straightforwardly extended the mi-nimum 
omplian
e truly�mixed framework to the optimization of su
h kindof materials. Within this 
lass of problems, 
lassi
al interpolation laws thatdo not penalize the in
ompressibility feature in the low density range maygenerate �nal designs where undesired grey regions takes full advantage ofthis property, under plane strain 
onditions. An alternative penalizationlaw for sti�ness has been therefore proposed and tested to assess its 
apa-bility for a
hieving pure 0�1 designs. Furthermore, several examples havebeen studied under plane strain and plane stress 
onditions, for 
ases of
ompressible and in
ompressible material. This 
omparative investigationhas mainly pointed out that remarkably di�erent designs may be a
hievedwithin the plane strain in
ompressible 
ase. Under these 
onditions thematerial tends to assume in fa
t a layout that e�
iently exploits the sig-ni�
ant in
rease in the volumetri
 sti�ness, when a
ted upon by isotropi
stress states.Classi
al frameworks for the maximization of the �rst eigenvalue have beenaddressed in Chapter 8, in order to provide optimization te
hniques for in-
ompressible media also within a dynami
 setting. The problem of lo
alizedmodes has been �rstly ta
kled by means of the introdu
tion of an alternativemass interpolation, that assures an appropriate mass�to�sti�ness ratio allover the density range. Having the aim of dealing with the preliminary de-
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lusions 357sign of isolation devi
es, whose manufa
turing involves in
ompressible ma-terials as rubber�likes ones, a novel eigenvalue�based formulation has beenfurthermore proposed, based on the a
hievement of the maximal verti
alsti�ness with additional requirements on the horizontal dynami
 �exibility.The above methodology has been applied to the simpli�ed design of devi
esmade of both steel and rubber�like material, relying on an alternative bi�phase material law.The 
apability of handling in
ompressible media has been furthermore ex-ploited in Chapter 9 to perform the topology optimization for pressure�loadproblems basing on a method that involves the presen
e of a �uid phase. Tothis purpose an alternative �bi�material with void� interpolation has beenintrodu
ed and the robustness of the JM element in the evaluation of bothdispla
ements and stresses has been herein used to 
ope with the problemof �lled 
avities, i.e. the arising of internal holes whose boundaries are a
tedupon by hydrostati
 pressure. The imposition of a set of suitable pressure
onstraints has shown in fa
t to be able to over
ome this possible problemwithout resorting to more demanding traditional pro
edures.The above appli
ations have outlined that mixed methods, with pe
u-liar referen
e to the truly�mixed formulation, may be usefully exploited intopology optimization. The a

ura
y in the imposition of stress�
onstraintsand the robust handling of in
ompressible materials are in fa
t pe
uliar be-ne�ts to the introdu
ed formulations with respe
t to traditional displa
ement�based s
hemes.A possible drawba
k of the method is tied to the in
reased 
omputationalburden related to the independent interpolation of stresses. To this pur-



358 Topology optimization using mixed �nite elementspose suitable algorithms and implementation te
hniques have been adoptedthroughout the work to redu
e the CPU�times. The most demanding pro-
edure en
ountered in the simulations was not however tied to the �niteelement s
heme, but, rather, to the lo
al imposition of stress 
onstraintswithin the minimization pro
edure. A possible way out to the problem 
ould
onsist in the adoption of adaptive meshing te
hniques [150℄ in the topologyoptimization framework. This is expe
ted to allow a �ner dis
retization ofthe zones that experien
es the higher stress 
on
entration and, at the sametime, a remarkable redu
tion in the overall number of lo
al 
onstraints.The pe
uliar bene�ts of the mixed methods have been exploited and investi-gated in this work within a linear elasti
 bidimensional 
ontext. Challengingdevelopments of the presented pro
edures in
lude therefore the extension togeometri
al and 
onstitutive non�linearities along with the implementationof three�dimensional approa
hes. While the latter argument is mainly 
on-
erned with the remarkable in
rease in the number of unknowns expe
tedin 3D problems, the former is in fa
t very tri
ky to be dealt with, be
auseof the 
omplexity of more subtle numeri
al and 
omputational issues withrespe
t to both the optimization framework and the �nite element s
hemes.The main di�
ulty is maybe the setting of a�ordable sensitivities 
om-putations in the non�linear framework, as pioneered in the already 
itedworks by [28℄ and [125℄. Furthermore, additional stability issues of mixed�nite elements in large strain analysis for rubber�like solids have to be dealtwith, 
on
erning the deli
ate dis
retization of the in
remental version of theHellinger�Reissner variational prin
iple, see i.e. [92℄.Re
ent 
ontributions have outlined pe
uliar bene�ts that may be derivedfrom the assumption of linear elasti
 model embedded in the optimization
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edures that are alternative to the 
lassi
al Cau
hy setting. Topology in-vestigations have been already performed basing on the mi
ro�polar Cosseratsolid [113℄, but also other multi��eld theories [32℄ should be investigatedfor stru
tural purposes, as mi
ro�
ra
ked models [85℄. An alternative wayto 
ope with fra
tured media involves non�linear pro
edures that handle
ra
k propagation taking full advantage from the well�suited nature of thedis
retizing �elds within the truly�mixed approa
h. Dis
ontinuity of dis-pla
ements and regularity of stress �uxes seem ideally tailored to deal with
ohesive fra
ture models, as mentioned in Se
tion 3.8.3. Having the aimof exploiting these features in optimal design pro
edures, 
urrent investi-gation is mainly 
on
erned with the assessment of the numeri
al setting ofthis analysis instrument [26℄, also in
luding sto
hasti
 e�e
ts [23℄.
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