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Chapter 1

Introduction and motivation

Topology optimization is nowadays a fertile area of research concerned with
the topical issue of defining the best design that solves an assigned phys-
ical problem with prescribed performance requirements or other kind of
restraints. This general concept may be applied to different practical con-
texts and industrial applications, where, already in an early stage of the
design process, questions as finding an optimal lay-out topology in terms
of static or dynamic stiffness, cost, assigned structural performances and so
on must be affordably answered. Since the pioneering paper [13] where the
topology optimization concept was introduced as an innovative and pow-
erful approach to structural design, many steps have been taken in several
directions. The legalization of one of the most used material interpolation
laws, the SIMP (Solid Isotropic Material with Penalization) approach [15],
from the standpoint of constitutive theory appears to be a key step toward
the acceptance of topology optimization within the designers community.
Furthermore, a few recent results on the existence and uniqueness of the

solution to the optimal design problem have provided the entire formula-
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tion with a sound mathematical basis [98]. Topology optimization may be
considered as a mature discipline especially from the point of view of the
applications, since new grounds have been explored, moving from the orig-
inal field of structural design towards new branches as material design or
multiphysics problems, even if many of the early topics remain quite actual
and still open, in view of innovative affordable solutions.

This development, achieved over more than twenty years of research and
applications, is not only made of advances in mathematics, technology and
material mechanics, but is also due to the efforts made within the field of the
so called computational sciences. Many interests have been in fact directed
towards this topic with the aim of providing numerical instruments able
to solve the computational difficulties concerned with the optimal topology
formulations and to successfully menage large—scale problems. An extensive
literature has been produced regarding minimizer algorithms used to solve
the optimum problem, i.e. CONLIN [49] or MMA [137], or referring to the
solution of the numerical instabilities such as the checkerboard phenomenon
[130]. Onme of the crucial aspects of the more commonly used solving me-
thodologies concerns the finite element approach. Most of the works refer
to the adoption of displacement—based finite element methods, while not
so many other discretization strategies have been so far investigated, with
the exception of the interests recently directed to non—conforming finite el-

ements [65] or displacement-pressure discretizations [129].

Within such a scenario, the aim of this work is to propose alternative for-
mulations for topology optimization by distribution of isotropic material,

relying on bidimensional mixed finite element schemes and exploiting the
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benefits that these methods may provide on several topics of the optimal
design discipline.

The variational principle of Hellinger-Reissner is herein used and two dual
formulations presented and discretized. The first one is simpler and uses
classical polynomial finite elements to approximate a regular displacement
field and a piecewise discontinuous stress field. Conversely, the dual formu-
lation, often referred to as truly—mized in the literature [21], interpolates dis-
placements with discontinuous functions while regular ones are used for the
stresses. The adoption of these finite element techniques within a topology
optimization framework has direct consequences on the numerical stability
and on convergence features of the method. These issues are firstly inves-
tigated with special regard to the checkerboard problem and the adopted
discretizations for the density field. Except for this technical aspect, mixed
schemes have two important properties that may be usefully exploited in a

topology optimization context, i.e.:

e the accuracy in the evaluation of stresses, due to the additional dis-
cretization of the stress field, that does not call for any post-processing

technique typical of displacement-based finite elements;

e the capability of passing the inf-sup condition, for the “truly-mixed”
formulation, even in the case of incompressible material, feature that

is not shared by commonly used displacement-based discretizations.

In the present work the first feature is exploited to deal with the still open
problem of finding the optimal topology with local stress constraints on ma-
terial strength [46]. Managing this topic the so—called singularity problem

[117], a numerical trouble that often prevents form convergence to expected
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global minima, is also faced and a novel methodology, referred to as gp—
approach, is presented and analyzed within the proposed formulations with
the aim of providing an alternative solution to the problem.

The second of the above two main features is conversely exploited in the
sequel to find optimal designs for incompressible materials, providing the
numerical robustness needed to handle the incompressibility property within
an optimization context. Since these materials have recently been used in
different applications mainly concerned with vibration issues and aseismic
design, alternative topology optimization formulations are presented and
tested not only in a static framework but also within eigenvalue-based me-
thodologies for dynamic design. The capability of the truly—mized method
to pass the inf-sup condition even in presence of incompressible material
is moreover used to model fluid phases with the aim of solving pressure—
load problems, moving from the approach recently proposed in [129]. The
accuracy in the evaluation of the stress field is exploited in this context
to propose an alternative methodology against the achievement of final de-
signs that present cavities whose boundaries are acted upon by hydrostatic
pressure. This kind of topologies may be in fact of no practical use within

certain applications.

The outline of the work is as follows. Chapter 2 introduces the basic con-
cepts of the topology optimization discipline, presenting the state of the
art in terms of methods and applications further dealt with, in the sequel
of the work. Chapter 3, after a first insight on fundamentals of the fi-
nite element method, is mainly concerned with theoretical and numerical

issues related to mixed finite elements, deriving both the continuous and
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the discrete forms of the dual formulations that descend from the varia-
tional principle of Hellinger—Reissner. Chapter 4 tackles the checkerboard
problem and other numerical issues related to the adoption of the intro-
duced mixed finite elements formulations along with alternative choices
in terms of density discretizations. In this regard, preliminary optimiza-
tions that maximize the stiffness of the structures are performed, according
to the classical framework of topology optimization for minimum compli-
ance. Chapter 5 and Chapter 6 are concerned with the research of optimal
topology with local stress constraints. The first of the two chapters refers
to the singularity problem, presenting the gp—approach, its features and nu-
merical comparisons with respect to the classical e-relaxation [35], that is
the traditional methodology applied to overcome the numerical difficulties
related to the arising of the stress singularity phenomenon at zero density.
The second one is mainly concerned with the implementation of stress con-
straints that exploit both the mixed finite element discretizations within
a minimum compliance optimization framework. Different optimal designs
achieved with and without stress constraints are presented and analyzed
from the point of view of their mechanical behavior. Peculiar attention
is moreover paid in this context to the topologies obtained by means of
the truly-mixed discretization in comparison with those found by the dual
mixed setting. Chapter 7 presents the topology optimization of incompres-
sible media for maximum stiffness, along with the numerical difficulties that
may be encountered in the research of pure 0-1 designs under plane strain
conditions. Relevant material interpolation strategies are introduced and
tested to solve this problem. Furthermore, different families of designs are

presented, comparing plane strain and plane stress conditions for cases of
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compressible and incompressible material design, thus pointing out peculiar
mechanical differences related to the incompressibility feature. Chapter 8
exploits the capability of handling topology optimization of incompressible
materials to propose alternative eigenvalue-based formulations that may be
used to deal, within a simplified setting, with typical aseismic isolations
problems, as the preliminary design of bi-material aseismic bearing devices
for which a suitable multi-phase material interpolation is derived. Chapter
9 implements the truly—mixed discretization within the approach originally
introduced in [129] that is based on the modeling of a phase of fluid mate-
rial in order to cope with pressure-load problems. An alternative technique,
exploiting the imposition of stress constraints on the incompressible phase,
is herein proposed and tested to avoid the achievement of final designs that
present undesired cavities filled with fluids. Chapter 10 summarizes the
work, pointing out the main issues and results discussed in the previous

chapters and presenting ideas for future developments.



Chapter 10

Conclusions

The work has addressed the issue of introducing and exploiting the adop-
tion of mixed finite elements for plane linear elastic problems within the
framework of topology optimization by distribution of isotropic material.
As detailed in Chapter 2, the topology discipline is a relatively recent but
well-established research field that provides designers with numerical pro-
cedures having the aim of achieving optimal designs for several applications.
A crucial aspect of the methodology relies on the choice of the finite ele-
ments schemes used in the discretization of the fields involved in the solution
of the elasticity equation. With respect to this subject, most of the tradi-
tional approaches rely on classical displacement—based techniques and not
so many alternatives have been so far investigated.

To this purpose, Chapter 3 has introduced the variational principle of
Hellinger—Reissner that has been herein exploited to derive two dual weak
formulations of the elasticity problem. The first one uses classical poly-
nomial finite elements to approximate a regular displacement field and a

piecewise discontinuous stress field. The second one, often referred to as

353
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truly—mized, conversely interpolates displacements with discontinuous func-
tions while stresses with regular ones. Both the formulations have been
implemented in discretized forms, having the aim of pointing out the main
benefits of the mixed approach with respect to classical displacement—based
finite elements. The independent interpolation of stresses, according to the
degree of approximation of the adopted shape functions, provides in fact an
increased accuracy in the evaluation of the relevant stress field but also of
the displacement one. Furthermore, a few mixed approximations are able to
pass the inf-sup condition even in case of incompressible material thus pro-
viding a robust analysis tool that does not encounter the well-known locking
phenomenon. Both these advantages are shared by the herein implemented
discretization of the truly—mized formulation, based on the Johnson Mercier
composite triangle.

Within a topology optimization framework, the coupling of displacement
(and stress) approximations with density interpolation schemes may ge-
nerate or resolve numerical instabilities of the procedure. Chapter 4 has
addressed this topic, presenting and investigating the dual frameworks that
exploit the above cited mixed finite element schemes. While the first one has
shown features that are similar to equivalent displacement—based approach,
the truly-mixed setting has not experienced the well-known checkerboard
problem, when coupled with an element—based discretization. However, not
to increase the computational burden tied to the adoption of mixed schemes,
the nodal-based density setting has been shown to be an affordable choice
for the appropriate description of the layout of final designs, exploiting
moreover peculiar benefits on the issue of length scale control. Within

the classical framework of topology optimization for minimum compliance
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problem the truly—mized scheme has shown an high accuracy of the achieved
results and robustness against instabilities.

The numerical assessment of these basic features has therefore allowed the
extension of the mixed optimization framework towards the exploitation of
the benefits peculiar to the finite element schemes, in order to deal with
stress—constrained problems and topology optimization involving incom-
pressible media.

Preliminarily to the former issue, Chapter 5 has addressed the delicate
convergence difficulty that affects stress constraints imposition, i.e. the
singularity phenomenon. For the solution, an alternative method, called
qp—approach, has been herein introduced and compared to the classical
e-relaxation. Among its features, the peculiar advantage consists in the
smoothness of the manipulation introduced on constraints equations, that
improves convergence features and does not involve full density range, thus
eventually allowing for non—iterative design procedures.

The methodology has been largely exploited in Chapter 6, where the mini-
mum compliance setting based on mixed finite elements has been applied in
conjunction with a set of local stress constraints. The investigations have
pointed out the remarkable differences that may be found comparing designs
achieved with and without the inclusion of stress constraints. Peculiar at-
tention has been paid to the description of the implemented imposition of
the local stress requirements, that gain in accuracy and numerical tractabil-
ity due to the independent interpolation of the stress field. A suitable me-
thodology has been furthermore developed in order to exploit the accuracy
and fast convergence of JM-based approach in stress constraints enforce-

ment, without paying the expected increase in terms of computational cost.
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The methodology, that involves only the average degrees of freedom of the
adopted truly—mixed discretization, has been shown to produce feasible re-
sults that exhibit an improved mechanical behavior with respect to the ones
achieved by the dual less accurate approximation.

To exploit the capability of JM discretization to robustly deal with the
incompressibility feature, Chapter 7 has straightforwardly extended the mi-
nimum compliance truly—mized framework to the optimization of such kind
of materials. Within this class of problems, classical interpolation laws that
do not penalize the incompressibility feature in the low density range may
generate final designs where undesired grey regions takes full advantage of
this property, under plane strain conditions. An alternative penalization
law for stiffness has been therefore proposed and tested to assess its capa-
bility for achieving pure 0-1 designs. Furthermore, several examples have
been studied under plane strain and plane stress conditions, for cases of
compressible and incompressible material. This comparative investigation
has mainly pointed out that remarkably different designs may be achieved
within the plane strain incompressible case. Under these conditions the
material tends to assume in fact a layout that efficiently exploits the sig-
nificant increase in the volumetric stiffness, when acted upon by isotropic
stress states.

Classical frameworks for the maximization of the first eigenvalue have been
addressed in Chapter 8, in order to provide optimization techniques for in-
compressible media also within a dynamic setting. The problem of localized
modes has been firstly tackled by means of the introduction of an alternative
mass interpolation, that assures an appropriate mass—to—stiffness ratio all

over the density range. Having the aim of dealing with the preliminary de-
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sign of isolation devices, whose manufacturing involves incompressible ma-
terials as rubber—likes ones, a novel eigenvalue-based formulation has been
furthermore proposed, based on the achievement of the maximal vertical
stiffness with additional requirements on the horizontal dynamic flexibility.
The above methodology has been applied to the simplified design of devices
made of both steel and rubber-like material, relying on an alternative bi—
phase material law.

The capability of handling incompressible media has been furthermore ex-
ploited in Chapter 9 to perform the topology optimization for pressure-load
problems basing on a method that involves the presence of a fluid phase. To
this purpose an alternative “bi—material with void” interpolation has been
introduced and the robustness of the JM element in the evaluation of both
displacements and stresses has been herein used to cope with the problem
of filled cavities, i.e. the arising of internal holes whose boundaries are acted
upon by hydrostatic pressure. The imposition of a set of suitable pressure
constraints has shown in fact to be able to overcome this possible problem

without resorting to more demanding traditional procedures.

The above applications have outlined that mixed methods, with pecu-
liar reference to the truly—mized formulation, may be usefully exploited in
topology optimization. The accuracy in the imposition of stress—constraints
and the robust handling of incompressible materials are in fact peculiar be-
nefits to the introduced formulations with respect to traditional displacement—
based schemes.

A possible drawback of the method is tied to the increased computational

burden related to the independent interpolation of stresses. To this pur-
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pose suitable algorithms and implementation techniques have been adopted
throughout the work to reduce the CPU~times. The most demanding pro-
cedure encountered in the simulations was not however tied to the finite
element scheme, but, rather, to the local imposition of stress constraints
within the minimization procedure. A possible way out to the problem could
consist in the adoption of adaptive meshing techniques [150] in the topology
optimization framework. This is expected to allow a finer discretization of
the zones that experiences the higher stress concentration and, at the same
time, a remarkable reduction in the overall number of local constraints.
The peculiar benefits of the mixed methods have been exploited and investi-
gated in this work within a linear elastic bidimensional context. Challenging
developments of the presented procedures include therefore the extension to
geometrical and constitutive non-linearities along with the implementation
of three—dimensional approaches. While the latter argument is mainly con-
cerned with the remarkable increase in the number of unknowns expected
in 3D problems, the former is in fact very tricky to be dealt with, because
of the complexity of more subtle numerical and computational issues with
respect to both the optimization framework and the finite element schemes.
The main difficulty is maybe the setting of affordable sensitivities com-
putations in the non-linear framework, as pioneered in the already cited
works by [28] and [125]. Furthermore, additional stability issues of mixed
finite elements in large strain analysis for rubber-like solids have to be dealt
with, concerning the delicate discretization of the incremental version of the
Hellinger—Reissner variational principle, see i.e. [92].

Recent contributions have outlined peculiar benefits that may be derived

from the assumption of linear elastic model embedded in the optimization
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procedures that are alternative to the classical Cauchy setting. Topology in-
vestigations have been already performed basing on the micro—polar Cosserat
solid [113], but also other multi-field theories [32] should be investigated
for structural purposes, as micro—cracked models [85]. An alternative way
to cope with fractured media involves non-linear procedures that handle
crack propagation taking full advantage from the well-suited nature of the
discretizing fields within the truly-mized approach. Discontinuity of dis-
placements and regularity of stress fluxes seem ideally tailored to deal with
cohesive fracture models, as mentioned in Section 3.8.3. Having the aim
of exploiting these features in optimal design procedures, current investi-
gation is mainly concerned with the assessment of the numerical setting of

this analysis instrument [26], also including stochastic effects [23].
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