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Organizzazione del corso 
 

Il dottorato di ricerca in Ingegneria Civile presso la Facoltà di Ingegneria 

dell’Università degli Studi di Pavia è stato istituito nell’anno accademico 

1994/95 (X ciclo). 

Il corso consente al dottorando di scegliere tra due curricula: idraulico o 

strutturale. Egli svolge la propria attività di ricerca rispettivamente presso il 

Dipartimento di Ingegneria Idraulica e Ambientale o quello di Meccanica 

Strutturale. 

Durante i primi due anni sono previsti almeno sei corsi, seguiti da rispettivi 

esami, che il dottorando è tenuto a sostenere. Il Collegio dei Docenti, composto 

da professori dei due Dipartimenti, organizza i corsi con lo scopo di fornire allo 

studente di dottorato opportunità di approfondimento su alcune delle discipline 

di base per entrambe le componenti, idraulica e strutturale. Corsi e seminari 

vengono tenuti da docenti di Università nazionali ed estere. 

Il Collegio dei Docenti, cui spetta la pianificazione della didattica, si è 

orientato ad attivare ad anni alterni corsi sui seguenti temi: 

− Meccanica dei solidi e dei fluidi 

− Metodi numerici per la meccanica dei solidi e dei fluidi 

− Rischio strutturale e ambientale 

− Metodi sperimentali per la meccanica dei solidi e dei fluidi 

− Intelligenza artificiale 

più corsi specifici di indirizzo. 

Al termine dei corsi del primo anno il Collegio dei Docenti assegna al 

dottorando un tema di ricerca da sviluppare sotto forma di tesina entro la fine 

del secondo anno; il tema, non necessariamente legato all’argomento della tesi 

finale, è di norma coerente con il curriculum, scelto dal dottorando (idraulico o 

strutturale). 

All’inizio del secondo anno il dottorando discute con il Coordinatore 

l’argomento della tesi di dottorato, la cui assegnazione definitiva viene 

deliberata dal Collegio dei Docenti. 
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Alla fine di ogni anno i dottorandi devono presentare una relazione 

particolareggiata (scritta e orale) sull'attività svolta. Sulla base di tale relazione 

il Collegio dei Docenti, "previa valutazione della assiduità e dell'operosità 

dimostrata dall'iscritto", ne propone al Rettore l'esclusione dal corso o il 

passaggio all'anno successivo. 

Il dottorando può svolgere attività di ricerca sia di tipo teorico che 

sperimentale, grazie ai laboratori di cui entrambi i Dipartimenti dispongono, 

nonché al Laboratorio Numerico di Ingegneria delle Infrastrutture. 

Il “Laboratorio didattico sperimentale” del Dipartimento di Meccanica 

Strutturale dispone di: 

1. una tavola vibrante che consente di effettuare prove dinamiche su prototipi 

strutturali; 

2. opportuni sensori e un sistema di acquisizione dati per la misura della 

risposta strutturale; 

3. strumentazione per la progettazione di sistemi di controllo attivo e loro 

verifica sperimentale; 

4. strumentazione per la caratterizzazione dei materiali, attraverso prove 

statiche e dinamiche. 

Il laboratorio del Dipartimento di Ingegneria Idraulica e Ambientale dispone di: 

1. un circuito in pressione che consente di effettuare simulazioni di moto vario; 

2. un tunnel idrodinamico per lo studio di problemi di cavitazione; 

3. canalette per lo studio delle correnti a pelo libero. 

A partire dall’anno accademico 1997/98 al dottorando viene data la 

possibilità di frequentare la “Scuola Avanzata di Formazione Integrata” 

dell’Istituto Universitario Studi Superiori, che si articola in tre anni e la cui 

finalità è quella di integrare le attività post-laurea di tipo specialistico con studi 

a carattere interdisciplinare adatti ad assicurare un più ampio bagaglio culturale. 
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Sommario 
 
L’argomento trattato in questa tesi riguarda la diagnostica di patologie 

strutturali, con speciale riferimento alla doppia necessità di individuare 

situazioni danneggiate e di localizzare il danno stesso. Lo studio è incentrato su 

metodi che lavorano nello spazio delle variabili osservate, dove misure globali 

di informazione possono essere utilizzate per individuare il danno. la presenza 

di questo ultimo può essere evidenziata tramite il calcolo di quantità scalari, 

quali l’entropia, o vettoriali, come gli esponenti di Lyapunov. Il confronto di 

queste misure calcolate in sottospazi delle variabili osservate o in loro 

espansioni consente di realizzare una sorta di analisi di sensitività sul ruolo di 

ciascuna delle variabili coinvolte nel problema. 

Le precedenti misure globali di informazione sono in grado di individuare, 

ma non di localizzare il danno. Per questo ultimo proposito un nuovo 

procedimento è formulato e implementato sfruttando le tecniche delle superficie 

di risposta per approssimare le relazioni tra le variabili osservate. Il confronto 

tra i modelli che risultano in diverse situazioni danneggiate e non danneggiate 

identifica le differenti risposte strutturali e le cause delle differenze. 

Il procedimento che si basa sulla costruzione della superficie di risposta è 

descritto a partire dai suoi aspetti teorici di base sino alle caratteristiche delle 

sua implementazione numerica. Inoltre, le misure globali introdotte 

precedentemente consentono di giudicare se il problema sia effettivamente ben 
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posto, ovvero se l’insieme delle quantità misurate nel caso specifico consenta di 

individuare il danno e di localizzarlo. 

La validazione del metodo proposto è dapprima sviluppata in ambito 

numerico, con particolare riferimento al “benchmark” proposto dal Comitato di 

Controllo Strutturale dell’ASCE (la società statunitense degli ingegneri civili). 

Il procedimento viene successivamente applicato a due diverse situazioni 

sperimentali. Mentre la prima, riferendosi a una struttura intelaiata in acciaio, 

riproduce in scala reale le caratteristiche del problema studiato nel 

“benchmark”, il secondo studio riguarda una situazione strutturale di natura 

monumentale, dove il danno si identifica con fessure più o meno estese. Il 

potenziale di sviluppo evidenziato da questo ultimo caso consente di prospettare 

svariate applicazioni nell’individuazioni di patologie strutturali del patrimonio 

strutturale esistente.  
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Abstract 
 
The general topic investigated in this thesis is “structural health monitoring”, 

with special care being devoted to damage detection and localization. The study 

is focused on methods which work in the space of the observed variables, where 

the global information measures can be used to detect the damage. In this 

context damage detection is demanded to global measures such as entropy or 

Lyapunov exponents. The comparison of these measures computed in subspaces 

of the observed variables or in their expansions, allows one to perform a sort of 

sensitivity analysis on the role of the variables involved in the problem. 

Such global measures are able to detect but not to directly  localize damage. 

For this purpose, a new approach to detect and localize the damage is 

formulated and implemented. It exploits response surface techniques to 

approximate the relationship among the observed variables. Comparing the 

resulting models in different damaged and undamaged situations identifies the 

response differences and their causes. 

The response surface procedure is described from its basic theoretical 

aspects up to the features of its numerical implementation. Additionally, the 

global measures introduced above drive the analyst in establishing whether or 

not the problem is well posed, i.e., whether or not the set of measured quantities 

are able to detect the specific damage to be localized. 
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The validation of the proposed methodology is first numerically pursued by 

applying it to the benchmark case set up by the Structural Health Monitoring 

Panel of the American Society of Civil Engineering (ASCE). The procedure is 

then tested on two different experimental situations. While the first study of a 

three-dimensional steel frame reproduces the features of the benchmark 

problem, the second investigation covers a monumental structure situation, 

where damage is represented by more or less extended cracks in the masonry. 

The potential expressed by the procedure also in this second application seems 

to promise interesting exploitation possibilities.  
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Chapter 1 

 

 

 

Introduction 

 

 

 

The research activity summarized in this thesis deals with the topic of structural 

identification, with special care being devoted to its applications for damage 

detection and localization. Furthermore, the activity is framed in a general-

purpose, long-term research program aiming to the realization of smart sensors 

suitably designed for Civil Engineering applications. Thence, the results 

achieved throughout the study were pursued with the final objective of 

implementing them in a software simple enough to be downloaded in the micro-

processor which, coupled with the sensor, realizes the smart sensor device.  

To determine a damage detection algorithm which best matches these 

requirements, several methods found in literature were investigated, applied, 

and compared. Many of the theoretical methods available show a very modest 

efficiency when implemented in practical situations This remark led the 
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research to be focused on the methods that work in the space of the observed 

variables, where global information measures are used to detect damage. Then 

the relationships among the observed variables are approximated by response 

surface techniques which allow one to localize the damage. As a result a new 

approach to damage detection is developed. The new method showed to be 

reliable and robust when applied to both the results of numerical simulation and 

experimental data. 

Under these premises, the thesis is organized in nine further chapters after 

this short  introduction. The next three chapters have the purpose to define the 

operation framework. In particular, Chapter 2 provides the basic governing 

relations, introducing the concepts of dynamic systems and their observability. 

Chapter 3 provides a brief survey on the applications of the structural health 

monitoring techniques to Civil Engineering structures. This task is pursued 

following the guidelines identified by the Los Alamos National Laboratory 

(LANL) in New Mexico, USA, as a result of its tremendous effort in 

summarizing and updating the wide state-of-the-art on the subject. Chapter 4, 

eventually, opens the perspective to the long-term ultimate goals of the research 

activity, explaining its motivations, illustrating its current solutions, and 

depicting the system architecture of the pursued operation scheme. 

Chapters 5 and 6 represent the core of the thesis. Chapter 5 provides, as a 

consequence of the critical overview of the current practice provided in Chapter 

3, a different rationale in approaching the damage detection problem. The space 

of the observed variables is selected as working space and some global 

information measures are shown to be able to detect (but not directly to 

localize) the damage. The algorithms which represent the best candidates to be 

implemented in the system architecture sketched in Chapter 4 in view of 
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damage localization, are then introduced and briefly discussed. One of them, 

based on the response surface theory, is selected, theoretically developed and 

implemented in Chapter 6. In particular, the SHM response surface 

methodology is described, and the attempts of its application to damage 

diagnosis are reported as found in literature and as developed in the early stage 

of this research. The results obtained from a first numerical example led to the 

abandon of the method proposed in literature, and to the development of a brand 

new one, which is the most suitable to the objectives of the ongoing research 

program.  

The applicability of this method for damage detection and localization in 

several civil engineering structures is then investigated in the following three 

chapters. Three cases of study are selected for investigation, because they are 

representative of a wide range of situations and applications. Chapter 7 

approaches the complex problem which was set up as benchmark case-study by 

the American Society of Civil Engineering (ASCE) committee on Structural 

Identification. Some of the cases proposed by the benchmark oblige the 

adoption of special preliminary data treatments which are illustrated in details. 

The validation pursued in this chapter belongs to the class of numerical 

simulations, but includes some degree of sophistication as accounting for the 

3D nature of the structural system, the sensor noise, and the presence of 

damages not typically classified as of a structural nature. On the other side, 

Chapters 8 and 9 deal with existing laboratory models implemented at the Joint 

Research Center in Ispra, thus providing a direct window on professional 

applications. Chapter 8 considers a three story steel frame excited by a shaker, 

and Chapter 9 presents the results obtained from cracked, continuous, masonry 

tested by both ambient and hammer excitation. 
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Chapter 10 finally lists the further actions to be carried out in order to further 

test and improve the robustness of the approach developed and implemented 

along the thesis. A summary of the main conclusions achieved throughout the 

research activity ends the report. 
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Chapter 2 

 

 

 

Dynamic Systems and their Observability 

 

 

 

Many literature works show how system identification procedures can be 

applied for both the control and the monitoring of a structure. In this Chapter, 

dynamic systems are introduced, and their representations by transfer functions 

and state-variable models are presented. For the solutions of the control and 

observation problems to exist, the conditions of system controllability and 

observability need to be determined. In particular, the observability of a 

structure should be studied when deciding on the sensors placement.  

The ideal system identification procedure is then summarized with the 

purpose of fault isolation and detection. Its practical implementation into 

dedicated softwares is discussed by introducing several operative algorithms. 

Among these, the Subspace Based Identification method is selected and its 

application to an exemplification case of study is illustrated. 
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2.1 Dynamic Systems 

 

The operational principles of real-life systems are governed by physical laws 

whose modeling requires the use of nonlinear and/or time varying equations, 

which are usually difficult to solve. However, the commercial tools of analysis 

and design are commonly based on the linear systems theory. The justification 

of this choice is based either on the remark that the system is operated in the 

linear region, or on a linearization about a nominal operating point. In the latter 

case, the analysis is applicable only for the range of variables where the 

linearization is valid. 

Dynamic systems can be defined as mappings of input signals into output 

signals, provided that the initial conditions are assigned. For linear time-

invariant systems, and only for them, the associated transfer function can be 

defined.  

One distinguishes four cases: i) a single input - single output (SISO) system 

with just one input signal u(t) and one output signal y(t), where t denotes the 

time, is characterized by a scalar transfer function G; ii) a multiple input - single 

output (MISO) system sees G becoming a row vector; iii) a single input - 

multiple output (SIMO) system has as G a column vector; and iv) a multiple 

input - multiple output (MIMO) system is characterized by G becoming a 

matrix. 

Given a linear time-invariant SISO system, if the input u(t) is the unit-

impulse function δ(t), then the output y(t) is denoted as g(t) and it is named the 

impulse response. The effects superposition principle then guarantees that the 

output y(t) can be found for any input u(t). The transfer function is defined as 
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the Laplace transform of the impulse response g(t) when all the initial 

conditions are set to zero 
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In Equation (2.1), s is a complex variable and it is denoted as the Laplace 

operator.  

The transfer function is related to the Laplace transforms of y(t) and u(t) by 
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The input-output relationship of a linear time-invariant system is usually 

described by an n-th order differential equation with constant real coefficients 
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The transfer function results from taking the Laplace transform of both sides 

with zero initial conditions 
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The equation obtained by setting the denominator of the r.h.s. of Equation 

(2.5) equal to zero, is called the characteristic equation. Its roots govern the 

stability of the linear SISO. 

An “ideal sampler” collects continuous data with a given sampling period, 

say ∆t: the result is an impulse train. The “zero-order hold” (ZOH) simply holds 

the signal carried by the incoming impulse at a given instant, multiple of ∆t, 

until the next impulse arrives, thus introducing a staircase approximation of the 

input to the ideal sampler.  

Assuming now to have a discrete data system, the previous relationships still 

hold, provided that the Laplace transform is replaced by the z-transform, with z 

= es ∆t. Therefore, the transfer function depends now on the complex variable z, 
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The inverse of z represents the unitary delay operator 
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2.2 State-Variables Model 

 

The identification problems in mechanics can be approached following schemes 

which can be classified into traditional and modern control theory methods. The 

first ones are based on the previous concept of transfer function, while the latter 

approach relies on the so called state-variables models. The basic feature of the 

state-variables formulation is that linear and nonlinear systems, time invariant 

and time varying systems, can all be modeled in a unified manner as follows 
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Equation (2.8) forms the dynamic equations: the first row collects the state 

equations in number of n for an n-th order dynamic system, where n is also the 

number of the state variables xi(t); the second row represents the output 

equations, in number of q, where q is also the number of the output variables 

yj(t). The number of input functions uh(t) is p, and v is the number of 

disturbance input functions wk(t).  

For ease of expression and manipulation, it is convenient to express 

Equation (2.8) in a vector-matrix notation, for which the bold format is adopted 
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)].(),(),([)(

)],(),(),([
)(

tttt

ttt
dt

td

wuxFy

wuxf
x

=

=
 (2.9) 

 

For a linear time-invariant systems, one can write 

 

),()()()(

),()()(
)(

tttt

ttt
dt

td

HwDuCxy

EwBuAx
x

++=

++=
 (2.10) 

 

where the six matrices A, B, C, D, E, and H have sizes n × n, n × p, q × n,        

q × p, n × v, and q × v, respectively. 

The solution of the homogeneous state equations (first row of Equation 

(2.10), with B = E = 0), given the initial state vector x(t0), is written as 

 

)()()( 0ttt xx φ= , (2.11) 

 

where φ(t) is the n × n state-transition matrix, i.e., the matrix that satisfies the 

equation 

 

)(
)( t

dt
td

φ
φ

A= , (2.12) 

 

resulting into 
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 +++==−= −− 2211

!2

1
])[()( ttest t AAIAI Aφ . (2.13) 

 

The general solution of the state equations can easily be written in its 

Laplace transform form 

 

)]]([)]([[)()()()]([ 1
0

1 ttstst wEuBAIxAIx  +−+−= −− , (2.14) 

 

leading to write 

 

000 )]()([)()()()(
0

ttdττττttttt t
t

≥+−+−= ∫ wEBuxx φφ , (2.15) 

 

from which the output vector is determined by simply substituting the 

expression found for x(t) in the second row of Equation (2.10). 

From the Laplace transform of the output vector with initial conditions set to 

zero, i.e., x(t0) = 0, one can find the relationship between the two 

representations of a linear time-invariant system by transfer functions and 

dynamic equations, being 

 

.)()(

,)()(

1

1

HEAICG

DBAICG

w

u

+−=

+−=

−

−

ss

ss
 (2.16) 

 

the q × p and q × v transfer function matrices between u(t) and y(t) when w(t) = 

0, and between w(t) and y(t) when u(t) = 0, respectively. 
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Since the inverse of a matrix can be expressed as the ratio between its adjoin 

and its determinant, by substituting ||)/adj()( 1 AIAIAI −−=− − sss  in 

Equation (2.18), one can see that the denominator of the transfer function matrix 

)(suG  equated to zero, i.e., the system characteristic function, is 

 

.001
1

1 =++++=− −
− asasass n

n
n AI  (2.17) 

 

and it is equal to the one obtained from Equation (2.5). Hence, the roots of the 

characteristic equation are the eigenvalues of the state matrix A. The state 

matrix A can be non-symmetric and show multiple-order eigenvalues. We 

assume that among its n eigenvalues, r < n are distinct.  

 

 

2.3 Similarity Transformations 

 

Let us introduce a SISO, i.e., p = 1 and q = 1, in a deterministic context (w = 0). 

The dynamic equations are transformed into another set of equations of the 

same dimension by the transformation 

 

)()()()( 1 tttt xPxxPx −=⇔= , (2.18) 

 

which requires that P is an n × n non-singular matrix. 

The transformation P alters the matrices A, B, C, and D, but it is called a 

similarity transformation because in the transformed system the characteristic 
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equation, the eigenvalues, the eigenvectors, and the transfer function are all 

preserved by the transformation. 

Let us define the controllability matrix as 

 

][ 12 BABAABBS −= n , (2.19) 

 

and build the matrix 

 























=

−

−

0001

001

01

1

1

32

121











n

n

a

aa
aaa

M  , (2.20) 

 

having all the elements of each anti-diagonal equal to each other. This matrix is 

called a Hankel matrix. The transformation, 

 

SMP = , (2.21) 

 

transforms the dynamic equations into the controllability canonical form (CCF). 

The observability matrix is defined as 
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





















=

−1

2

nCA

CA

CA

C

V



 . (2.22) 

 

The transformation, 

 

1)( −= MVP , (2.23) 

 

transforms the dynamic equations into the observability canonical form (OCF). 

It is worth noting that, for each selection of P, one obtains a new model 

characterized by a different quadruple of matrices and a different state vector 

x(t). Nevertheless, the new transfer function coincides with the original one.  

The quadruple of matrices arising from a given transfer function G(s), are 

regarded as a realization of G(s). Here the order of the model is the dimension 

of the vector x(t). The concept of minimal realization requires that there is no 

other realization with a state vector of lower size. 

 

 

2.4 Observability and Controllability 

 

Arguing on the minimal nature of a realization requires the introduction of the 

concepts of observability and controllability. The system is said to be 

observable when there are not two different initial states such that the 

corresponding output values are the same, for any time subsequent to the initial 
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one. The system is observable if and only if the observability matrix V has rank 

n. 

The system is said to be controllable if, for any value ξ of x, there is a 

suitable sequence of u(t) which produces an evolution of x such that, at a time 

tN after the initial one, x(tN) = ξ. The system is controllable when the rank of the 

controllability matrix S is n.  

A necessary and sufficient condition for having a minimal realization is that 

the model is controllable and observable. 

The observability of a system depends on which variable is defined as the 

output. In any textbook of automatic control one finds examples of systems 

which are fully observable when the observed variable is selected in a suitable 

class; otherwise, these systems lose their observability. For instance, a system 

with three state variables and three potential observed variables, might be fully 

observable if either the first or the second observed variable is considered, but it 

might lose its observability when the third observed variable is the only one 

retained. 

An observability study can be simply developed when the real dynamic 

system is known. In this case, the observability theory helps in selecting the 

suitable configuration of the sensors. However, given a network of sensors, one 

can encounter damage situations which are not detectable, just because of the 

unobservability of the system for that specific mock-up.  
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2.5 The Ideal Identification Process 

 

With reference to a MIMO system for which a vector of observations of size p 

is available, one is free to assume the model (2.10), but: 

1) the model order n is unknown; 

2) the matrices in the state equations are unknown; 

3) the matrices in the observation equations are unknown.  

When a time discrete representation is adopted, Equation (2.10) takes the 

form 

 

),()()(

),()()(])1[(

tktktk

tktktktk

∆+∆°=∆

∆+∆°+∆°=∆+

vxCy

wuBxAx
 (2.24) 

 

where x(t) denotes the state variables; A°, B° and C° are matrices of real 

elements and sizes consistent with the associated vectors; v(t) and w(t) denote 

the noises. Either the identification of the vectors v(t) and w(t), or of the 

matrices A°, B° and C° can be required. The attention is here focused on the 

latter problem and the disturbances are no longer taken into account. 

Each anti-diagonal element of the Hankel matrix (2.20) is the discrete 

system impulse response 

 

°−°°=∆ BAC 1)()( ktkg , (2.25) 

 

with k = 1, 2, … . But, being n unknown, one ignores how large the Hankel 

matrix is; thus he needs to write 
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l, (2.26) 

 

where the last two matrices are the osservability and the controllability matrices 

for a system of infinite order. 

In the framework depicted above, the identification problem is ideally solved 

by: 

1) assessing the impulsive response of the system, g(t); 

2) building, for the Hankel matrix, a truncated version of large size, M tr; 

3) determining the order of the Hankel matrix, which coincides with the order 

of the model for minimal realization; 

4) factorizing the truncated Hankel matrix into the product Vex Sex, where the 

rows of Vex (with n columns) are in number of those of Mtr, and the columns 

of Sex (with n rows) are in number of the ones of Mtr. They are called the 

extended observability and controllability matrices. 

Consider a matrix Vex
par obtained by j partitions of Vex in blocks of p rows, 

with q the size of y(t) and j any integer. The first block of Vex
par is an estimation 

of the matrix C°. The matrix Α° is given by 

 

Α° = [Vex
par T Vex

par]-1 Vex
parT Vex

UP, (2.27) 

 

where Vex
UP is obtained from Vex

par by deleting the first q rows and by adding a 

(j+1)-th block at the bottom. Finally, B° is obtained as the first columns of Sex. 

In summary, the observation matrix C°  is either given or assessed. Then the 

problem is to identify and to monitor the observed system eigenstructure, which 

is the collection of n pairs (λ, φλ ), where λ ranges over the set of eigenvalues of 

the state matrix Α°; if ϕλ  are the corresponding eigenvectors, then φλ  =  C° ϕλ . 
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If the system has no multiple eigenvalues, this collection does not depend on the 

state space basis. The pair (λ, φλ ) is called a mode, and the set of n modes is 

considered as the system parameter θ, 

 









=
Φ

Λ
θ

vec
 . (2.28) 

 

Here, Λ is the vector whose elements are the eigenvalues λ, Φ  is the matrix 

whose columns are the φλ, and vec is the column stacking operator. The 

resulting θ  has size (r + 1) n.  

The Fault Detection and Isolation (FDI) consists of detecting and isolating 

the changes in the parameter vector θ. By isolation one means to decide which 

mode(s) has(have) changed. This procedure is quite sensitive to numerical 

errors, which make it infeasible, but it underlines that the goal is to obtain a 

reliable estimate of the observability matrix from which the system matrices are 

then derived. Its feasible implementation can be found in OKID and in the 

Subspace Based Identification Method. 

 

 

2.6 Operative Identification Procedures 

 

In 1992, the Langley Research Center of NASA (National Aeronautics and 

Space Administration) released, within the COSMIC program, the Technical 

Memorandum 107566, which is a manual for a system/observer/controller 
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identification toolbox. Herein, several system identification algorithms were 

defined and implemented. Among these, it is worth mentioning 

1. the “Eigensystem Realization Algorithm with Data Correlation” (ERA/DC), 

which identifies a state space model from pulse response time histories, 

using a data correlation technique; 

2. the “State Vector Realization Algorithm” (SVRA), which identifies a state 

space from input and output data, using a state vector realization technique; 

3. the “Observer and Kalman filter Identification” (OKID), which 

simultaneously identifies a state space model and an observer gain from 

input and output data. 

This terminology became of reference in the literature of the Nineties, and it 

is introduced here to support a literature review of its applications for fault 

detection in Civil Engineering structures. In the following of this section, brief 

summaries of the OKID and of the Subspace Based Identification Method are 

provided.  

 

2.6.1 Observer and Kalman Filter Identification (OKID) 

The input/output time histories are stored as column matrices, whose number of 

rows is equal to the number of sampled points.  

The identification of the pulse response (also referred to as Markov 

parameters, since autoregressive models are often implemented to find the 

model dimension) is obtained by using the singular value decomposition 

sketched in Section 2.5. It is pursued for an auxiliary system (observer) rather 

than for the system itself. 
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Initially, an estimate of the number of Markov parameters must be specified. 

A plot of the Hankel matrix singular values is shown to aid the selection of the 

correct system order.  

Theoretically, there is only a specific number of independent Markov system 

parameters for a finite set of Markov observer parameters. Therefore, a 

minimum number of Markov system parameters may be used in the ERA 

routine to minimize the computational time in identifying the system. 

The identified system matrices are eventually returned by the algorithm. 

 

2.6.2 Subspace Based Identification Method 

In view of the exemplification illustrated in the next section, Equation (2.10) 

can be rewritten either as 

 
x(t+ 1) = Ax(t) + Bu(t), 

 (2.29) 
y(t) = Cx(t) + Du(t) + v(t), 

 

or 

 

x(t+ 1) = Ax(t) + Bu(t)+Ke(t), 
 (2.30) 

y(t) = Cx(t) + Du(t) + e(t). 

 

The state-space matrices A, B, C, D, and K in Equation (2.30) can be estimated 

directly (without specifying any particular parameterization) by efficient 

subspace methods. The idea behind these methods can be explained as follows. 

If the sequence of the state vectors x(t) were known together with y(t) and u(t), 
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Equation (2.30) would be a linear regression, and the matrices C and D could be 

estimated by the least squares method (see Appendix A). Hence, the vector e(t) 

could be determined and treated as a known signal in Equation (2.30), which 

would then be another linear regression model for A, B and K. One could also 

treat Equation (2.29) as a linear regression for A, B, C, and D, with y(t) and 

x(t+1) as simultaneous outputs, and find the joint process and the measurement 

noises as the residuals from this regression. The Kalman gain, K, could then be 

computed from the Riccati equation.  

Thus, once the states are known, the estimation of the state-space matrices 

would become easy. How to find the states x(t)? All states in representations 

like Equation (2.30) can be formed as linear combinations of the k-steps ahead 

predicted outputs (k = 1, 2, ..., n). It is therefore a matter of finding these 

predictors and then selecting a basis among them. The subspace methods 

provide an efficient and numerically reliable way to determine the predictors by 

direct projections on the observed data. Further information can be found in 

Sections 7.3 and 10.6 of the book [Ljung, 1999]. 

 

 

2.7. An Exemplification Case of Study 

 

A case of study was selected to give a numerical evidence to the previous 

theoretical expressions. For this purpose, one needs the structural response time 

histories of the quantity of interest (e.g., acceleration) to be recorded by 

different sensors. Some of them can be regarded as inputs and the remaining 

ones as outputs. In particular, adopting the results of the full scale tests 
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described in Chapter 8 also in this preliminary phase, seems to be pertinent. In 

this section, it is enough to specify the following main characteristics: 

1) Every test is performed by applying 12 times a random excitation for a short 

period of time, and by recording each time the structural response until the 

rest is reached again; 

2) for each test, 20 files of measurements are available; 

3) the first file consists of the time sequence: the recorded times are equally 

spaced with an acquisition frequency of 200 samples per second (s.p.s.), i.e., 

with a sampling time interval ∆t = 0.005 s; a total duration of 252.39 s is 

recorded; 

4) the second file, say the column vector named “input”, contains the force-

time history, from which one can recognize the 12 excitation pulses in a 

sequence; 

5) a third file contains the measures of a reference channel which is not 

considered in the analysis; 

6) the remaining 17 response channels are available as outputs, and they can be 

organized in a matrix of 17 columns, which represents the “signal”. 

Since each file consists of 12 pulses, attention is focused on a single pulse 

per file, i.e., all the records are divided into 12 replications. The analysis below 

is pursued on one single replication, starting from the first one. 

MATLAB® is the selected software environment. The analysis is carried out 

by manually giving the following commands (the user-friendly interface GUI is 

also available, but it does not allow one to find the direct counterpart in the 

theory as the sequence of commands does). 

a) “Z = iddata(signal, input, 0.005)” 
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creates an object “Z” which in the present case is a SIMO (single input - 

multiple output) system recorded with a time step of 0.005 s; 

b) “mod_basic = n4sid(iddata, [9:20], 'Cov', 'None')” 

estimates the state-space models using a subspace method. The assignment 

of no covariance matrix blocks all the calculations of the uncertainty 

measures, since these may take the major part of the computational time. On 

the other side, asking the model order to fall in the range [9, 20] implies that 

the calculations are carried out for all the orders in the indicated interval. As 

a result, the plot in Figure 2.1a is obtained. It shows the relative importance 

of the dimension of the state vector. More precisely, the singular values of 

the Hankel matrices of the impulse response are graphed for the different 

orders. One is prompted to select the order based on this plot, or better on its 

zoom in Figure 2.1b. The idea is to choose an order such that the singular 

values for higher orders are comparatively small. 

 

 

 

 

 

 

 

 

 

 

 a) b) 

Figure 2.1 (a) Graph of the singular values of the Hankel matrices of the impulse response for different orders 

of the state space model. (b) Zoom of Figure 2.1a. 
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c) The value 16 is first selected for the order and the model at the top of Figure 

2.2 is estimated. 

d) The state space matrix (of size 16 × 16) is characterized by eigenvalues 

which can be obtained by the command 

“lambda=eig(mod_basic.A)”, 

which results into: 

 

 

-0.2831 + 0.9394i 
-0.2831 - 0.9394i 
-0.5295 + 0.8239i 
-0.5295 - 0.8239i 
-0.5036 + 0.6709i 
-0.5036 - 0.6709i 
-0.7977 + 0.5254i 
-0.7977 - 0.5254i 
-0.6617 + 0.6536i 
-0.6617 - 0.6536i 
-0.6304 
  0.9487 + 0.3062i 
  0.9487 - 0.3062i 
  0.8225 
  0.7291 + 0.0198i 
  0.7291 - 0.0198i 

 

 

e) The commands: 

“obb = obsv(mod_basic.A, mod_basic.C);” 

“rank(obb)” 

compute the observability matrix (of size 272 × 16) and its rank, which is 16 

for the present model. 

The results which are obtained by choosing different options than those 

above are now discussed. 
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Figure 2.2  Matrix A of the estimated state space model for order number 16. 
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i) Which would have been the result of selecting the default value of 20 instead 

of 16 as model order? A complete different model would result in terms of 

matrices, but some eigenvalues (six) would be preserved, as shown in Figure 

2.3. 

ii) Since 12 replications are available, one can repeat the above calculations on 

the second pulse of the excitation. The results are compared in Figures 2.4 a 

and b for the models of order 16 and 20, respectively. 

iii) The previous models were derived with a non-zero K matrix in Equation 

(2.30), but  one can  also search for the model with no disturbance by: 

“mod_nodis = n4sid(z,16,'Cov','None', 

'DisturbanceModel','None')” 

This provides the new plot of Figure 2.5 instead of the one of Figure 2.1, 

while Figure 2.4 is replaced by Figure 2.6. Here three replications are drawn 

and a better agreement of the eigenvalues is found at least for the case of the 

model of order 16 (Figure 2.6a). 

iv) The software adopted for the numerical examples and developed in this 

section also works when no input is specified. To repeat the calculations for 

such a case, however, is out of the scope of this study.  

Assume now that the considered record of input and output signals was 

associated to a damaged state of the structure, and that for the same system a set 

of undamaged records is also available. The Fault Detection and Isolation 

(FDI), which consists of detecting and isolating the changes in the parameter 

vector θ, is performed by moving from Figure 2.6a to Figure 2.7, where the 

largest circles denotes the eigenvalues computed from the damaged case.  
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Figure 2.3 Eigenvalues of the state space matrix A for the models of order 16 (×) and 20 (o). 

 

 

 

 a) b) 

Figure 2.4 Eigenvalues of the state space matrix A from the first two replications, for the models 

of order: (a) 16 and (b) 20. 
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Figure 2.5 Model selection graph when the no-disturbance option is set. 
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 a) b) 

Figure 2.6 Eigenvalues of the state space matrix A from the first three replications, with the no-

disturbance option and for the models of order (a) 16 and (b) 20. 
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Figure 2.7 Eigenvalues of the undamaged system (largest circles), and comparison with those 

calculated for the three different replications of the previously considered damaged system 

(model order 16). 

 

 

The damaged case is distinguished from the undamaged one by the presence 

of a pair of eigenvalues on the left hand side. However, no localization of the 

damage can be achieved. 
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Chapter 2 

 

 

 

Dynamic Systems and their Observability 

 

 

 

Many literature works show how system identification procedures can be 

applied for both the control and the monitoring of a structure. In this Chapter, 

dynamic systems are introduced, and their representations by transfer functions 

and state-variable models are presented. For the solutions of the control and 

observation problems to exist, the conditions of system controllability and 

observability need to be determined. In particular, the observability of a 

structure should be studied when deciding on the sensors placement.  

The ideal system identification procedure is then summarized with the 

purpose of fault isolation and detection. Its practical implementation into 

dedicated softwares is discussed by introducing several operative algorithms. 

Among these, the Subspace Based Identification method is selected and its 

application to an exemplification case of study is illustrated. 
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2.1 Dynamic Systems 

 

The operational principles of real-life systems are governed by physical laws 

whose modeling requires the use of nonlinear and/or time varying equations, 

which are usually difficult to solve. However, the commercial tools of analysis 

and design are commonly based on the linear systems theory. The justification 

of this choice is based either on the remark that the system is operated in the 

linear region, or on a linearization about a nominal operating point. In the latter 

case, the analysis is applicable only for the range of variables where the 

linearization is valid. 

Dynamic systems can be defined as mappings of input signals into output 

signals, provided that the initial conditions are assigned. For linear time-

invariant systems, and only for them, the associated transfer function can be 

defined.  

One distinguishes four cases: i) a single input - single output (SISO) system 

with just one input signal u(t) and one output signal y(t), where t denotes the 

time, is characterized by a scalar transfer function G; ii) a multiple input - single 

output (MISO) system sees G becoming a row vector; iii) a single input - 

multiple output (SIMO) system has as G a column vector; and iv) a multiple 

input - multiple output (MIMO) system is characterized by G becoming a 

matrix. 

Given a linear time-invariant SISO system, if the input u(t) is the unit-

impulse function δ(t), then the output y(t) is denoted as g(t) and it is named the 

impulse response. The effects superposition principle then guarantees that the 

output y(t) can be found for any input u(t). The transfer function is defined as 
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the Laplace transform of the impulse response g(t) when all the initial 

conditions are set to zero 
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In Equation (2.1), s is a complex variable and it is denoted as the Laplace 

operator.  

The transfer function is related to the Laplace transforms of y(t) and u(t) by 
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The input-output relationship of a linear time-invariant system is usually 

described by an n-th order differential equation with constant real coefficients 
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The transfer function results from taking the Laplace transform of both sides 

with zero initial conditions 
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and hence 
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The equation obtained by setting the denominator of the r.h.s. of Equation 

(2.5) equal to zero, is called the characteristic equation. Its roots govern the 

stability of the linear SISO. 

An “ideal sampler” collects continuous data with a given sampling period, 

say ∆t: the result is an impulse train. The “zero-order hold” (ZOH) simply holds 

the signal carried by the incoming impulse at a given instant, multiple of ∆t, 

until the next impulse arrives, thus introducing a staircase approximation of the 

input to the ideal sampler.  

Assuming now to have a discrete data system, the previous relationships still 

hold, provided that the Laplace transform is replaced by the z-transform, with z 

= es ∆t. Therefore, the transfer function depends now on the complex variable z, 
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The inverse of z represents the unitary delay operator 

 



Charter 2 Dynamic Systems and their Observability 
 

 9 

])1([)]([1 )∆−( = ∆ ΖΖ− tkytkyz . (2.7) 

 

 

2.2 State-Variables Model 

 

The identification problems in mechanics can be approached following schemes 

which can be classified into traditional and modern control theory methods. The 

first ones are based on the previous concept of transfer function, while the latter 

approach relies on the so called state-variables models. The basic feature of the 

state-variables formulation is that linear and nonlinear systems, time invariant 

and time varying systems, can all be modeled in a unified manner as follows 
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Equation (2.8) forms the dynamic equations: the first row collects the state 

equations in number of n for an n-th order dynamic system, where n is also the 

number of the state variables xi(t); the second row represents the output 

equations, in number of q, where q is also the number of the output variables 

yj(t). The number of input functions uh(t) is p, and v is the number of 

disturbance input functions wk(t).  

For ease of expression and manipulation, it is convenient to express 

Equation (2.8) in a vector-matrix notation, for which the bold format is adopted 
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For a linear time-invariant systems, one can write 
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where the six matrices A, B, C, D, E, and H have sizes n × n, n × p, q × n,        

q × p, n × v, and q × v, respectively. 

The solution of the homogeneous state equations (first row of Equation 

(2.10), with B = E = 0), given the initial state vector x(t0), is written as 

 

)()()( 0ttt xx φ= , (2.11) 

 

where φ(t) is the n × n state-transition matrix, i.e., the matrix that satisfies the 

equation 
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resulting into 
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The general solution of the state equations can easily be written in its 

Laplace transform form 
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leading to write 
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from which the output vector is determined by simply substituting the 

expression found for x(t) in the second row of Equation (2.10). 

From the Laplace transform of the output vector with initial conditions set to 

zero, i.e., x(t0) = 0, one can find the relationship between the two 

representations of a linear time-invariant system by transfer functions and 

dynamic equations, being 
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the q × p and q × v transfer function matrices between u(t) and y(t) when w(t) = 

0, and between w(t) and y(t) when u(t) = 0, respectively. 
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Since the inverse of a matrix can be expressed as the ratio between its adjoin 

and its determinant, by substituting ||)/adj()( 1 AIAIAI −−=− − sss  in 

Equation (2.18), one can see that the denominator of the transfer function matrix 

)(suG  equated to zero, i.e., the system characteristic function, is 

 

.001
1

1 =++++=− −
− asasass n

n
n AI  (2.17) 

 

and it is equal to the one obtained from Equation (2.5). Hence, the roots of the 

characteristic equation are the eigenvalues of the state matrix A. The state 

matrix A can be non-symmetric and show multiple-order eigenvalues. We 

assume that among its n eigenvalues, r < n are distinct.  

 

 

2.3 Similarity Transformations 

 

Let us introduce a SISO, i.e., p = 1 and q = 1, in a deterministic context (w = 0). 

The dynamic equations are transformed into another set of equations of the 

same dimension by the transformation 

 

)()()()( 1 tttt xPxxPx −=⇔= , (2.18) 

 

which requires that P is an n × n non-singular matrix. 

The transformation P alters the matrices A, B, C, and D, but it is called a 

similarity transformation because in the transformed system the characteristic 
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equation, the eigenvalues, the eigenvectors, and the transfer function are all 

preserved by the transformation. 

Let us define the controllability matrix as 

 

][ 12 BABAABBS −= n , (2.19) 

 

and build the matrix 
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having all the elements of each anti-diagonal equal to each other. This matrix is 

called a Hankel matrix. The transformation, 

 

SMP = , (2.21) 

 

transforms the dynamic equations into the controllability canonical form (CCF). 

The observability matrix is defined as 
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The transformation, 

 

1)( −= MVP , (2.23) 

 

transforms the dynamic equations into the observability canonical form (OCF). 

It is worth noting that, for each selection of P, one obtains a new model 

characterized by a different quadruple of matrices and a different state vector 

x(t). Nevertheless, the new transfer function coincides with the original one.  

The quadruple of matrices arising from a given transfer function G(s), are 

regarded as a realization of G(s). Here the order of the model is the dimension 

of the vector x(t). The concept of minimal realization requires that there is no 

other realization with a state vector of lower size. 

 

 

2.4 Observability and Controllability 

 

Arguing on the minimal nature of a realization requires the introduction of the 

concepts of observability and controllability. The system is said to be 

observable when there are not two different initial states such that the 

corresponding output values are the same, for any time subsequent to the initial 
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one. The system is observable if and only if the observability matrix V has rank 

n. 

The system is said to be controllable if, for any value ξ of x, there is a 

suitable sequence of u(t) which produces an evolution of x such that, at a time 

tN after the initial one, x(tN) = ξ. The system is controllable when the rank of the 

controllability matrix S is n.  

A necessary and sufficient condition for having a minimal realization is that 

the model is controllable and observable. 

The observability of a system depends on which variable is defined as the 

output. In any textbook of automatic control one finds examples of systems 

which are fully observable when the observed variable is selected in a suitable 

class; otherwise, these systems lose their observability. For instance, a system 

with three state variables and three potential observed variables, might be fully 

observable if either the first or the second observed variable is considered, but it 

might lose its observability when the third observed variable is the only one 

retained. 

An observability study can be simply developed when the real dynamic 

system is known. In this case, the observability theory helps in selecting the 

suitable configuration of the sensors. However, given a network of sensors, one 

can encounter damage situations which are not detectable, just because of the 

unobservability of the system for that specific mock-up.  

 

 



Sara Casciati Damage Detection and Localization in the Space of the Observed Variables 

 
 

 16 

2.5 The Ideal Identification Process 

 

With reference to a MIMO system for which a vector of observations of size p 

is available, one is free to assume the model (2.10), but: 

1) the model order n is unknown; 

2) the matrices in the state equations are unknown; 

3) the matrices in the observation equations are unknown.  

When a time discrete representation is adopted, Equation (2.10) takes the 

form 
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tktktk

tktktktk
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∆+∆°+∆°=∆+

vxCy

wuBxAx
 (2.24) 

 

where x(t) denotes the state variables; A°, B° and C° are matrices of real 

elements and sizes consistent with the associated vectors; v(t) and w(t) denote 

the noises. Either the identification of the vectors v(t) and w(t), or of the 

matrices A°, B° and C° can be required. The attention is here focused on the 

latter problem and the disturbances are no longer taken into account. 

Each anti-diagonal element of the Hankel matrix (2.20) is the discrete 

system impulse response 

 

°−°°=∆ BAC 1)()( ktkg , (2.25) 

 

with k = 1, 2, … . But, being n unknown, one ignores how large the Hankel 

matrix is; thus he needs to write 
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l, (2.26) 

 

where the last two matrices are the osservability and the controllability matrices 

for a system of infinite order. 

In the framework depicted above, the identification problem is ideally solved 

by: 

1) assessing the impulsive response of the system, g(t); 

2) building, for the Hankel matrix, a truncated version of large size, M tr; 

3) determining the order of the Hankel matrix, which coincides with the order 

of the model for minimal realization; 

4) factorizing the truncated Hankel matrix into the product Vex Sex, where the 

rows of Vex (with n columns) are in number of those of Mtr, and the columns 

of Sex (with n rows) are in number of the ones of Mtr. They are called the 

extended observability and controllability matrices. 

Consider a matrix Vex
par obtained by j partitions of Vex in blocks of p rows, 

with q the size of y(t) and j any integer. The first block of Vex
par is an estimation 

of the matrix C°. The matrix Α° is given by 

 

Α° = [Vex
par T Vex

par]-1 Vex
parT Vex

UP, (2.27) 

 

where Vex
UP is obtained from Vex

par by deleting the first q rows and by adding a 

(j+1)-th block at the bottom. Finally, B° is obtained as the first columns of Sex. 

In summary, the observation matrix C°  is either given or assessed. Then the 

problem is to identify and to monitor the observed system eigenstructure, which 

is the collection of n pairs (λ, φλ ), where λ ranges over the set of eigenvalues of 

the state matrix Α°; if ϕλ  are the corresponding eigenvectors, then φλ  =  C° ϕλ . 
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If the system has no multiple eigenvalues, this collection does not depend on the 

state space basis. The pair (λ, φλ ) is called a mode, and the set of n modes is 

considered as the system parameter θ, 

 


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
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=
Φ

Λ
θ

vec
 . (2.28) 

 

Here, Λ is the vector whose elements are the eigenvalues λ, Φ  is the matrix 

whose columns are the φλ, and vec is the column stacking operator. The 

resulting θ  has size (r + 1) n.  

The Fault Detection and Isolation (FDI) consists of detecting and isolating 

the changes in the parameter vector θ. By isolation one means to decide which 

mode(s) has(have) changed. This procedure is quite sensitive to numerical 

errors, which make it infeasible, but it underlines that the goal is to obtain a 

reliable estimate of the observability matrix from which the system matrices are 

then derived. Its feasible implementation can be found in OKID and in the 

Subspace Based Identification Method. 

 

 

2.6 Operative Identification Procedures 

 

In 1992, the Langley Research Center of NASA (National Aeronautics and 

Space Administration) released, within the COSMIC program, the Technical 

Memorandum 107566, which is a manual for a system/observer/controller 
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identification toolbox. Herein, several system identification algorithms were 

defined and implemented. Among these, it is worth mentioning 

1. the “Eigensystem Realization Algorithm with Data Correlation” (ERA/DC), 

which identifies a state space model from pulse response time histories, 

using a data correlation technique; 

2. the “State Vector Realization Algorithm” (SVRA), which identifies a state 

space from input and output data, using a state vector realization technique; 

3. the “Observer and Kalman filter Identification” (OKID), which 

simultaneously identifies a state space model and an observer gain from 

input and output data. 

This terminology became of reference in the literature of the Nineties, and it 

is introduced here to support a literature review of its applications for fault 

detection in Civil Engineering structures. In the following of this section, brief 

summaries of the OKID and of the Subspace Based Identification Method are 

provided.  

 

2.6.1 Observer and Kalman Filter Identification (OKID) 

The input/output time histories are stored as column matrices, whose number of 

rows is equal to the number of sampled points.  

The identification of the pulse response (also referred to as Markov 

parameters, since autoregressive models are often implemented to find the 

model dimension) is obtained by using the singular value decomposition 

sketched in Section 2.5. It is pursued for an auxiliary system (observer) rather 

than for the system itself. 
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Initially, an estimate of the number of Markov parameters must be specified. 

A plot of the Hankel matrix singular values is shown to aid the selection of the 

correct system order.  

Theoretically, there is only a specific number of independent Markov system 

parameters for a finite set of Markov observer parameters. Therefore, a 

minimum number of Markov system parameters may be used in the ERA 

routine to minimize the computational time in identifying the system. 

The identified system matrices are eventually returned by the algorithm. 

 

2.6.2 Subspace Based Identification Method 

In view of the exemplification illustrated in the next section, Equation (2.10) 

can be rewritten either as 

 
x(t+ 1) = Ax(t) + Bu(t), 

 (2.29) 
y(t) = Cx(t) + Du(t) + v(t), 

 

or 

 

x(t+ 1) = Ax(t) + Bu(t)+Ke(t), 
 (2.30) 

y(t) = Cx(t) + Du(t) + e(t). 

 

The state-space matrices A, B, C, D, and K in Equation (2.30) can be estimated 

directly (without specifying any particular parameterization) by efficient 

subspace methods. The idea behind these methods can be explained as follows. 

If the sequence of the state vectors x(t) were known together with y(t) and u(t), 
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Equation (2.30) would be a linear regression, and the matrices C and D could be 

estimated by the least squares method (see Appendix A). Hence, the vector e(t) 

could be determined and treated as a known signal in Equation (2.30), which 

would then be another linear regression model for A, B and K. One could also 

treat Equation (2.29) as a linear regression for A, B, C, and D, with y(t) and 

x(t+1) as simultaneous outputs, and find the joint process and the measurement 

noises as the residuals from this regression. The Kalman gain, K, could then be 

computed from the Riccati equation.  

Thus, once the states are known, the estimation of the state-space matrices 

would become easy. How to find the states x(t)? All states in representations 

like Equation (2.30) can be formed as linear combinations of the k-steps ahead 

predicted outputs (k = 1, 2, ..., n). It is therefore a matter of finding these 

predictors and then selecting a basis among them. The subspace methods 

provide an efficient and numerically reliable way to determine the predictors by 

direct projections on the observed data. Further information can be found in 

Sections 7.3 and 10.6 of the book [Ljung, 1999]. 

 

 

2.7. An Exemplification Case of Study 

 

A case of study was selected to give a numerical evidence to the previous 

theoretical expressions. For this purpose, one needs the structural response time 

histories of the quantity of interest (e.g., acceleration) to be recorded by 

different sensors. Some of them can be regarded as inputs and the remaining 

ones as outputs. In particular, adopting the results of the full scale tests 
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described in Chapter 8 also in this preliminary phase, seems to be pertinent. In 

this section, it is enough to specify the following main characteristics: 

1) Every test is performed by applying 12 times a random excitation for a short 

period of time, and by recording each time the structural response until the 

rest is reached again; 

2) for each test, 20 files of measurements are available; 

3) the first file consists of the time sequence: the recorded times are equally 

spaced with an acquisition frequency of 200 samples per second (s.p.s.), i.e., 

with a sampling time interval ∆t = 0.005 s; a total duration of 252.39 s is 

recorded; 

4) the second file, say the column vector named “input”, contains the force-

time history, from which one can recognize the 12 excitation pulses in a 

sequence; 

5) a third file contains the measures of a reference channel which is not 

considered in the analysis; 

6) the remaining 17 response channels are available as outputs, and they can be 

organized in a matrix of 17 columns, which represents the “signal”. 

Since each file consists of 12 pulses, attention is focused on a single pulse 

per file, i.e., all the records are divided into 12 replications. The analysis below 

is pursued on one single replication, starting from the first one. 

MATLAB® is the selected software environment. The analysis is carried out 

by manually giving the following commands (the user-friendly interface GUI is 

also available, but it does not allow one to find the direct counterpart in the 

theory as the sequence of commands does). 

a) “Z = iddata(signal, input, 0.005)” 
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creates an object “Z” which in the present case is a SIMO (single input - 

multiple output) system recorded with a time step of 0.005 s; 

b) “mod_basic = n4sid(iddata, [9:20], 'Cov', 'None')” 

estimates the state-space models using a subspace method. The assignment 

of no covariance matrix blocks all the calculations of the uncertainty 

measures, since these may take the major part of the computational time. On 

the other side, asking the model order to fall in the range [9, 20] implies that 

the calculations are carried out for all the orders in the indicated interval. As 

a result, the plot in Figure 2.1a is obtained. It shows the relative importance 

of the dimension of the state vector. More precisely, the singular values of 

the Hankel matrices of the impulse response are graphed for the different 

orders. One is prompted to select the order based on this plot, or better on its 

zoom in Figure 2.1b. The idea is to choose an order such that the singular 

values for higher orders are comparatively small. 

 

 

 

 

 

 

 

 

 

 

 a) b) 

Figure 2.1 (a) Graph of the singular values of the Hankel matrices of the impulse response for different orders 

of the state space model. (b) Zoom of Figure 2.1a. 
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c) The value 16 is first selected for the order and the model at the top of Figure 

2.2 is estimated. 

d) The state space matrix (of size 16 × 16) is characterized by eigenvalues 

which can be obtained by the command 

“lambda=eig(mod_basic.A)”, 

which results into: 

 

 

-0.2831 + 0.9394i 
-0.2831 - 0.9394i 
-0.5295 + 0.8239i 
-0.5295 - 0.8239i 
-0.5036 + 0.6709i 
-0.5036 - 0.6709i 
-0.7977 + 0.5254i 
-0.7977 - 0.5254i 
-0.6617 + 0.6536i 
-0.6617 - 0.6536i 
-0.6304 
  0.9487 + 0.3062i 
  0.9487 - 0.3062i 
  0.8225 
  0.7291 + 0.0198i 
  0.7291 - 0.0198i 

 

 

e) The commands: 

“obb = obsv(mod_basic.A, mod_basic.C);” 

“rank(obb)” 

compute the observability matrix (of size 272 × 16) and its rank, which is 16 

for the present model. 

The results which are obtained by choosing different options than those 

above are now discussed. 



Charter 2 Dynamic Systems and their Observability 
 

 25 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2  Matrix A of the estimated state space model for order number 16. 
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i) Which would have been the result of selecting the default value of 20 instead 

of 16 as model order? A complete different model would result in terms of 

matrices, but some eigenvalues (six) would be preserved, as shown in Figure 

2.3. 

ii) Since 12 replications are available, one can repeat the above calculations on 

the second pulse of the excitation. The results are compared in Figures 2.4 a 

and b for the models of order 16 and 20, respectively. 

iii) The previous models were derived with a non-zero K matrix in Equation 

(2.30), but  one can  also search for the model with no disturbance by: 

“mod_nodis = n4sid(z,16,'Cov','None', 

'DisturbanceModel','None')” 

This provides the new plot of Figure 2.5 instead of the one of Figure 2.1, 

while Figure 2.4 is replaced by Figure 2.6. Here three replications are drawn 

and a better agreement of the eigenvalues is found at least for the case of the 

model of order 16 (Figure 2.6a). 

iv) The software adopted for the numerical examples and developed in this 

section also works when no input is specified. To repeat the calculations for 

such a case, however, is out of the scope of this study.  

Assume now that the considered record of input and output signals was 

associated to a damaged state of the structure, and that for the same system a set 

of undamaged records is also available. The Fault Detection and Isolation 

(FDI), which consists of detecting and isolating the changes in the parameter 

vector θ, is performed by moving from Figure 2.6a to Figure 2.7, where the 

largest circles denotes the eigenvalues computed from the damaged case.  
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Figure 2.3 Eigenvalues of the state space matrix A for the models of order 16 (×) and 20 (o). 

 

 

 

 a) b) 

Figure 2.4 Eigenvalues of the state space matrix A from the first two replications, for the models 

of order: (a) 16 and (b) 20. 
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Figure 2.5 Model selection graph when the no-disturbance option is set. 
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 a) b) 

Figure 2.6 Eigenvalues of the state space matrix A from the first three replications, with the no-

disturbance option and for the models of order (a) 16 and (b) 20. 
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Figure 2.7 Eigenvalues of the undamaged system (largest circles), and comparison with those 

calculated for the three different replications of the previously considered damaged system 

(model order 16). 

 

 

The damaged case is distinguished from the undamaged one by the presence 

of a pair of eigenvalues on the left hand side. However, no localization of the 

damage can be achieved. 
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Chapter 3 

 

 

 

Structural Health Monitoring (SHM) in Civil 

Engineering Applications: a Brief Survey 

 

 

 

The main literature reviews on structural health monitoring can be found in 

[Doebling et al., 1997] and [Sohn et al., 2003]. These reports are part of the 

Damage Identification Project ongoing at the Engineering Sciences and 

Applications Division, Weapon Response Group, of the Los Alamos National 

Laboratory (LANL), and they are updated every five or six years.  

Structural Health Monitoring (SHM) is, in general, defined as the process of 

implementing a damage detection strategy for aerospace, civil and mechanical 

engineering. 
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Usage Monitoring (UM) is the attempt to measure the input to, and the 

response of a structure prior to damage so that regression analysis can be used 

to predict the onset of damage and deterioration in the structural conditions. 

Prognosis is the coupling of information from SHM, UM, the current 

environmental and operational conditions, the previous component and system 

level testing, and the numerical modeling, to estimate the remaining useful life 

of the system. 

In general, the SHM process consists of the observation of a system over 

time using periodically sampled dynamic response measurements from an array 

of sensors, the extraction of damage-sensitive features from these 

measurements, and the statistical analysis of these features to determine the 

current state of the system health. 

For long-term SHM, the output of this process is a periodically updated 

information regarding the ability of the structure to perform its intended 

function, in light of the inevitable aging and degradation resulting from the 

operational environment. 

After extreme events, such as earthquakes or blast loading, SHM is used for 

rapid condition screening and it aims to provide, in near real time, reliable 

information regarding the integrity of the structure. 

According to the LANL statistical pattern recognition paradigm defined in 

[Farrar and Doebling, 1999], the SHM process can be described in four steps: 

1. Operational Evaluation; 

2. Data Acquisition, Fusion, and Cleansing; 

3. Feature Extraction and Information Condensation; 

4. Statistical Model Development for Feature Discrimination. 
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The focus of the present thesis regards items 3 and 4, namely information 

condensation and feature discrimination. However, in any practical applications, 

it is always necessary to start from 1 and 2, as Chapters 8 and 9, which report 

the experimental activity, will show. Therefore, this Chapter provides a 

synthesis for items 1 and 2 as a natural premise to the thesis developments. In 

particular, the motivations of this thesis are explained, and the guidelines 

following which the experimental analyses need to be carried out are provided. 

 

 

3.1 Operational Evaluation 

 

The operational evaluation begins to define why the monitoring is to be done, 

and it begins to tailor the monitoring to the unique aspects of the system and to 

the unique features of the damage that is to be detected. In this preliminary 

phase, the economic and/or life safety motives for performing the monitoring 

are considered; the definition of damage for the system being monitored is 

given; the operational and environmental conditions under which the system 

functions are monitored, and the eventual limitations in acquiring data in the 

operational environment are addressed. 

 

3.1.1 Economic and Life Safety Issues 

The economic and life safety issues are the primary driving force behind the 

development of structural health monitoring technology in various fields. The 

first studies on the topic trace down to the early sixties, but only special 

structures applications were considered, such as nuclear power plants and 
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offshore oil platforms. For example, the oil industry needed rapid fatigue 

analysis in the 80’s, when large jacket platforms were being designed and the 

fatigue of these structures was an important issue. Frequency-based methods 

were investigated, because the dynamic wave and wind loads frequency data 

were readily available. A monitoring system was operated for six years by the 

British Petroleum, and the result was that the structure was designed too 

conservatively. Subsequent structures were therefore designed less 

conservatively with consistent cost savings. 

The spread of SHM techniques to common types of civil and/or aerospace 

structures is now one of the main tasks of the worldwide research activity, and it 

is motivated by the aging of the structures and by the consequent increase of the 

costs of their maintenance or replacement, which are necessary to guarantee the 

life safety. The fast development of new technologies could make this task 

feasible in the near future, also thanks to the decrease of the price of the 

necessary equipment. However, two critical issues first need to be solved: if on 

one hand the hardware must be adapted to the conditions suitable to civil 

infrastructure applications as depicted in this and in the next Chapters, on the 

other hand the software to be implemented for damage detection still does not 

find an agreement in the research community. It is starting from these two 

considerations that this thesis took its first steps within the project framework 

depicted in Chapter 4, where the technological aspects under development are 

presented. The rest of the thesis is then focused on the complex issue of solving 

the damage detection problem. In this Chapter, the motivations of these studies 

are emphasized on the base of the literature sources. 

Considering the number of structures reaching a critical age, innovative test 

and assessment tools as well as methods are required in order to avoid an 
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infrastructure breakdown. In particular, the peak of construction of the 

European transportation infrastructure happened in the 70’s of the last century. 

The critical age when rehabilitation and retrofit works at bridges become 

essential starts after 30 years of service. Considering the time of construction, a 

huge peak of repair and retrofit investments are therefore expected for the years 

2005 onward, as shown by Figure 3.1. The need for the maintenance of bridges 

and civil infrastructures is of fundamental importance due to the fact that the 

society depends on the transportation infrastructure for economic, 

environmental, life-quality, safety and employment protection reasons. The 

failure of a single bridge can cause a huge loss to the society.  

 

 

 

 
Figure 3.1 Construction-cost versus maintenance-estimate and monitoring-impact. 
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Furthermore, the seismic resistant construction methods are of fundamental 

importance for disaster prevention. Not only a loss of life can be minimized, but 

also the heavy toll in injuries, the economic loss of infrastructure assets, and the 

burdening of the environment by large amounts of debris, can be reduced by 

implementing seismic resistant design and construction processes. For this 

purpose, the methodologies for the assessment of structures and the consequent 

strengthening requirements following an earthquakes are necessary. 

Together with the life safety issues, several economic reasons are pushing 

the research toward the implementation of structural health monitoring systems. 

A study developed by [Helmicki et al., 1997] in the United States of America 

showed that the inadequacies in their national transportation system may be 

reducing the annual growth rate in the gross domestic product by as much as the 

1%. This means that the annual compounding economic impact of the non-

optimal operation and maintenance of the civil infrastructures may reach a 

significantly higher level than that of a major natural disaster. The Federal 

Highway Administration estimates that nearly the 35% of all bridges in the 

United States (236000 out of 576000) are either structurally or functionally 

deficient, as reported in [Wang et al., 1997]. The cost of repair or rebuild lies in 

the billion of dollars. Effective SHM methods could reduce this cost while 

providing higher levels of safety for the users during repair or assessment.  

Similar conclusions were achieved by the American Association of State 

Highway and Transportation Officials (AASHTO) and the California 

Department of Transportation (CALTRANS). The latter one developed an 

evaluation system for the reliability, the durability, and the serviceability of a 

structure. This system enables the upper management to assess the costs of 

repair and maintenance of bridges and highways, and to allocate the resources 
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efficiently. A loss function, Lij, represents an expected loss when the jth system 

component fails to resist the ith failure mode or hazard, and it is a function of 

the structure’s change in stiffness or boundary conditions 

 

][ baseline
j

current
jiij kkmL −= , (3.1) 

 

where mi is a loss coefficient related to the ith failure mode or ith hazard; 

baseline
j

current
j kk and  are the current and baseline stiffness of the jth element, 

respectively. This formula allows one to evaluate the economic loss in 

quantitative terms when a structure is repaired or monitored for damage. Then, 

when deciding on whether or not to implement a SHM scheme, the following 

Corporate Performance Measure (CPM) of the SHM scheme can be used 
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where the term Capacity in the numerator gives a measure of the structure’s 

remaining usage, and Cij represents the cost of the structure’s component j to 

resist to the ith failure mode or hazard. The result is a methodology that 

provides a logical connection between the allocation of resources and the 

structural deterioration. Further details can be found in [Sikorsky, 1999] . 

Although this thesis considers only the applications of structural health 

monitoring to civil engineering structures, it must be mentioned that a lot of 

studies on the topic refer also to different application fields. The SHM systems 
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are becoming even more important for those structures which have reduced 

strength capacity as a trade-off with weight reduction. In particular, the 

aerospace industry and the shipbuilding industry concentrate a lot of their 

efforts in design optimization to reduce the weight of some structures, and yet 

still provide the required strength. The increasing demands for lightweight 

structures and high strength-to-weight ratio materials have motivated the use of 

anisotropic reinforced laminated composites. Delamination is one of the most 

important failure modes for these composite materials. Such defect might be 

caused by poor process control during manufacturing, impact loading, or other 

hazardous service environment. The delamination substantially reduces the 

stiffness and the buckling load capacity, which, in turn, influences the 

structure’s stability characteristics.  

The pipeline corrosion is instead the major problem for the oil, chemical and 

petro-chemical industries. The cost associated with the removal of the pipe 

insulation for visual inspection is prohibitive, thus motivating any sort of smart 

innovation in that field. 

As one may notice, the damage definition varies depending on the case-

specific situation. Therefore, any practical SHM application should specify a 

priori what kind of damage needs to be detected. 

 

3.1.2 Definition of Damage 

In general, damage is defined as the changes introduced into a system that 

adversely affect its current or future performance. In structural and mechanical 

systems, the changes to the material and/or geometric properties, including the 

changes to the boundary conditions and to the system connectivity, are 

considered as damage. 
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Implicit in this definition is the concept that damage is not meaningful 

without a comparison between two different states of the system, one of which 

is assumed to represent the initial, and often undamaged state. However, in 

many situations damage detection must be performed in an unsupervised 

learning mode, which occurs when data from damaged systems are not 

available. To overcome this problem, in many studies the damage is 

intentionally introduced into a structure, in an effort to simulate damage without 

having to wait for such a damage to occur. In other cases, a damage-sensitive 

feature is postulated, and then an experiment is developed to demonstrate the 

effectiveness of this feature. In these cases there is no need to formally define 

the damage. Most laboratory investigations fall into this category. On the other 

hand, when a SHM system is deployed on an in-situ structure, it is imperative 

that the investigators first clearly define and quantify the damage that they are 

looking for. Then, they can increase the likelihood that the damage will be 

detected and make optimal use of their sensing resources. 

A critical issue in the implementation of a SHM system is the length scale of 

the damage. Indeed, all damages begin at the material level and then, under 

appropriate loading scenarios, they progress to the component and system levels 

at various rates. At the early stage, damage is typically a local phenomenon and 

it may not significantly influence the lower-frequency global response of a 

structure that is normally measured during the vibration tests. There is a need to 

capture the system response on widely varying length scales, and such system 

model has proven difficult. 

The time scale may also vary with respect to the type, the size, and the 

location of the damage under investigation. The adverse effects of the damage 

can be either immediate, or may take some time before they alter the system 
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performance. For example, a crack that forms in a mechanical part produces a 

change in the geometry which alters the stiffness characteristics of that part. The 

period of time in which this damage will affect the system performance depends 

on the size and location of the crack, and on the loads applied to the system. The 

damage associated with fatigue and corrosion can accumulate over long periods 

of time. Damage can also result from scheduled discrete events, such as an 

aircraft landing, and from unscheduled discrete events, such as an earthquake or 

the enemy fire on a military vehicle. 

The basic premise of most damage detection methods is that the damage will 

alter the stiffness, the mass, or the energy dissipation properties of a system, 

which, in turn, alter the measured dynamic response of the system. 

In many studies, the damage in beams is simply defined as a reduction in the 

bending stiffness, EI, where I is the moment of inertia of the beam cross-section 

and E is the elastic modulus. For multi-story buildings undergoing earthquake 

loads, the stiffness reduction of beams and columns are usually investigated. 

For example, to calculate the stiffness degradation of a damaged reinforced 

concrete beam, a sensitivity-based model updating technique was developed by 

[Maeck et al., 1998]: 

 

θ∆=∆PS , (3.3) 

 

where ∆θ is the discrepancy between the analytical and experimental modal 

parameters; ∆P is the perturbation of the design parameters to be estimated; S is 

the Jacobean or sensitivity matrix consisting of the first derivative of the 

analytical modal parameters with respect to the design parameters. To simplify 

the above sensitivity-based updating technique, a damage function which 
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describes the damage pattern along the beam length using only few 

representative parameters is identified. In particular, the stiffness degradation is 

assumed to be of the following form 

 

n

L
xttEE 
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2/2
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0 β
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where E0 is the initial Young modulus; L is the length of the beam; x is the 

distance along the beam measured from the center line; α, β, and n are the 

damage parameters to be updated. α represents the level of stiffness reduction at 

the center of the beam: no damage is present when α is equal to 1. β 

characterizes the relative length of the damaged zone with respect to the length 

of the beam. The exponent n characterizes the variation of the Young modulus 

from the beam center to the end of the damaged zone. If n is larger than 1, a flat 

damage pattern is produced. Otherwise, a steep pattern is obtained. 

In another approach [Onate et al., 2000], the complex behavior of concrete, 

including concrete cracking, tension stiffening, and nonlinear multi-axial 

material properties is considered to detect the cracks in concrete and reinforced 

concrete structures. In particular, the finite element techniques are developed to 

permit a more rational analysis of the cracking. Based on a local damage index, 

a modified constitutive equation between stress and strain can be formulated. 

The modified constitutive model accounts for the reduction of the moment 

resisting area caused by the cracking, and for the different response in tension 

and compression.  
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Although several methods are available to detect a single crack in a concrete 

test beam, only few of them were employed for multiple cracking. 

 

3.1.3 Environmental and/or Operational Conditions 

The road traffic is recorded when monitoring the operational conditions of a 

bridge. Different vehicle types with varying axles and suspension systems, 

various pavement roughness, and different traffic loads with varying traffic 

speeds are considered. The traffic loads are measured by means of a weight-in-

motion roadway scale. The thermal stresses caused by the variation in 

temperature throughout the day are also to be measured, because they can far 

exceed the environmental stresses and the traffic-induced stresses, but they are 

not explicitly considered in the bridge design. A bridge under construction 

should be monitored from the initial phase to verify the fabrication stresses 

induced in the bridge members before usage. 

When a structure is monitored over a long period of time, it is possible to 

have multiple baseline configurations. That is the structures under test can be 

subjected to alterations during the normal operating conditions, such as changes 

in the mass. To cope with this situation, a damage detection model based on 

singular value decomposition (SVD) is proposed by [Ruotolo and Surace, 1997] 

to distinguish between changes in the working conditions and the onset of 

damage. Let v i the feature vector collected at n different normal configurations 

(i = 1, 2, …, n). When a new feature vector vc is collected, the whole feature 

vectors can be arranged in a matrix, ][ 21 cn vvvvM = . If the structure is 

intact, the new feature vector, vc, will be close to one of the feature vectors v i, 

and the rank of the matrix M estimated by SVD should remain unchanged by 
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adding vc to M. On the other hand, if the structure experienced damage, the 

rank of the matrix M will increase by one. 

Practical issues are associated with making accurate and repeatable dynamic 

response measurements on complex structures, at a limit number of locations 

and often operating in adverse environments. The operational constrains of a 

bridge testing can obscure the damage detection results. In particular, the bridge 

testing using traffic excitation suffers from the lack of sufficient 

instrumentation. Indeed, when normal traffic is used as an excitation source, 

only the exterior sides of the bridge main span can be instrumented, whereas 

other places, such as the locations under the vehicle path or on the bottom of the 

deck, are rarely accessible unless a truck with a special crane is available. The 

limitation of measurement points becomes a bigger problem when closely 

spaced modes exist. Accurate numerical models are needed for bridge 

applications in which some modal frequencies are closely spaced. The closely 

spaced frequencies can be obscured during the modal analysis of measurement 

data from limited measurements on the bridge span sides and can lead to poor 

analysis results.  

When using modal parameters for damage detection, one must also take into 

account that the environmental variations may cause changes in these 

parameters. Therefore, the environmental and operational variations such as 

varying temperature, moisture, and loading conditions affecting the dynamic 

response of the structures, can often mask the subtler structural changes caused 

by damage. Several studies that addressed this issue are reported below. 

[Farrar et al., 1994] performed a vibration test on the I-40 bridge in New 

Mexico, USA, to investigate if the modal parameters can be used to identify 

structural damage within the bridge. Four different levels of damage are 
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introduced to the bridge by gradually cutting one of the bridge girders. Because 

the magnitude of the bridge’s natural frequency is proportional to its stiffness, 

the decrease of the frequency is expected as the damage progresses. However, 

the frequency value increases for the first two damage levels, and then 

eventually decreases for the remaining two damage cases. Later investigations 

reveled that, beside the artificially introduced damage, the ambient temperature 

of the bridge played a major role in the variation of the bridge’s dynamic 

characteristics. 

Temperatures are therefore measured in [Doebling and Farrar, 1997] to 

ascertain their effects on the modal properties of the Alamosa Canyon Bridge in 

New Mexico. A total of 52 data sets are recorded during the six days of testing. 

A series of modal tests are conducted every 2 hours over a 24 hour period to 

assess the change of modal properties as a function of the environmental 

conditions. A statistical procedure that propagates the variability in the 

measured frequency response function (FRF) data and estimates the uncertainty 

bounds of the corresponding modal properties is developed. In addition, various 

levels of attempted damage are introduced to the bridge, but the permitted 

alternation in the bridge does not result in noticeable changes in the modal 

properties. Based on the obtained experimental data, it is therefore observed that 

the effects of environmental changes can often mask subtler structural changes 

caused by damage. In particular, the first modal frequency is shown to vary 

approximately 5% during the 24 hours cycle and to be closely related to the 

temperature differential across the deck of the bridge. Because the bridge is 

approximately aligned in the north and south direction, there was a large 

temperature gradient between the east and west sides of the bridge deck 

throughout the day.  
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A linear adaptive filter is examined in [Sohn et al., 1998] to discriminate the 

changes of modal parameters due to temperature changes from those caused by 

structural damage or other environmental effects. Experimental study from the 

Alamosa Canyon Bridge indicate that a linear filter of four temperature inputs 

(two time and two spatial dimensions) can reproduce the variation of the 

frequencies with respect to the time of the day. From this linear filter, a 

confidence interval of the fundamental frequency for a new temperature profile 

is established to discriminate the natural variation due to temperature from other 

effects. 

In conclusion, SHM based on vibration signature will not be accepted in 

practical applications unless robust techniques are developed to explicitly 

account for the environmental and operational constraints/conditions. Although 

the researchers are aware of the importance of these issues when the SHM 

system is deployed in field, there are little proven techniques able to properly 

address these issues. 

 

 

3.2 Sensing the Response of a Structure 

 

The process of sensing the response of a structure involves the data acquisition, 

fusion and cleansing through signal processing techniques. The actual 

implantation of a structural health monitoring system typically starts with 

designing a proof-of-concept experiment. First, an excitation mechanism for 

vibration testing is determined. Then, the physical quantities to be measured, 

the type and number of sensors, the sensors resolution, the bandwidth, and the 

sensor placement are decided. The data acquisition/storage/transmittal hardware 
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is selected, and the issues of data acquisition are addressed, such as how to 

select the resolution and the dynamic ranges of the measured quantities, which 

anti-aliasing filter should be applied, and how often the data should be 

collected. If fatigue crack growth is the failure mode of concern, it is necessary 

to collect data almost continuously at relatively short time intervals; in other 

cases data may be collected immediately before and at periodic intervals after a 

severe event. Finally, the recorded data are transmitted safely to the central 

monitoring facilities or to the interested users of the data. 

The process is application-specific and the economic considerations play a 

major role in these decisions. A proper selection and design of the data 

acquisition system and of the signal processing procedures should be eventually 

based on a prior numerical simulation of the test system. 

Because data can be measured under varying conditions, it is important to 

perform a data normalization, i.e., a procedure to “normalize” the data sets such 

that the signal changes caused by the operational and environmental variations 

of the system can be separated from the structural changes of interest, such as 

the structural deterioration or degradation. One of the most common procedures 

is to normalize the measured response by the measured inputs. When 

environmental or operating condition variability is an issue, the need can arise 

to normalize the data in some temporal fashion to facilitate the comparison of 

the data measured at similar times of an environmental or operational cycle. An 

alternative is to normalize the data by the direct measurements of the varying 

environmental or operational parameters. 

The sources of variability in the data acquisition process and with the system 

being monitored need to be identified and minimized at the possible extent. In 

general, not all the sources of variability can be eliminated. Therefore, it is 
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necessary to make the appropriate measurements such that these sources can be 

statistically identified. 

The data fusion is the procedure for integrating the information (data) from 

disparate sources (a multitude of sensors) with the objective of making a more 

robust decision than it is possible with any one sensor alone [Klein, 1999]. It 

can be performed in an unsophisticated manner by examining the relative 

information between various sensors; or complex analyses of the information 

from sensor arrays such as those provided by artificial neural networks can be 

used. 

The data cleansing is the process of selectively choosing the data to accept 

for, or to reject from, the feature selection process. For this purpose, many 

signal processing techniques, such as filtering and decimation, can be applied to 

the data acquired during the dynamic tests. The data cleansing process is usually 

based on the knowledge gained by the individuals directly involved with the 

data acquisition. 

These practical issues need to be addressed for any damage detection method 

being adopted. Their application in the study cases treated in this thesis is 

described in Chapters 8 and 9.  

 

 

3.3 Excitation Methods 

 

The excitation methods are grouped in two categories: the forced excitation 

methods and the ambient excitation methods.  

In the forced excitation testing of structures, a wide variety of forcing 

techniques is used including actuators, shakers, step relaxation, and various 
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methods of measured impact (Figure 3.2). For most of the forced vibration tests 

the input forcing function is well characterized since the excitation forces are 

applied in a controlled manner and measured. Furthermore, the system 

identification techniques for determining the modal characteristics (resonant 

frequencies, mode shapes, and modal damping ratios) of structures subjected to 

measured inputs are well established. One advantage of the forced vibration test 

is that the input force is usually strong enough to dominate other noise 

disturbance, resulting in a strong signal to noise ratio.  

Local excitation methods, such as excitation using a piezoelectric actuator 

(Figure 3.3), are a subset of the forced excitation techniques which can be 

employed to excite only a localized region of the whole system. This facilitates 

the extraction of features sensitive to local structural responses rather than the 

global behavior of the system, and often mitigates the environmental and 

operational effects, which tend to be global phenomena. The nature of high 

frequency excitation, which is typically above 30 Hz, makes this technique very 

sensitive to local changes within the structure. The small flaws in the early 

stages of damage are often undetectable through global vibration signature 

methods, but these flaws can be detected using the PZT sensor-actuators, 

provided the PZT sensor-actuators are near the incipient damage. 

The ambient excitation is the excitation experienced by the structure under 

its normal operating conditions. All structures are constantly subject to ambient 

excitation from various sources (Figure 3.4). The input force is generally not 

recorded or cannot be measured during the dynamic tests that utilize ambient 

excitation. Because the input is not measured, it is not known if this excitation 

source provides the input at the frequencies of interest, how stationary the input 

is, or how uniform the input is over a particular frequency range. Even when 
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measured input excitation (forced excitation) is used, ambient vibration sources 

are often still present producing undesirable and often unavoidable extraneous 

input to the structure.  

Whether or not the measurements of the excitation forces are available make 

a difference for the subsequent system identification procedures. Many 

structural parameters, such as modal frequencies, modal damping and mode 

shapes, can be generally identified without the need for a precise measurement 

of the excitation forces. However, these situations usually require the nature of 

the excitation to be well characterized (e.g., a broadband white noise, an 

impulse, etc.) even if the actual loading event is not measured. On the other 

hand, there are many other structural parameters, such as the mode participation 

factors, that require the excitation to the system to be monitored.  

The decision regarding the measuring of the excitation forces is determined 

by both the damage-sensitive features that will be identified, and the practicality 

of measuring the excitation force on a particular structure. There are many 

situations where measuring the excitation forces on a structure are both practical 

and useful, and there are other situations where it is both impractical and not 

useful. In either case, some meaningful information with respect to the 

structures can be extracted from the data, but whether the trade of additional 

testing cost for the additional information is worthwhile is a case-specific 

decision. For example, during the modal test of a frame structure in a 

laboratory, the applied loads from an impact hammer, a shaking table, or a 

shaker are readily measured using the standard instrumentation. However, 

during a field test of a highway bridge under loading from high-speed traffic, it 

is far less clear how to measure all the loads imparted to the structure from the 

traffic. Additionally, the bridge will undergo environmental loads such as wind 
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and thermal gradients that may be difficult to characterize. For the development 

of on-line real-time SHM, the use of ambient excitation provides an attractive 

means of exciting the structure. This type of excitation is particularly a very 

attractive alternative to forced vibration tests during dynamic testing of bridge 

structures, because bridges are consistently subject to ambient excitation from 

sources such as traffic, wind, wave propagation, pedestrians, and seismic 

excitation. Except for the seismic excitation, the input force is generally not 

recorded or cannot be measured during the dynamic tests that utilize ambient 

excitation. However, the use of ambient excitation often provides a means of 

evaluating the response of the structure to the actual vibration environment of 

interest. 
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Figure 3.2 Different types of forced excitation methods. 
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Figure 3.3 An embedded network of distributed piezoelectric actuators/sensors: this thin film of 

sensor/actuator network can be either surface mounted or embedded into composite structures. 

(Courtesy of Agilent Technologies, Inc.) 

 

 

 

 

 

 
 

Figure 3.4 Examples of ambient excitations. 
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Chapter 4 

 

 

 

The Long-term Research Framework and Goals 

 

 

 

Chapter 3 showed how broad is the spectrum of structural monitoring and 

structural identification. Large monitoring facilities (see [Wong, 2004]) mainly 

rely on wired equipment, which of course turns out to be limited in terms of 

sensor deployment and for the number of channels simultaneously collected. 

This chapter starts from the identification of real structural damage detection 

goals, and results in a system network architecture which is the frame of 

reference for the developments of the following Chapters 5 and 6. 
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4.1 The Damage Detection Goal 

 

The need for quantitative, global damage detection methods applicable to 

complex structures is yielding the structural engineering research toward the 

development of processes that are able to outline changes in the system 

response. Indicators of the onset and progress of structural damage should also 

be coupled with approaches able to identify and diagnose the nature of the 

damage.  

The key-point in any practical application of the structural health assessment 

procedures is the ability to detect damage. This starts the decision making 

process leading to repair, rehabilitation or replacement. In aerospace 

engineering a heuristic approach, based on periodical inspections with different 

depth of assessment, was developed and coded. A similar scheme was inferred 

for systems associated with high risks as ships, transportation vehicles, dams, 

skyscrapers, and extremely long bridges. In general, any civil structure requires 

a periodic examination for assessing its functionality and/or for maximizing its 

service life.  

Most currently used damage detection methods consist of visual inspection 

followed by local in-depth examination [Chang, 2002; Van der Auweraer and 

Peeters, 2003]. These two steps are referred to as global and local diagnosis, 

respectively. Global diagnosis for large structures is often labour intensive, 

costly and possibly subjective. Indeed, techniques for global diagnosis have not 

reached yet a satisfactory stage for routine applications [Chase and Washer, 

1997], even if the efforts to develop a physical testing technique  to improve, 

supplement, and/or even replace visual inspection, by means of expert systems, 
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neural networks and other Artificial Intelligence (AI) tools, are producing 

promising results [Wong, 2004].  

By contrast, non-destructive testing techniques for local diagnosis have been 

noticeably advanced. These techniques, which commonly use acoustic, 

ultrasonic, magnetic field, X-ray or thermal principles, are generally referred to 

as Non-Destructive Evaluation (NDE) methods. The NDE schemes work 

adequately provided that the damage is located within a sufficiently restricted, 

accessible, and a priori known volume of the structural component under 

investigation. An important issue in utilizing the inspection results is that the 

quality of the applied inspection method must be appropriately modelled [Faber 

et al., 2003; Stahl and Gagnon, 1995]. 

Moving back from this approach to the goal of a global structural integrity 

assessment, the research focuses either on signal-based methods or model-based 

methods. The studies involve both the sensor technologies [Faravelli and 

Spencer, 2003], and the damage detection and localization methods [Doebling 

et al., 1996 and 1999].  

The breakthrough in this area was represented by the increasing monitoring 

facilities, which posed the following problem: how can the results of a 

monitoring systems be used to detect and localize damage? The general answer 

is simply to use the monitored data to build up a model of the structural system; 

the model changes are then identified as the index of structural modification, 

i.e., damage. The adoption of modal analysis is an early solution proposed in 

this framework [Peeters, 2000].  

However, the present gap existing between the research achievements and 

the end-user deployment has several motivations. 
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o The proposed non-destructive testing methods for bridges diagnosis, for 

instance, have been overwhelmingly based on dynamic modal testing using 

accelerometers. The sensors are assumed to be located at a limited number of 

points on the structure, since covering a large area using many 

accelerometers is still regarded as very expensive, but there are no 

techniques able to provide an effective diagnosis using measurements from 

only a few points. In particular, in the area of activity of the author (Civil 

and Infrastructure Engineering), modal analysis was shown to identify 

damages only when deterioration is rather evident [Casciati S. and Faravelli, 

2002]. 

o The measurement data inevitably contain noise and this noise makes it 

difficult to identify the signal, especially when local and small damages are 

concerned. In other words, the effectiveness of using global testing to 

diagnose and locate small damage still needs to be established and 

quantified. 

o The approaches which also include numerical modelling as a dominant or 

complementary tool (e.g., finite element model updating) can result costly 

for a large number of structures (for instance bridges in a transportation 

network). The modelling errors inherent in the FE methods also need to be 

considered in their applicability. The approaches to global diagnosis using 

high resolution images [Fu and Moosa, 2001; Shinozuka, 2003] could result 

much more convenient and effective.  
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4.2 Monitoring Capability 

 

Long term structural health monitoring (SHM) can provide a benchmark to 

improve the fidelity of subjective visual inspections, reduce the inspection costs 

by focusing the inspection efforts where damage may be located, and decrease 

the manual inspection periods. 

Today’s conventional monitoring systems (Figure 4.1) are characterized as 

having instrumentation points wire-connected to the centralized data acquisition 

system through coaxial cables. Common sensors output analogue signals that 

need to be sampled and digitized for use in modern discrete signal processing 

systems. When the analogue signals arrive at the centralized data acquisition 

system, an analogue-to-digital converter discretizes the analogue waveforms. At 

this stage, the user of the monitoring system can take the raw digitized data and 

extract the relevant engineering quantities from the data. As the number of 

instruments increases, the degree of sophistication in the instrumentation and 

the computational data processing needs become far greater. 

 

 

 

 
Figure 4.1 Today’s conventional wired monitoring system. 
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The distance from the sensors to the data acquisition system can range from 

10 to 300 m in practice. As the signal travel distance becomes longer, the 

analogy signals may become noisy and degrade because of coupled noise 

sources near the cable path. The cost of installation of all the instrumentations 

approaches 25% of the total cost of a monitoring system, and the installation 

time consumes over 75% of the total testing time for large scale structures. With 

the monitoring system installed, the concern shifts to the cost of maintenance. 

For in-situ testing, the repeated changes in temperature and humidity, exposure 

to rain and direct sunlight rapidly deteriorate the sensors and the cables. 

These prohibitive factors prevent from the wide diffusion of the long term 

structural health monitoring technique for many civil infrastructures. However, 

the quick development of new technology provides tools that can be employed 

to eliminate these difficulties.  

In particular, wireless communication can remedy the recurring cabling 

problem of the conventional monitoring system. Smart Sensors (sensor + 

microprocessor) with embedded microprocessors or microcontrollers can allow 

distributed computational power and data processing. MEMS (i.e., Micro 

Electronic Mechanical Systems) accelerometers can provide compelling 

performance and attractive unit price. With the combination of these 

technologies, it is possible to move the data acquisition and a portion of the data 

processing toward the sensors. 
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4.3 Wireless Sensors Network 

 

For this purpose, a two layers system architecture (Figures 4.2 and 4.3) was 

selected for the development of a wireless sensor network. The wireless key 

design factors are the ease of installation, a low cost per unit, and a broad 

functionality. In particular, the fundamental parameters to perform the choice of 

a wireless modem are the available bandwidth, the power consumption, the 

transmission reliability, the transmission range, and the cost. Based on these 

considerations, the components of the sensor and computational units were 

selected and are summarized in Table 4.I.  

Frequency selection and choosing a low-cost distributed power supply are 

the major steps to be taken when planning and implementing a modular, 

wireless sensors system. According to the law regulations, the “Industrial, 

Scientific, Medical” (ISM) frequency band can be adopted, which consists of 

several frequency intervals, mainly: 

 

• 433.05 MHz – 434.79 MHz; 

• 865 MHz – 870 MHz (only in Europe);  

• 902 MHz – 928 MHz (only in USA); 

• 2.4000 GHz – 2.4835 GHz (~79 MHz usable BW); 

• 5.725 GHz – 5.875 GHz; 

• other open standards. 
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Figure 4.2 Two layers wireless architecture. 

 
 
 

Figure 4.3 Wireless monitoring system. 
 
 
 

TABLE 4.I SYSTEM ARCHITECTURE UNDER DEVELOPMENT. 
 

S = SENSING UNIT C = COMPUTATIONAL NODE 

MEMS Accelerometer (Crossbow); 
 

Micro-converter (Analog device); 
 

RF Transceiver (Aurel). 

RF Transceiver (Aurel); 
 

CPU; 
 

2.4 GHz modem with TCP/IP protocol. 
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Figure 4.4 Hybrid wireless sensor network. 

 

 

The goal is to combine long-range and low-power. Therefore, for the radio 

links between the sensors and some higher-level acquisition device, attention is 

focused on the ISM frequency bands lower than 1 GHz, as they combine a good 

range and a low power. For the remaining parts of the wireless network, the 2.4 

GHz frequency band could be a very good candidate. For example, a Wi-Fi 2.4 

GHz could be used. The clear advantage of such a hybrid architecture lies in 

using common, off-the-shelf network components wherever possible and in 

using special, custom wireless links only where necessary (i.e., at the sensor 

level). Figure 4.4 shows an example of such a tiered network architecture. 

Each sensor, actuator or associated printed circuit board requires an adequate 

power supply; hence, the need for very low-power systems and for some power 

harvesting technique. The following solutions are available: 
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- Microwave beams are of common use in aerospace applications, but they are 

not suitable for civil structures monitoring due to the presence of people. 

- Electromagnetic induction could be interesting but, unfortunately, in the 

presence of human beings it is not a viable solution except for ultra-low 

power applications (e.g.: smartcards). 

- Solar power: can allow some freedom in the placement of sensors, but a 

fully wireless solution is not possible because cables are still needed for 

power distribution. 

- Vibration power harvesting is under investigation. 

Electromagnetic induction is the production of an electrical potential (or 

voltage) difference across a conductor located in a variable magnetic field. The 

idea is to create a powered volume where the sensors draw power from 

electromagnetic induction. This technique cannot work for SHM applications 

because, when working at 100 kHz, a magnetic field of 100 µT must be used to 

produce 10 mW (which is a suitable value for a sensor with uninterrupted 

operation). But this field is well beyond the limits enforced by the law. By 

contrast, a sensor with very low duty cycle (one transmission per day and the 

rest of the day in sleep mode) could become feasible if coupled with a 

rechargeable battery.  

A 15 cm by 15 cm solar panel supplies a power of 500mW in full sunlight. 

This peak value can drop by 80% depending on the weather conditions, but it 

would still be enough for a sensor with low duty cycle. Careful sizing, backup 

batteries, low power electronics, Sun Hours Per Day tables, etc., must be 

considered when adopting this solution. Strictly speaking, a fully wireless 

solution is not possible because cables are still needed for power distribution. 

Nevertheless, solar power allows some freedom in the placement of sensors.  
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Vibration power harvesting is the most fascinating candidate presently under 

investigation. 

 

 

4.4 Board Implementation toward a Smart Sensor 

 

A smart sensor comes with a microprocessor installed on a suitable board. A 

software can be transferred to the board of Figure 4.5, by downloading a 

suitable C-language code from a PC. 

The board uses the serial port in order to communicate with a second unit. 

The link between the two units can either be a standard serial cable or a wireless 

network. 

Communication errors are possible, especially when the link is provided by a 

wireless network. The most common error is when the wireless network gets 

close to congestion and some bytes are lost. In this case, the slave board 

discards the corrupted data so that their impact is minimized.  

For the wireless link between the two boards, two MaxStream RF 

transceivers were used (Figure 4.5). They were configured as a plain cable 

replacement. In other words, it was as the cable had been simply replaced by 

two antennas and some empty space between them. 

The great advances in sensors technology make the continuous distributed 

monitoring of civil infrastructure a feasible task. In particular, a wireless sensor 

network made of clusters of sensors wireless communicating to a computational 

core is under development [Casciati et al., 2004]. In parallel, an efficient 

damage detection algorithm needs to be implemented in the sensors 

microprocessor. This algorithm must be simple, low-power consuming, and 
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low-memory taking to avoid an over wealth of information. A method meeting 

these requirements was formulated in [Faravelli and Casciati, 2004] on the basis 

of the response surface approximation theory. The method was tested 

experimentally on laboratory structures. The results are reported in Chapters 8 

and 9. A thorough numerical study of a benchmark problem is discussed in 

Chapter 7. Preliminarily, Chapter 5 and 6 provide the suitable theoretical 

framework. 

 

 

 

 
 

Figure 4.5 Units with wireless communication. 
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Chapter 5 

 

 

 

Damage Detection Algorithms 

 

 

 

The previous three chapters emphasize some gaps between the practical goals 

and the theoretical algorithms in the current approaches to structural damage 

identification.  

1) The goal is to identify changes in the response correlations; the algorithms 

pursue the identification of the whole system in the two cases of no-damage 

and damage. 

2) When damage occurs, the state space where the dynamic system is described 

may vary. For example, the removal of a brace in a frame is just a stiffness 

matrix modification, but the opening of a hinge in a continuous beam 

requires a state space enlargement. 

In order to manage these concepts, different representations are usefully 

introduced. The one usually adopted for dynamic systems requires to operate in 
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the whole state-space of dimension n. It is worth noting that for a mechanical 

system ruled by a second order differential equation, n is twice the number of 

degrees of freedom ν, i.e., n = 2 ν. The evolution of the motion in this space is 

described by the trajectory of a single point, and the time is a relevant 

parameter. Indeed, this representation is the projection of the system trajectory 

from a full space of size n+1, which also includes the time. 

An alternative representation is obtained by the Poincaré maps. Here the 

point representing the motion is not recorded continuously, but at finite time 

steps. This representation is the only available when considering a monitoring 

system, since the data acquisition is carried out with an assigned sampling rate. 

The construction of a Poincaré map starts from the representation of the 

motion at given times, each of which is represented by a dot in the state space. 

Let h the number of time instants used to build the Poincaré map. If the 

available data are larger than h, say jh, with j a positive integer, one can 

represent j Poincaré maps, assuming that the system underwent j different 

experiments. But the same data can also be regarded as the simultaneous 

evolution of  j different systems. At a given time each of them is a point in the 

state space, but their collection represents, by definition, a Gibbs set. The 

evolution of these systems in time is then followed by building different plots, 

each of which is associated to a subsequent instant. If one initially selects the 

Gibbs set systems all in a single cell of the grid in which the state-space is 

discretized, then the geometric features of the graphical representation at the 

successive time instants will denote a more or less order in the evolution. Figure 

5.1 gives an example of three different possible ways of evolution of the same 

Gibbs set. 
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.  
 

Figure 5.1 Top row: the Gibbs set, whose representing points are originally in a single cell, 
evolves with all the points remaining grouped into a single cell.  

Middle row: the previous Gibbs set evolves by invading a slowly increasing number of cells.  
Bottom row: the Gibbs set evolves by quickly invading all the state space. 

 

 

In order to follow the evolution of a Gibbs set, several quantitative measures 

were proposed, such as the Lyapunov exponents, the entropy, Kolmogorov 

entropy, the space dimensions and so on. In this chapter, the different measures 

are applied to the data obtained from a monitoring system. 

For this purpose, a further step first needs to be taken: the mapping of the 

Gibbs set from the state space into the space of the observed variables. This 

aspect is discussed in the next section. The advantage achieved by the mapping 

is that, in this way, one does not need to know the dimension of the state space, 

4 3 2 1 
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but only the size N of the observed variable space (denoted by q in the 

developments of Chapter 2), which is selected by the analyst. A further 

advantage is that damages that introduce new degrees of freedom can be 

managed without modifications, provided that the problem is still well-posed, 

i.e., that the available measurements allow one to observe the new situation 

according to the observability principle discussed in Chapter 2.  

 

 

5.1 Mapping the State-Space 

 

The numerical example developed at the end of Chapter 2 outlined the bottle-

neck of the current structural damage identification techniques, i.e., the 

identification of the system state space matrices. Recall Equation (2.10) 
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When the excitation u is ignored and the number of rows of C is greater than 

the size of A, C can be partitioned into two matrices C1 and C2,  
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with the first C1 matrix of the same size of A and non-singular. Here H is 

regarded as the identity matrix I. 

If the inverse of C1 exists, then 

 

)())]()(([)( 22111
1

122 tttt wIwIyCCy +−= − , (5.3) 

 

or equivalently, 

 

)()()( 12 ttt ωyΩy −= , (5.4) 

 

which indirectly explicitates a mapping between the state-space and the 

observation space. This mapping formally allows one to introduce in the 

observation space, the representations and the measures which are usually 

defined in the state-space. 

Figure 5.2 shows the sections of the Poincaré maps for the signals used as 

examples in Chapter 2. In particular, a section of the full space of the 

observations is reported in the plane of signals 5 and 14. As the lag of the 

representation increases, one can detect a trend in the motion. By drawing 

together the responses in the damaged and undamaged conditions, one can 

notice their different features and regard the plots as a qualitative tool for 

damage detection. Of course, the localization of damage would require a 

comparative analysis of all the sections that one can draw. 

In order to manage the whole state-space, or observation space (after the 

mapping), global measures as the ones described in the next two sections are 

needed. 
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5.2 Information Entropy and Kolmogorov Entropy 

 

Either in the state-space, or in the observation space after the mapping, one can 

introduce a discretization in cells by means of a grid as, for instance, the one in 

Figure 5.2. The i-th cell can then be associated to a probability mass pi of being 

visited, which is roughly estimated by the ratio between the number of points in 

the cell and the total number of systems in the studied Gibbs set. 

The entropy I(t) is a scalar function which measures the disorder associated 

with the evolution of a dynamic system and it is given by 

 

))]((ln)([)( 2 tptptI i
i

i −−= ∑ , (5.5) 

 

where the sum covers all the cells that are actually visited, i.e.,. the ones of non-

null probability. Such a quantity is a function of time, but it also depends on the 

size and number of cells. The logarithm of base 2 is related to the common 

practice of measuring the information in bits. 

The entropy rate, i.e., the time derivative of the entropy function I(t), is 

referred to as Kolmogorov entropy or K-entropy 
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Figure 5.2 Sections of the Poincaré maps drawn for the two sets of signals introduced in Chapter 

2, Section 2.7: “o” denotes the undamaged signals and “x” the damaged ones. (a) In the first map, 

all the points recorded during the first shaker pulse (nearly 4000) are shown. (b) In the second 

map, 1 point over 10, and (c) in the third map, 1 point over 20 are considered. 
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(b)  
 
 
 
 
 
 
 
 

(c)  
 

 
Figure 5.3 Classification of a dynamic system based on Kolmogorov entropy: a) regular, b) 

stochastic or chaotic, and c) fully random. 
 

 

The numerical evaluation of the function I(t) usually gives a strongly irregular 

result. This suggests not to compute the Kolmogorov entropy as a derivative. As 

illustrated in Figure 5.3, for many dynamic systems the entropy shows a nearly 

linear increase of the form 
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)()()( 00 ttKtItI −+= , (5.7) 

 

and then it reaches a stationary state where it remains constant, so that the 

corresponding Kolmogorov entropy is null. 

This rationale allows one to compute the Kolmogorov entropy as the slope, 

 

0
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K
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−

= . (5.8) 

 

Coming back to the signal sets of Chapter 2, one must operate in a space of 

dimension 17! Even by adopting only 5 classes of cells, corresponding to large 

negative, negative, zero, positive and large positive values, means to introduce 

517 = 7.63 1011 cells. Therefore, it is more convenient to work in a Lagrangian 

scheme by following the single dynamic system, rather than in an Eulerian form 

by scanning the all space. Furthermore, the range of each axis is divided into 11 

parts so that, for each axis, cell 1 collects the first 4 ranges, cell 2 is built on 

range 5, cell 3 on range 6, cell 4 on range 7 and cell 5 groups the remaining 4 

ranges. As it will be shown in the next section, this procedure gives quite 

inaccurate results; nevertheless, the required information is conveniently 

achieved for comparison purposes.  

Under these assumptions, Figure 5.4 provides the entropy plots computed for 

the 12 pulses of the damaged case. The maximum entropy value is 3.219 for all 

the 12 pulses, while the average entropy in the stationary range (between 10 and 

90 steps) is 2.8333. The average of the Kolmogorov entropy scalar results to be 

2.7866/∆t, with ∆t = 0.005 s. 
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Considering the signal set available for the undamaged case, one obtains the 

plot of Figure 5.5, where the maximum value of the entropy is again equal to 

3.219 for all the 12 pulses, while its average in the stationary range (between 10 

and 90 steps) is 3.1274. The average of the Kolmogorov entropy scalar is now 

3.0823/∆t. 

This simple example shows how the average values of the computed entropy 

and of the computed Kolmogorov entropy can help in detecting damage. 

Damage is characterized by lower values of both these means. Once again, 

damage is detected but it is not localized. 
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Figure 5.4 Entropy evolution from the central cell for the 12 pulses: set of damaged case signals. 
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Figure 5.5 Entropy evolution from the central cell for the 12 pulses: set of undamaged case 

signals. 

 

 

5.3 Lyapunov Exponents 

 

The Lyapunov exponents represent a measure of the divergence in time of 

trajectories which were initially close to each other. Consider a small test 

volume around an initial point in the state space or in the observation space after 

mapping: for instance, a sphere of radius ε  and centre in (y1, y2) as illustrated in 

Figure 5.6. As driven by the dynamic equation of motion, this sphere becomes 

an ellipsoid of different radii at subsequent instants. 
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Figure 5.6 Illustration of the concept of Lyapunov exponent. 

 
 

Let N the dimension of the space, one writes N equations of evolution for 

such radii 
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i 12 =⋅= , (5.9) 

 

which provide the mathematic expression of the i-th Lyapunov exponent 
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For dissipative systems, the sum of the Lyapunov exponents must be 

negative; null for Hamiltonian (conservative) systems. A positive value of any 

exponent denotes a stretching direction which, for a Gibbs set formed by the 
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same nonlinear dynamic system, emphasizes the sensitivity to the initial 

condition (chaos). 

The idea is to work in the observation space (after mapping) and to form 

three different Gibbs sets of damaged, undamaged and mixed damaged and 

undamaged systems, respectively: the trajectories should diverge and the 

Lyapunov exponents should detect this behavior. To link the anomalous 

exponent(s) with the damage location(s) is something to be further investigated. 

The Wolf algorithm initially suggested for the numerical evaluation of the 

Lyapunov exponents, is not very robust and can easily lead to wrong results. 

Indeed, the algorithm does not allow to test for the presence of exponential 

divergence, but just assumes its existence and thus yields a finite exponent also 

for stochastic data, where the exponent is infinite.  

The algorithm on which attention could be  focused, tests directly for the 

exponential divergence of nearby trajectories and thus allows to decide whether 

it really makes sense to compute a Lyapunov exponent for a given data set. It is 

referred to as the Kantz algorithm and it computes the maximum Lyapunov 

exponent. Unfortunately, at present, no multivariate implementations are 

available in the literature. But, as the example below will show, the knowledge 

of just the maximum exponent is not satisfactory for the purpose of damage 

detection. 

The computation of the full Lyapunov spectrum, which requires 

considerably more effort than just the maximal exponent, was implemented in a 

beta routine within the “TISEAN package” [Hegger et al., 1999] and it also 

works in the multivariate case. An essential feature is the estimate of the local 

Jacobians J, i.e., of the linearized dynamics which governs the growth of 

infinitesimal perturbations. It can be obtained from the direct fits of local linear 
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models of the type nnnn byay +=+1 , where the first row of the Jacobian is the 

vector an, and ( ) jiij 1−= δJ , for i = 2, …, m, where m is the embedding 

dimension. When working in the observed variable space, m coincides with the 

number of observed variables N. The vector an is given by the least squares 

minimization over the vectors {y l} which form the set of neighbors of yn [Sano 

and Sawada, 1985]. Alternatively, one could construct a global nonlinear model 

and compute its local Jacobians by taking the derivatives.  

In both cases, the Jacobians are multiplied one by one following the 

trajectory by as many different vectors uk in the tangent space as the number of 

Lyapunov exponents that need to be computed. Every few steps, a Gram-

Schmidt orthonormalization procedure is applied to the set of uk, and the 

logarithms of their rescaling factors are cumulated. Their average, in the order 

of the Gram-Schmidt procedure, gives the Lyapunov exponents in descending 

order.  

The routine “lyap_spec“ applies this method employing local linear fits. 

Apart from the problem of spurious exponents, this method contains some other 

pitfalls: it assumes that well defined Jacobians exist, and it does not test for their 

relevance. Then the result can suffer from these bad estimates and the exponents 

are correspondingly wrong. But for the purpose of a comparison to detect 

damage, its accuracy should not affect the results. 

The calculations were carried out on the following measurements: a) 2 

shaker pulses in the undamaged case, b) 2 shaker pulses in the damaged case 

and c) 1 shaker pulse in the undamaged case followed by 1 shaker pulse in the 

damaged case. Since 17 channels are available, using a global embedding 

dimension of 17, 17 Lyapunov exponents are computed in Table 5.I, where all 

http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.1/docs/docs_c/lyap_spec.html
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the iterations that the code prints every ten seconds of computations are 

reported. Thus, a higher number of the iterations denotes a longer global 

execution time. The longest run was the one on the damaged and undamaged 

data together. This represents a first flag for damage detection. In addition, one 

can see that all the Lyapunov exponents of the damaged case at convergence are 

lower than those obtained for the undamaged case (while the mixed case lies in 

between the two), and that the undamaged case shows seven positive Lyapunov 

exponents versus the six of the damaged case. 

It is worth noting that the adopted computer code has a limitation on the 

length of each analyzed signal. This suggested to work with no more than 7500 

time steps. When more data are available, subsequent windows of the global 

data can be considered, and the computations are repeated for the different 

windows. 

Furthermore, the knowledge of the Lyapunov exponent spectrum allows one 

to compute the following estimates: 

1) Pesin’s inequality states that the sum of all the positive Lyapunov exponents 

is an upper-bound for the Kolmogorov entropy. Thence, the last column in 

Table 5.I gives the sum of the positive exponents, and shows that the lowest 

value is achieved in the damaged case. Here one can also realizes how rough 

are the Kolmogorov estimates computed in the previous section, where 

nearly doubled values were estimated. But, despite that grid approximation 

was quite inaccurate, both here and in the previous section the comparison of 

values which allow one to achieve a decision on the undamaged/damaged 

state, works. 

2) The Lyapunov dimension (or Kaplan-Yorke dimension) is defined by the 

expression 
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where k is the order number of the last (in decreasing order) Lyapunov exponent 

for which the numerator sum is positive. Roughly speaking it is the minimal 

fractal dimension of the space where the dynamics is preserved. The values of 

this dimension are also reported in Table 5.I, and it is evident how the damaged 

situation corresponds to a lower value of the Lyapunov dimension. 

 

As a final remark of this section, it can be concluded that there are several 

quantitative approaches for the differentiation of the response signals. Although, 

the weaker (damaged) cases are successfully detected, no information is 

however collected on the cause of such e weakness (damage localization). 

 

 

5.4 Building Input-Output Relations for Damage 

Localization 

 

Despite the debate is still ongoing, there is evidence that input-output 

relationships independent of, or not fully based on the mechanical 

understanding of the problem, can be conveniently adopted in view of damage 

localization. The relationship identifiers can be of different nature: neural 

networks, genetic algorithms, wavelet theory, or statistics. 
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TABLE 5.I Lyapunov exponents (by ∆t) computed for the 3 investigated situations. 
 

Iteration Positive Lyapunov exponents *∆t Kolm. 
entropy 
estimate*∆t  

Undamaged 1 2 3 4 5 6 7  
953 0.466 0.378 0.287 0.215 0.138 0.066  1.55 
1417 0.432 0.355 0.266 0.204 0.125 0.064  1.45 
1602 0.434 0.358 0.271 0.208 0.130 0.058  1.46 
1798 0.445 0.363 0.274 0.211 0.135 0.060  1.49 
2022 0.456 0.372 0.286 0.217 0.136 0.063  1.53 
2318 0.472 0.384 0.295 0.228 0.140 0.065  1.59 
2703 0.494 0.401 0.306 0.232 0.148 0.074 0.002 1.67 
3230 0.511 0.418 0.321 0.247 0.153 0.080 0.009 1.74 
4014 0.533 0.435 0.333 0.257 0.159 0.087 0.016 1.82 
4748 0.509 0.417 0.319 0.243 0.152 0.080 0.010 1.73 
5412 0.499 0.409 0.315 0.239 0.149 0.079 0.007 1.70 
5904 0.508 0.413 0.320 0.243 0.150 0.078 0.008 1.72 
6537 0.518 0.421 0.325 0.246 0.154 0.080 0.010 1.76 
7282 0.526 0.432 0.332 0.252 0.158 0.083 0.012 1.80 
7499 0.528 0.434 0.336 0.253 0.158 0.084 0.013 1.81 

#estimated KY-Dimension= 13.061959 
 
Iteration Positive Lyapunov exponents *∆t Kolm.  

entropy 
estimate*∆t  

Damaged 1 2 3 4 5 6 7  
851 0.433 0.341 0.279 0.210 0.121 0.063  1.45 
1451 0.392 0.313 0.241 0.186 0.098 0.044  1.28 
1734 0.390 0.312 0.240 0.184 0.098 0.041  1.27 
1989 0.392 0.315 0.244 0.188 0.097 0.046  1.28 
2266 0.398 0.318 0.248 0.190 0.101 0.052  1.31 
2559 0.405 0.323 0.256 0.192 0.111 0.055  1.34 
2885 0.413 0.330 0.261 0.196 0.116 0.059  1.38 
3263 0.425 0.337 0.269 0.201 0.124 0.059  1.42 
3715 0.432 0.346 0.278 0.208 0.130 0.062  1.46 
4301 0.435 0.348 0.278 0.209 0.130 0.062  1.46 
5070 0.425 0.342 0.272 0.201 0.126 0.056  1.42 
5714 0.421 0.343 0.273 0.199 0.126  0.053  1.42 
6192 0.425 0.346 0.274 0.201 0.127 0.054  1.43 
6682 0.427 0.350 0.278 0.204 0.128 0.056  1.45 
7182 0.431 0.354 0.281 0.206 0.130 0.057  1.46 
7499 0.434 0.356 0.283 0.208 0.132 0.059  1.47 

#estimated KY-Dimension= 12.185942 
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TABLE 5.I Lyapunov exponents (by ∆t) computed for the 3 investigated situations (cont.). 

 
 
Iteration 

 
Positive Lyapunov exponents *∆t 

Kolm.  
entropy 
estimate 
*∆t 

Mixed 
sequence 

1 2 3 4 5 6 7  

963 0.424 0.340 0.268 0.208 0.121 0.066 0.001 1.43 
1381 0.417 0.330 0.255 0.194 0.114 0.048  1.36 
1512 0.415 0.328 0.249 0.190 0.113 0.047  1.34 
1641 0.414 0.327 0.247 0.191 0.115 0.043  1.34 
1777 0.416 0.331 0.249 0.191 0.115 0.042  1.34 
1927 0.420 0.334 0.250 0.194 0.114 0.042  1.35 
2089 0.422 0.336 0.254 0.198 0.116 0.044  1.37 
2270 0.427 0.341 0.260 0.199 0.118 0.049  1.39 
2480 0.437 0.346 0.266 0.204 0.121 0.050  1.42 
2731 0.445 0.355 0.269 0.209 0.127 0.057  1.46 
3021 0.455 0.367 0.278 0.213 0.132 0.062  1.51 
3387 0.464 0.375 0.285 0.219 0.137 0.065  1.55 
3866 0.472 0.386 0.298 0.228 0.142 0.067  1.59 
4537 0.467 0.381 0.297 0.226 0.141 0.068  1.58 
5401 0.449 0.365 0.280 0.212 0.131 0.063  1.50 
6161 0.444 0.359 0.277 0.209 0.128 0.059  1.48 
6766 0.446 0.360 0.279e 0.211 0.130 0.058  1.48 
7356 0.449 0.365 0.281 0.213 0.132 0.059  1.50 
7499 0.451 0.366 0.282 0.214 0.133 0.060  1.56 

#estimated KY-Dimension= 12.356568 
 

 

In a more general framework, i.e., in view of structural safety assessment, it 

is necessary to quantify and compare the importance of each one of the 

variables which characterize the structural engineering problems, such as the 

material properties, the loads and the member dimensions. The Response 

Surface (RS) and the Artificial Neural Network (ANN) techniques, are good 

candidates to solve complex and elaborated problems [Faravelli, 1994; Gomes 

and Awruch, 2004]. Indeed, in problems where the computational cost of 
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structural evaluations is high, these two techniques may provide feasible 

structural relationships.  

This section, for the sake of completeness, pays also attention to the 

potential offered by the genetic algorithms and the wavelet theory. 

 

5.4.1 Genetic Algorithms 

Let a data set to be given in the form of a function z = f(x, y),of the two 

parameters x and y. An approximation of the function z = f(x, y) in the form of a 

polynomial p(x, y) can be written as follows 

 

z = p(x, y) = c1 xe11 ye12 + c2 xe21 ye22 +… (5.12) 

 

Here, ci and eij are the coefficients and exponents of the polynomial, 

respectively, and they are often determined on the basis of a minimal squared 

distance criterion. The optimization method can be implemented by adopting 

genetic algorithms [Faravelli, 2000]. The genetic algorithms conduct a 

computational simulation of the natural selection process. For this purpose, the 

survival of the best fitting individuals is assumed to be similar to an 

optimization process. In this analogy, the possible solutions of the optimization 

problem form a population: each member of the population is judged according 

to the optimality of the solution that it represents. The natural selection is then 

simulated by eliminating from the population those members which represent 

bad solutions.  

Note that any single solution is described by a set of genes forming a 

chromosome, which is usually a binary string of 1’s and 0’s representing the 

variables of the solution. In the case of Equation (5.12) these variables are the 
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coefficients of the approximating polynomial. As said, such variables are used 

to evaluate their corresponding fitness value, which is the objective function of 

the associated optimization problem. In the next step, the chromosomes are 

selected for reproduction and the individuals with higher fitness will receive 

more copies. Then, new generations of solutions are performed by crossover 

(mating). The crossover points are selected randomly. In this way, some 

portions between the selected chromosomes (parents) are exchanged and two 

new strings (children) are created. During this process, mutations are possible, 

i.e., a particular gene in a particular chromosome is randomly changed  with 

some small probability, to ensure that the algorithm does not get stuck starting 

from a bad initial population [Gen and Cheng, 2000]. 

A signal-based approach relies on measurements of the dynamic responses 

as underlined in the previous sections of this Chapter, as well as in Section 2.6. 

The measured values are compared with the values obtained from the 

calculations carried out for various locations and sizes of the defect (crack, 

damage, and so on). The form of the objective function depends on the number 

of points, n, in which the dynamic responses are measured 

 

Ψ = 1 − (w1 + … + wn)/n (5.13) 

 

where wi denotes a scalar which is equal to zero when the measured calculated 

data show an exact match, and one in the case of no correlation. The minimum 

value of the objective function determines the predicted location (and size) of 

the defect [Krawczuc and Ostachowicz, 2001]. Genetic operations with 

continuous variables can be carried in a same way, except for the crossover and 

the mutation during the reproduction. Actually they can be derived by looking 
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into the operation of a binary-coded genetic algorithm [Yi and Feng, 2003]. The 

direct application of genetic algorithms to structural damage detection is 

discussed in [Chou and Ghaboussi, 2001].  

 

5.4.2 Wavelet Theory 

Following [Escudié et al., 2001], one builds the wavelet of basis 
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from analyzing a wavelet which satisfies some due constraints of a general 

nature or specific for the problem under investigation. Then for a given signal 

y(t), the wavelet coefficients are defined as 

 

dtttyC baba )()( ,, ∫
+∞

∞−

= ψ . (5.15) 

 

The wavelet transform is eventually the function Y(a, b) which associates to 

the parameters a and b the value of the coefficient Ca,b of the wavelet ψa,b in the 

signal decomposition. The parameter b represents the temporal localization, 

while 1/a is the frequency parameter. 

The wavelet transform provides a signal analysis at different scale, as well as 

an useful time-frequency representation in the (a, b) plane. Indeed, the 

coefficient (5.15) is very small where the analysed signal y(t) is quite regular 

over a rather long interval. The coefficient has significant values for short high 
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frequency signal fragments, and in particular this occurs for 1/a of the order of 

magnitude of the frequency.  

Wavelet analysis was successfully employed in shape recognition and 

texture analysis. This is the rationale which leads one to its adoption in 

structural damage identification problems [Venini, 2003]. 

 

5.4.3 Artificial Neural Networks  

Artificial neural networks provide a useful tool for their ability to learn from 

experience by extracting from previous examples conclusions for successive 

cases of study, and to select the essential characteristics from the available data 

by neglecting the irrelevant ones [Pisano, 1997; Faravelli and Pisano, 1997]. 

The basic elements of a neural network are the neurons, the layers, and the 

activation functions. Moreover, each network has its own architecture 

characterized by one or more layers placed between the input and the output 

layers. Each neuron receives information from all the neurons in the next layer, 

but it is not allowed to communicate with neurons in the same layer. A multi-

layer neural network possesses a strong ability to map non-linear problems. 

Indeed, the Kolmogorov theorem states that any continuous function of n 

variables xi defined in the unit closed interval can be expressed in the form:  

 

f(x1, x2, …, xn) = Σj=1, 2n+1 [wj (Σ i=1, nφij(xi))], (5.14) 

 

with wj continuous functions of a single variable and φij monotone functions 

independent of f. A further theorem by Hecht-Nielsen theoretically proves that 

any function can be reproduced by a three-layer neural network. However, there 
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are many solution surfaces that are extremely difficult to model using just one 

hidden layer, and the use of more hidden layers is recommended in these cases. 

The functions in Equation (5.14) apply to weighed combinations of the input. 

Then learning means, for a neural network, to change the weights of the neuron 

connections until the optimal performance of the network is reached. 

The techniques using neural networks have attracted the interest of civil 

engineers for both  identification and control of structural systems [Nakamura et 

al., 1998; Masri et al., 2000].  

The non-parametric damage detection approach proposed in [Nakamura et 

al., 1998 ] adopts a feed-forward multi-layer network trained by using the 

random search method. The root-mean-square errors are evaluated to compare 

the results obtained from the damaged and undamaged cases. The methodology 

requires that a reference state of the structure is established by training a 

suitable neural network only once, whenever the monitoring system is originally 

installed. A continuous monitoring is then activated. The changes (damage) in 

the system may be detected just by observing the output error of the trained 

network. Such a two steps procedure locates the changes in the global measures, 

while the actual damaged structural component and the amount of the damage 

are not identified.  

Some researchers have extended the neural network approach to detect, 

localize, and quantify the damage in structures. [Xu et al., 2003] adopt a four 

steps procedure. A neural network emulator is first trained using the dynamic 

responses of the healthy structure; the damage occurrence alarm results then 

from the error between the dynamic response forecast by the emulator and the 

observed one. A third step builds up a parametric neural network for the proper 

selection of the evaluation index and, eventually, it is used in step 4 to quantify 
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the damage. Alternatively, [Zheng et al., 2003] train a neural network with 

simulated values of modal parameters in order to recognize the behaviour of the 

damaged as well as the undamaged structure. It turns out to be able to detect 

location and size of the damage. 

Probabilistic neural networks were also adopted for fault identification in 

[Marwala, 2001]. 

 

5.6.4 Response Surface Techniques 

The response surface method, as originally proposed by [Box and Wilson, 

1954], represents a statistical tool able to find the operating conditions of a 

chemical process so that some response is optimized. The subsequent 

generalizations made such a method being used to develop approximating 

functions that can be used as an alternative to long running computer codes. 

Some books [Myers, 1971; Khuri and Cornell, 1987] and recent papers 

[Romero et al., 2004] provide modern perspectives on this subject in light of 

emerging computational power. 

Typically, in an n-dimensional random variable space, the response surface 

is assumed to be a (often quadratic) function of the space coordinates where the 

constants are determined by evaluating the function at certain specified 

sampling points [Gupta and Manohar, 2004]. 

Various techniques have been explored to select the sampling points and to 

determine the coefficients of the function [Petersen, 1985; Casciati and 

Faravelli, 1991]. It may be noted that, in the existing literature, the term 

response surface is being used for studies that are essentially rooted in the 

statistical sampling theory [Wong, 1984 and 1985; Faravelli, 1989 and 1992]. 

However, response surface methods which bypass some of the mathematical 
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requirements inspired from the statistical sampling theory as in [Myers and 

Montgomery, 1995; Faravelli, 1989; Breitung and Faravelli, 1996], can be 

found in studies that combine the theories of reliability indices with the 

sampling procedures [Bucher and Borgund, 1990; Rajashekhar and Ellingwood, 

1993; Liu and Moses, 1994; Kim and Na, 1997; Guan and Melchers, 2001]. 

Indeed, when closed form mechanical models of complex structural systems are 

not available, the number of analyses required by a trivial Monte Carlo 

simulation can be minimized by using polynomial approximations of the actual 

limit states in the reliability analysis.  

In synthesis [Gayton et al., 2003], the Response Surface Method (RSM) 

represents a convenient way to achieve a deal between the reliability algorithms 

and the numerical methods used to model the mechanical behaviour. The 

special feature of such a method is that the user is allowed to choose and check 

the computed mechanical experiments, but  the optimal choice is not often an 

easy task.  

Since the Response Surface methods basically provide an approximation for 

a complex input-output relationship, they can be used for damage detection 

when the attention is focused on the changes in the estimated approximations. 

An early application can be found in [Inada et al., 1999], where however data 

come from the simulation carried out on an analytical models, rather than from 

the actual measurements. The idea is developed in the next Chapter. 
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Chapter 6 

 

 

 

The SHM Response Surface Methodology 

 

 

 

In many technical fields, the experimenters can identify a response variable of 

interest, y, and a set of predictor variables, x1, x2, …, xk. In some systems the 

nature of the relationship between y and the x’s might be known “exactly”, 

based on the underlying engineering, chemical, or physical principles. Then one 

could write a model of the form y = g(x1, x2, …, xk) + η, where the term η 

represents the “error” in the system. This type of relationship is often called a 

mechanistic model. In the more common situation where the underlying 

mechanism is not fully understood, the experimenter must approximate the 

unknown function g with an appropriate empirical model y = f(x1, x2, …, xk) + 

ε, where ε  also accounts for the lack of fit error ηL introduced in the model by 

the assumed form of f(.). Usually, the function f is a first-order or second-order 
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polynomial in the basic predictors or their transformations. This empirical 

model is called a response surface model. 

Identifying and fitting from experimental data an appropriate response 

surface model requires some knowledge of statistical experimental design 

fundamentals, regression modelling techniques, and elementary optimization 

methods. All three of these topics are generally integrated into the so called 

response surface methodology (RSM). 

The most extensive applications of RSM are in the industrial world, 

particularly in situations where several input variables potentially influence 

some performance measure or quality characteristic (the response) of the 

product or process. For example, y might be the viscosity of a polymer and x1, 

x2, and x3 might be the reaction time, the reactor temperature, and the catalyst 

feed rate in the process. Clearly, if we could easily construct the graphical 

display of the relationship between the response and the predictors (the response 

surface), the optimization of this process would be very straightforward. By 

inspection of the plot, we could identify the values of the process variables 

which yield to the desired value of the response variable of interest. 

Unfortunately, in most practical situations, the true response function is 

unknown. In this case, the field of response surface methodology consists of the 

experimental strategy for exploring the space of the process variables, empirical 

statistic modelling to develop an appropriate approximating relationship, and 

optimization methods for finding the levels or values of the process variables 

that produce desirable values of the response. 

In the applications to damage diagnosis, the experimental strategy consists of 

the monitoring of the structure in time. Each output of this process can be 

regarded alternatively as response or predictor. When the measurement of one 
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sensor is considered as the response, the response surface model is the 

relationship between that measurement and those recorded at the same time by 

the other sensors on the structure. In some cases, this relationship is known, for 

example by computing the influence line of a bridge in a static problem in so 

many points that the load distribution can be inferred from the response 

measurements. When dynamic problems or more complex structures are 

considered, an approximation is needed. The change in the statistical 

distribution of the error involved in these problems can be considered as a 

damage indicator. This strategy is herein discussed, and its application to a 

numerical example leads to the formulation of a new method for damage 

detection and localization. The testing of the method on more thorough 

examples is then the objective of the following three chapters. 

It must be preliminarily said that the nature of a monitoring system itself 

prevents one from applying the statistical experimental design techniques, 

which ensure that the approximating function is close to the real unknown 

model by performing the experiments in the most representative design points. 

However, as opposite to the industrial applications, here the concern is not 

building the most reliable approximation function to identify the process 

optimal conditions, but finding a feature which can detect a change in the 

model. This feature is not related to the intensity of the error, but to its statistical 

distribution. Therefore, the approximating function is just a mean for feature 

extraction. To distinguish this method from the classical approach, we will 

denote it as structural health monitoring response surface methodology (SHM-

RSM). The general theory which is common between the two methods is 

reported in detail in Appendix A, while the following section summarizes only 

the aspects strictly necessary for the damage diagnosis application. 
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6.1 Basic Principles 

 

In general, an experiment involves a response y that depends on other variables 

ξ1, ξ2, …, ξk. The variables ξ1, ξ2, …, ξk are usually called the natural 

variables, because they are expressed in the natural units of measurements. In 

many RSM works, it is convenient to transform the natural variables to coded 

variables x1, x2, …, xk, which are usually defined to be dimensionless with 

mean zero and the same spread or standard deviation. In terms of the coded 

variables, the response surface function is written as  

 

ε+= ),,,( 21 kxxxfy   (6.1) 

 

In most practical applications, the underlying true response surface is 

typically driven by some unknown physical mechanism which may be very 

complicated. It is therefore necessary to develop an approximating model based 

on the observed data from the system, i.e., an empirical model. The resulting 

form assigned to f(.) introduces a systematic lack of fit error ηL into the system, 

which is included in the global error term ε = ηL + η, where η is the random 

error, or pure error. The latter error [Breitung-Faravelli, 1996] arises from the 

remark that, if the same experiment is run r times for the same values of the x’s, 

the resulting outcomes y1, …, yr may result different due to the randomness of 

the variables. Thus, the term ε in Equation (6.1) represents all the other sources 

of variability not accounted for in f(.), and it includes effects such as 

measurement error on the response, other sources of variation that are inherent 

in the process or system (background noise, or common cause variation in the 
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language of statistical process control), the effect of other variables, and so on. 

We will treat ε as a statistical error, and we will assume it to have a normal 

distribution with mean zero and variance σ 2. Therefore, determining the 

probability distribution of the variance σ 2 completely defines, in a statistical 

fashion, the error ε. 

Usually, a low-order polynomial in some relatively small region of the 

variable space is appropriate to model the response surface function f(.). In 

many cases, either a first-order or second-order model is used. The general 

motivation for a polynomial approximation for the true response function g is 

based on its Taylor-series expansion around the point x01, x02, …, x0k. For 

example, the first-order model is developed from the first-order Taylor 

expansion 
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where x refers to the vector of regressor variables and x0 is that vector of 

variables at the specific point x01, x02, …, x0k. Because in Equation (6.2) we 

have included only the first-order terms of the expansion, it can be rewritten as 

 

εββββ +++++= kk xxxy 22110  (6.3) 
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If we were to include second-order terms in Equation (6.2), this would lead 

to the second-order approximating model 
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It can be noted that there is a close connection between RSM and multiple 

linear regression analysis. The β’s in Equations (6.3) and (6.4), respectively, are 

sets of unknown parameters. To estimate the values of these parameters, we 

must collect data on the system that we are studying. Multiple regression 

analysis is a branch of statistical model building that uses these data to estimate 

the β’s. Because, in general, polynomial models are linear function of the 

unknown β’s, we refer to the technique as multiple linear regression analysis. 

The model (6.3) is therefore called a multiple linear regression model with k 

regressor variables, and the parameters βj, j = 0, 1, …, k, are the regression 

parameters. This model describes a hyperplane in the k-dimensional space of the 

regressor variables {xj}. The parameter βj represents the expected change in y 

per unit change in xj, when all the remaining variables xi (i ≠ j) are held 

constant. 

The first-order model is likely to be appropriate when the experimenter is 

interested in approximating the true response surface over a relatively small 

region of the variables space, in a location where there is a little curvature in g. 

Sometimes the curvature in the true response surface is strong enough that the 

first-order model is inadequate. A second-order model will likely be required in 

these situations. This model would likely be useful as an approximation to the 
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true response surface in a relatively small region around a point where there is a 

substantial curvature in the true response function g. A mound-shaped response 

surface and elliptical contours are generated by this model. Such a response 

surface could arise in approximating a response such yield, where we would 

expect to be operating near a maximum point on the surface. The second-order 

model is widely used in the classic response surface methodology because it is 

very flexible and it can take on a wide variety of functional forms, so it will 

often work well as an approximation to the true response surface. However, in 

some situations, approximation polynomial of order greater than two are used.  

In SHM applications, a polynomial degree of the first order is often 

sufficient, as we will see further ahead. Common structures, except for 

suspended bridges and tall antennas, are designed to provide a linear response in 

their operational conditions, and hence a response surface built on the 

monitored data is likely to be linear. However, the basic theory of the damage 

detection approach still holds and it can be easily adapted also to the cases 

where higher-order polynomials are needed. Indeed, models that are more 

complex in appearance than Equation (6.3) may often still be analyzed by 

multiple linear regression techniques since, in general, any regression model 

that is linear in the parameters (the β-values) is a linear regression model, 

regardless of the shape of the response surface that it generates. The damage 

detection method is theoretically based on the principle of response surface, but 

it practically makes use of the multiple linear regression techniques to extract 

the damage sensitive feature from the data, regardless of the accuracy of the 

response surface approximation in representing the real one. Therefore, in the 

following sections the essential steps of multiple linear regression analysis are 

recalled. 
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TABLE 6.I DATA FOR MULTIPLE LINEAR REGRESSION 
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6.1.1 Model Fitting 

Model fitting is the method for estimating the regression coefficients in multiple 

linear regression models. For this purpose, the least squares method is typically 

used. A detailed description of the method is provided in Appendix A, while 

here only the equations that are the results of this procedure are summarized. 

Suppose that n > k observations on the response variable are available, say 

y1, y2, …, yn. Along with each observed response yi, we will have an 

observation on each regressor variable, and let xij denote the i-th observation or 

level of variable xj. The data will appear as in Table 6.I. 

We may write the model in Equation (6.3) in terms of the observations in 

Table 6.I as 
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or in matrix notation as 
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εAβy +=  (6.6) 

 

where 
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In general, y is the n×1 vector of the response variables, A is the n×(k+1) 

matrix of the levels of the regressor variables, β  is the (k+1)×1 vector of the 

regression coefficients, and ε  is the n×1 vector of the total errors. We assume 

that the error term ε  in the model has E(ε ) = 0 and Var(ε ) = σ 2, and that the 

{εi} are uncorrelated random variables.  

The method of the least squares chooses the β’s in Equation (6.5) so that the 

sums of the squares of the errors, εi, are minimized. In matrix notation, the 

vector of least squares estimators b is the β  vector that minimizes the function 

)()( AβyAβyεε −−== TTL , and it results to be given by 

 

yAAAb TT 1)( −=  (6.7) 

 

The fitted regression model is then 

 

Aby =ˆ  (6.8) 
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The difference between the observation y  and the fitted model ŷ  is the n × 1 

vector of the residuals  

 

Abyyye −=−= ˆ  (6.9) 

 

6.1.2 Estimate of the Variance of the Error 

To develop an estimator of the variance of the error σ 2, consider the sum of the 

squares of the residuals, 
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Substituting Equation (6.9) and using yAAbA TT =  yields 

 

yAbyy TTTSSE −=  (6.11) 

 

Equation (6.11) is called the error or residual sum of squares, and it has n-k-1 

degrees of freedom associated with it. It can be shown that an unbiased 

estimator of σ 2 is given by 
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The estimate of σ 2 produced by Equation (6.12) is model-dependent. That 

is, its value depends on the form of the model that is fit to the data. For 
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example, if we fit a quadratic model to the data, the estimate of σ 2 may result to 

be larger than the estimate obtained from a first-order model, suggesting that the 

first-order model is superior than the quadratic in that there is less unexplained 

variability resulting from the first-order fit. If replicate runs are available (that 

is, more than one observation on y at the same x-levels), then a model-

independent estimate of σ 2 can be obtained. Indeed, when replicates of a single 

experiment are possible, i.e., when one can associate to the same matrix A 

different response vectors y, this subset of experiments provides an estimate of 

the pure error variance. The variance of the lack of fit error is then obtained by 

subtracting this estimate to s2. In the particular case under investigation, the 

measurements are collected in a continuous monitoring. This prevents one from 

collecting replicates able to estimate the pure error variance and, hence, the lack 

of fit and the pure error cannot be distinguished one from the other. 

It is worth noting again that the above summarized approach just makes use 

of regression analysis: to rigorously speak of response surface, the levels of the 

predictors should be selected by the operator according to a preliminary 

assigned experiment plan. This is not the case, since the whole decision-making 

procedure is based on a continuous monitoring of the response variables. But, as 

already mentioned, it is accepted in the literature that the term response surface 

also applies to methods which bypass some of the mathematical requirements 

inspired from the statistical sampling theory.  
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6.2 Application to Damage Diagnosis 

 

[Kullaa, 2004] uses the above methodology to eliminate from the data the 

effects of the environmental and operational conditions, which are not measured 

but unknown underlying factors. The variables in the response surface model of 

Equation 6.6 are the monitored quantities of interest (e.g., the modal frequency), 

while the unknown model coefficients β  can be regarded as the underlying 

factors, which are estimated by Equation (6.7). By computing the residuals from 

Equation (6.10), these factors can be extracted from the data. The resulting 

residual vector e is called the vector of the unique factors, because it is 

insensitive to the operational and environmental conditions. These unique 

factors are therefore used for damage detection.  

[Iwasaki et al., 2001] first applied the response surface theory to develop a 

simple, low-cost method for damage diagnosis, which does not require a finite 

elements model (FEM) of the entire structure. First, the system identification of 

a structure in its intact state is performed using the response surface, that is, a 

response surface is created from the measured sensor data obtained from the 

initial state. The response surface is named as initial response surface. For 

example, the data from a sensor are selected as the response and the data 

obtained from the adjacent sensors are selected as the predictors. During the 

training process, a set of every sensor data is periodically obtained by cycling 

measurements several times. After the training process, a damage monitoring 

process is started. From the measured set of data, the system identification of 

the structure is performed and a response surface is recreated. The response 

surface is named as recreated response surface. The recreated response surface 
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is compared with the initial one using a statistical similarity test, or F-test, as 

follows. 

Consider two response surfaces that are created from two different sets of 

experiments 

 

2222

1111

εβAy

εβAy

+=

+=
 (6.13) 

 

where the number of experiments for regression are n1 and n2, respectively. In 

order to investigate the similarity of the two response surfaces, a null-hypothesis 

test is introduced. The hypothesis definition is 

 

210 : ββ =H  (6.14) 

 

The error terms 1ε  and 2ε  are assumed to be vectors of independent random 

variables and to have the same distributions in the two sets of experiments. In 

this case, the F-statistic value, F0, is defined as 

 

p
pn

SSE
SSESSEF 2

12

120
0

−
⋅

−
=  (6.15) 

 

where p = k + 1 (with k number of predictors), 21 nnn += , 

2112 SSESSESSE += , and SSE0 is the residual sum of squares of the response 

surface obtained by considering the global set of measurements. Under the null-

hypothesis H0, the F-statistic value, F0, follows an F-distribution of degrees of 
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freedom (p, n-2p). When the two response surfaces are similar to each other, F0 

assumes a small value. The critical limit for the rejection of the hypothesis H0 is 

therefore 

 

pnpFF 2,,0 −> α  (6.16) 

 

That is, the similarity between the response surfaces is rejected when 0F  is 

greater than pnpF 2,, −α , where α is the significance level. 

When the system identified from the monitoring process (i.e., the recreated 

response surface) is discriminated from the system identified from the initial 

state (i.e., the initial response surface), it means that the relation among the 

sensors data is changed, and it can be concluded that something happened to the 

structure. This does not always mean damage initiation, but it can provide a low 

cost solution for damage diagnosis of the structure to decide the necessity of 

precise investigation. 

The method was applied to detect delamination in a CFRP cantilever beam 

specimen, instrumented with three conventional strain gages on its surface. A 

delamination crack of various lengths was introduced under the middle gage. In 

this study, the strain data of the middle gage were assumed as the response, 

while the strain data of the adjacent two sensors were regarded as the predictors. 

Quadratic polynomials were selected as the response surfaces approximation 

function. By statistically comparing the initial response surface obtained from 

the strain data of the undamaged beam with the one that has been recreated after 

delamination, the delamination cracks longer than 6 mm were successfully 

detected since the rejection of the null hypothesis H0 was achieved by F-test. 
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The method presents the advantage that it does not require tests of the 

damaged structure to define the limit between the intact and damaged states. 

However, the main criticism to the F-test scheme illustrated above concerns its 

validation only in cases of study where the problems related to the sensor 

sensitivity and the associated measurement errors are ignored, and where the 

loading condition is the same for any set of the replicated experiments. Indeed, 

the variability introduced by these two sources implies a greater uncertainty in 

the undamaged approximation, and this could make difficult the detection of 

damages to which the model is not sufficiently sensitive. 

 

 

6.3 The Static Problem of a Bridge under a Stationary 

Queue of Traffic 

 

The method proposed by [Iwasaki et al., 2001] is applied to the static problem 

of a bridge which needs to withstand, together with its self-weight, W, a random 

moving load of vehicles, Q(z,t), where t denotes the time and z is the spatial 

coordinate along the bridge longitudinal axis.  

The exact solution in terms of vertical displacements can be easily computed 

for all the bridge sections, and the actual relationship between the vertical 

displacement of one section and those of the other sections is in this case known 

by computing the so called influence line. The development of this relationship 

is discussed in the following and its analogy to a linear regression model is then 

the basis on which the damage detection method is applied. 
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Let k + 1 the number of known vertical displacements, 

)(,),(),( 121 ttt k+∆∆∆  , and k the number of loaded sections of the bridge. 

Therefore, the dependence of Q(z,t) on z is eliminated by fixing the sections 

where the load is applied at time t. 

Assuming, for example, the vertical displacement of section k + 1 as the 

response variable of interest and the vertical displacements of the remaining k 

sections as the predictors, we wish to find their relationship, i.e., the response 

surface function f(.) that satisfies 

 

)(]),(,),(),([)( 211 tttttft kk ε+∆∆∆=∆ +   (6.17) 

 

where the dependence on time is due to both the loading time variability and the 

potential of damage. The goal is to write a function without the first 

dependence. 

The function which provides the value of the displacement ∆i in section i 

due to a unit load in section j is the well known influence line, Lij(t). Its 

dependence on time accounts for the potential of damage. Therefore, at each 

point in time, t, one can write 

 

)()()()(
1

tQtLtt j

k

i
ijWii ∑

=
+∆=∆  (6.18) 

 

where i = 1, …, k + 1, and ∆Wi(t)  is the contribution to ∆i(t) of the dead load W 

(again depending on time to account for the potential of damage). By rewriting 
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Equation (6.18) in matrix notation, one finds that the following general equation 

applies 

 

)()()()( W tttt QLΔΔ +=  (6.19) 

 

To express the displacement at section k + 1 as a function of the other k 

displacements, we first need to express Q(t) as a function of them. For a non 

singular k × k square matrix L, one obtains 

 

)]()()[()( W
1 tttt ΔΔLQ −= −  (6.20) 

 

where )()()( WQ ttt ΔΔΔ −=  is the k × 1 vector of the contributions to the k 

vertical displacements )(tΔ  of the k × 1 moving load of vehicles Q(t) applied to 

those k sections.  

Writing Equation (6.19) for the contribution of Q(t) to the vertical 

displacement at section k +1 and substituting Equation (6.20), give 

 

)]()()[()()()()()( W
1

1111 tttttttt kkWkk ΔΔLLQL −==∆−∆ −
++++  (6.21) 

 

where Lk+1 is the 1 × k row-vector of vertical displacements of section k +1 due 

to a unit vertical point load in the other k sections. It is therefore convenient to 

assume )()()( 111 ttt WkkQk +++ ∆−∆=∆  as response and )()()( WQ ttt ΔΔΔ −=  

as predictors, i.e., to consider the contribution of Q(t) to the vertical 

displacements instead of the total vertical displacements. 
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The result is a linear dependence of the response on the predictors. Given a 

set of measurements collected at n different times, the previous relationship can 

be synthesized into Equation (6.6) with 
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Hence, one can see that the resulting matrices sizes are n × 1 for y, n × k for 

A, and k ×1 for β , because the constant term of the first-order response surface 

model of Equation (6.5) is null. 

The linear regression parameter β  in Equation (6.6) can also be estimated by 

applying the previously described least squares method. If the available 

measurements are the computed values of the vertical displacements, the 

obtained estimate b is practically equal to the theoretic values given by the 

influence lines product of Equation (6.21). The value of SSE for this linear 

regression model is negligible, because the error is only of a numerical nature. 

A first significant contribution to the error term ε  in Equation (6.6) can be 

introduced by adding a random noise to the computed displacements. A further 

level of approximation can be achieved by considering also a number of 
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regressors lower than the k displacements required by the model. In these cases, 

the vector b estimated by Equation (6.7) as the result of the linear regression 

analysis is no longer the one of Equation (6.21). 

The n measurements leading to the estimate of Equation (6.7) can be 

repeated several times, with different random traffic loads and different random 

noises added to the exact solution. The result is a population of SSE-values and 

of corresponding F-values, from which histograms can be drawn. In the next 

section a numerical example of this procedure is provided. The F-test method 

proposed by [Iwasaki et al., 2001] is first applied to the undamaged states of a 

simple schematization of a bridge structure, to test if the method is able to 

recognize, under varying excitation, that no structural changes occur into the 

model when adding noise to the measurements and when reducing the number 

of sensors on the structure. A damage is then introduced into the model, but the 

F-test seems to be insensitive to the slight modifications in the displacement 

values associated with significant damage when noise is present in the 

measurements. The correct information about damage can, however, be 

emphasized by a statistic comparison of the samples of the estimates s of the 

standard deviations of the errors which result from subsequent clusters of 

experiments, in the undamaged and damaged states. This observation leads to 

the abandon of the [Iwasaki et al., 2001] F-test method and to the formulation of 

a new damage-sensitive feature. 

 

6.3.1 Numerical Example 

The bridge model under consideration has three spans, two lateral ones of 

length L1 = L3 = 8 m each, and a main span which is L2 = 24 m long. For the 

purpose of this study, the rough schematization of a simply supported beam in 
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Figure 6.1 is adopted. The model is discretized into Ne = 40 beam elements of 

length l = 1 m each, and N = 41 nodes. The elements cross-section has a 

moment of inertia I = 0.1 m4 with respect to the horizontal in-plane axis, and an 

area A = 1.69 m2. The given material properties are the Young modulus E = 

30000000 kN/m2 and the mass density ρ = 2500 kg/m3. The calculations are 

carried out in MATLAB® environment. 

Under the assumption of irrelevant axial deformations, each node has two 

degrees of freedom, a rotation and a vertical displacement, except for the four 

supports that block the vertical displacements, but not the rotations. The four 

supports are assumed with no settlement, and hence only N–4 = 37 vertical 

displacements are allowed. Therefore, the system has a total of D = N+(N-4) = 

78 degrees of freedom. 

The 4×4 element stiffness matrices of the form 
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are assembled in a 78×78 global stiffness matrix Kglob, following the standard 

finite element procedures. 

The self-weight is included by applying a vertical (downward) point force of 

intensity W = (ρ A l) g = 42.25 kN in N-4 = 37 nodes. 
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8m 24m 8m8m 24m 8m

 
 

Figure 6.1 Undamaged state of the structure. 

 

 

Collecting the weights is a 78×1 vector, FW, where zeros are placed where 

no forces are present, one can compute the 78×1 vector of displacements due to 

the self weight alone as 

 

W
1

globW FKD −=  (6.23) 

 

from which the vertical displacements are extracted and arranged in a 41×1 

vector, WΔ , containing zeros in correspondence of the four supports. 

In addition to the dead load, a random train of vehicles crossing the bridge is 

considered as live load, and it is modelled by a vertical (downward) point force 

of random intensity that can be applied to k = 20 given nodes. The index i of the 

potentially loaded nodes does not vary in the range [1,37], but only a single 

node in each couple of subsequent nodes is considered, starting from the first 

node after the l.h.s. support. Namely, the nodes that could be loaded have an 

assigned coordinate z equal to: 

- 1m, 3m, 5m, 7m, and 33m, 35m, 37m, 39m in the two lateral bays; 

- 9m, 11m, 13m, 15m, 17m, 19m, 21m, 23m, 25m, 27m, 29m, 31m in the 

central span. 
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For each of these potential nodes, the random nature of the force is 

represented by generating a random number P~  using the function “rand”, 

which is implemented in MATLAB® and returns a scalar in the interval (0,1) 

whose value changes each time that it is referenced. Assigning the following 

probabilities of having, at time t, a load Q(t,i) of a certain intensity in node i:  

 

25.0]kN 150),([

25.0]kN 10),([
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 (6.24) 

 

the value P~  determines the intensity of load Q(t,i) as follows 
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When node i shows the highest load value of 150 kN, the same value occurs at 

node i+2. It is easy to recognize in this load assignment a rough stationary 

sequence of cars and trucks.  

By repeating this assignment n = 70 times, one obtains (for different values 

P~ ) the 70 different load distributions representing the structure loading 

conditions at 70 different times t1, t2, …, t70. 
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If we collect the live loads values in a 78×70 matrix, FQ (where zeros are 

placed in correspondence of the unloaded nodes), the corresponding 78×70 

displacements can be computed as 

 

Q
1

globQ FKD −=  (6.26) 

 

from which the vertical displacements are extracted and arranged in a 41×70 

matrix, QΔ .  

In an analogous manner, the N = 41 total vertical displacements of the 

structure at  n = 70  different times can be extracted from the 78×70 matrix 

 

)( QW
1

globQw FFKDDD +=+= −  (6.27) 

 

or they can be directly computed as a 41×70 matrix from 

 

Qw ΔΔΔ +=  (6.28) 

 

The previous calculations provide the exact solution of the static problem by 

standard finite elements procedures. Let us now assume that only k + 1 = 21 

vertical displacements out of the 37 computed non-null ones are known, as it is 

most likely to happen when actual measurements are taken from a bridge. 

Namely, the vertical displacements in the k = 20 sections where the live loads 

are prescribed and in the middle-span (section of coordinate 20 m) are extracted 

from the solution of Equation (6.28), and they are considered as the ideal 
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measurements when no noise is present. Based on these measurements, one can 

build a first-order response surface model, where, for example, the response 

variable of interest is the vertical displacement at mid-span, and the predictors 

are the other k = 20 measurements. For consistence with the previous section, 

consider the vertical displacements due to the live load alone and given by the 

transpose of Equation (6.26), in the response surface model 

 

εΔΔ ++= ∑
=

−

20

1
12Q020Q

j

T
jj

T ββ  (6.29) 

 

That is, iQΔ  is the 1×70 i-th row of the 41×70 matrix QΔ , i is the node number 

or section coordinate, ε  is a 70×1 vector, and kβββ ,,, 10   are the k + 1 = 21 

unknown scalar linear regression coefficients. Collecting them in a 21×1 vector 

20β  and setting 

 

T
20Q20 Δy =  (6.30) 

 

and 

 

[ ]TT
j

T
39Q12Q1Q20 ΔΔΔ1A  −=  (6.31) 

 

where 1 is a 70×1 vector of ones so that the resulting matrix A20 has size 70×21, 

allow one to write 
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20202020 εβAy +=  (6.32) 

 

The suffix “20” underlines that the values contained in the matrices depend on 

the node whose n = 70 vertical displacements are considered as the response 

vector y in the response surface model.  

By applying the least square method (i.e., Equation (6.7)), one obtains an 

estimate b20 of the 21×1 vector of the linear regression coefficients, and 

computes the SSE value from Equation (6.11). Since in this case the first-order 

response surface model corresponds to the actual relationship between response 

and predictors, the error in Equation (6.32) is only of numerical nature and the 

associated SSE is estimated to be of the order of 10-5 cm2. 

The influence line is computed as the displacements due to an unitary 

vertical point force which is moved along the same k = 20 beam sections to 

which the live load is assigned. When the unitary force is applied to section i, 

the 78 consequent displacements are given by 

 

ii L
1

globL FKD −=  (6.33) 

 

where FLi is a 78×1 vector of zeros, except for a 1 corresponding to the current 

force position . Repeating for all the k sections and storing each time the 

computed vertical displacements in a 41×20 matrix (with zeros in 

correspondence of the four supports), we can extract a 20×20 matrix Lk by 

considering only the rows of the displacements in the k = 20 loaded sections, 

and a 1×20 row-vector L20 corresponding to the vertical displacements at mid-

span due to a unitary force in each of the k = 20 sections. The live load 
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contribution to the vertical displacement at mid-span can therefore be computed 

also by applying Equation (6.21), which in this case becomes 

 

kk Q
1

2020Q ΔLLΔ −=  (6.34) 

 

where kQΔ  is the 20×70 matrix extracted from the 41×70 matrix QΔ  by 

considering only the columns of the vertical displacements in the k = 20 loaded 

sections. Note that the so obtained 20QΔ  is equal to row 20 of matrix QΔ  and it 

is the transpose of 20y  in Equation (6.32). The 21×1 difference vector 

T
k ]0[ 1

2020
−− LLb  results to be of the order of 10-7 or lower, so that in this 

case the regression and the exact model are practically the same, when 

considering ideal measurements without noise. Therefore, in this case, the null-

hypothesis H0 defined by Equation (6.14) holds. 

Under the null-hypothesis H0, the F-statistic value, F0, follows an F-

distribution of degrees of freedom (p, m-2p), where p = 21, m = n1 + n2 = 2n = 

140, and m-2p = 98. Hence, for this problem, one finds 

 

pmpF 2,, −α  = finv(1-0.01, 21, 98) = 2.047 (6.35) 

 

where the function “finv(P,V1,V2)”, available in the MATLAB® Statistics 

Toolbox, computes the inverse of the F-cdf (cumulative distribution function) 

with numerator degrees of freedom V1 = p and denominator degrees of freedom 

V2 = m-2p for the corresponding probability in P = 1-α, and the significance 

level α  set to 1%. 
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Let us now compute the F-value defined by Equation (6.15) for two sets of n 

= 70 measurements each, obtained by considering the undamaged state of the 

structure under two different sets of n = 70 loading conditions each. For this 

purpose, the coefficients b of the three linear regression models built on each of 

the two sets of measurements and on the global one which includes both sets, 

respectively, need to be estimated. The values of SSE1, SSE2, and SSE0 used in 

Equation (6.15) are then computed by applying Equation (6.11) for the three 

cases, respectively. To obtain a representative population of F-values which 

allows to appreciate a significance level α  = 1%, the analysis is repeated 100 

times. The result is the histogram in Figure 6.2, which has the F-values on the 

horizontal axis, and the number of occurrence of these values during the 100 

experiments on the vertical axis. The mean of the F-histogram is equal to 

9.5798 and it is much beyond  the limit value computed in Equation (6.35), thus 

showing that the F-method does not recognize that no structural change occurs 

when the loading conditions are varied and no noise is present. 

Note that for a significant number of measurements (n = 70) compared to the 

number of predictor variables in the response surface model (k = 20), the 

variance of the error in the global linear regression model, and its correspondent 

SSE0, are approximately twice the ones computed on each single set of 

measurements, i.e., 210 22 SSESSESSE ≅≅ . Figure 6.3 provides, for example, 

a comparison of the histograms of the two quantities SSE0 and 2SSE1. No 

significant statistical differences can be observed between the two distributions. 

The non-dimensional difference of the two means given by 

 

{ } ][/][][ 010 SSEESSEESSEEADM −=  (6.36) 
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is in this case equal to 1.3822. 

 
 

Figure 6.2 F-histogram for the undamaged state of the structure under different load conditions. 

Response at 20 m, and k = 20 predictors. 

 
 

Figure 6.3 SSE-histograms for the undamaged state of the structure under different load 
conditions. Response at 20 m, and k = 20 predictors. 



Charter 6 The SHM Response Surface Methodology 
 

129 

6.3.2 Including Noise into Measurements 

Using the function “randn(m,n)” available in MATLAB® to generate a m×n 

array of random numbers whose elements are normally distributed with null 

mean and unitary standard deviation, the noise can be introduced in the 

response surface model of Equation (6.32) by setting 

 

nΔy += T
20Q20  (6.37) 

 

and  

 

[ ])20,(),()1,( 39Q12Q1Q20 :NΔ:NΔ:NΔ1A +++= −
TT

j
T j   (6.38) 

 

where “n = a randn(70,1)”, “N = a randn(70, 20)”, and a = 0.5. Three 

different random noise levels are added to the measurements by referencing 

each function “randn(m,n)” three times and by dividing a by 10 at the end of 

each time. For the three levels of noise, the coefficients b20 estimated by the 

least square method (Equation (6.7)) are no longer approximately equal to 

T
k ]0[ 1

20
−LL , but they differ of amounts of the order of 10-1, and the SSE 

values computed by  Equation (6.11) are of the order of 10, 10-1, and 10-3 cm2, 

respectively. 

Let us now compute the F-value defined by Equation (6.15), for two sets of 

measurements obtained by considering the undamaged state of the structure 

under two different sets of loading conditions, and different noises in the 

measurements. By again repeating the analysis 100 times for each of the three 
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noise levels, one obtains the three corresponding F-histograms in Figure 6.4, 

whose means are equal to 1.0092, 0.9765, and 1.0062, respectively. The F-

values are now lower than the limit of 2.047, thus recognizing that damage has 

not happened yet. 

The non-dimensional difference of the two means (ADM) in Equation (6.36) 

is in this case equal to 0.1889. A better convergence of the histograms in Figure 

6.5 could be achieved either by increasing the number n of repetitions or, as we 

will see in the next section, by decreasing the number k of the predictors. 

Indeed, the most k is significant with respect to n, the best is the convergence 

between the two histograms. 

 

 

 
 

Figure 6.4 F-histograms for the undamaged state of the structure under different load conditions 

and for three levels of random noises in the measurements. Response at 20 m, and k = 20 

predictors. 
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Figure 6.5 SSE-histograms for the undamaged state of the structure under different load 

conditions and for the highest random noises of level 1 in the measurements. Response at 20 m, 

and k = 20 predictors. 

 

 

6.3.3 Decrease of the Number of Measurements 

From now on, the model is estimated on the basis of only k = 11 measurements, 

instead of the 21 required by the model loads assumption. Namely, only the 

vertical displacements at the sections of coordinates: 

- 1m, 5m and 35m, 39m in the lateral bays, 

- 9m, 13m, 17m, 23m, 27m, 31m in the central span, 

and the one at mid-span are considered. For p = 11, the limit F-value becomes 

 

pmpF 2,, −α  = finv(1-0.01, 11, 118) = 2.4016  (6.39) 
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The F-histograms obtained by considering two sets of measurements of the 

undamaged structure under different loads and random noises, are shown in 

Figure 6.6 for the three levels of noise. The means of the histograms are 0.4324, 

0.43, and 0.9496, respectively. The F-values are lower than the new limit, 

2.4016, and therefore the undamaged model is still correctly identified. 

The histograms of the SSE0 and 2SSE1 in Figure 6.7 are more close to each 

other than in the previous case and the ADM is equal to 0.0877, because the 

number of repetitions, k = 70,  on which the estimates are made is more 

significant with respect to the number of regressors, n = 10. 

 

 

 

 
 

Figure 6.6 F-histograms for the undamaged state of the structure under different load conditions 

and for three levels of random noises in the measurements. Response at 20 m, and k = 10 

predictors. 
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Figure 6.7 SSE-histograms for the undamaged state of the structure under different load 

conditions and for the highest random noises of level 1 in the measurements. Response at 20 m, 

and k = 10 predictors. ADM = 0.0877. 

 

 

6.3.4 Inferring Damage to the Structure 

Figures 6.2, 6.4, and 6.6 refer to the comparison of two undamaged states of the 

structure and test the ability of the F-method to identify the same model for 

different loading conditions, noise levels, and a reduced number of measures, 

respectively. The damage is now introduced by forming an internal plastic hinge 

in correspondence of the second l.h.s. support (z = 8m), so that the two elements 

which converge into this node can now rotate of different amounts (Figure 6.8). 

One degree of freedom (corresponding to this rotation) is therefore added to the 

structure, whose global stiffness ∗
globK  becomes a 79×79 matrix. Repeating the 

procedure described in section 6.3.1 for this new stiffness matrix, one finds the 
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79×70 displacements ∗
QD  due to the 79×70 random live loads ∗

QF  which are 

applied to the same 20 sections as before and are null where no forces are 

present. Of the resulting 41×70 vertical displacements, ∗
QΔ , only the 10 

corresponding to those considered in the undamaged case are used to build a 

response surface model. The three levels of random noises are added to these 

measurements. The linear regression coefficients are then estimated and the 

values of SSE2 are computed for the damaged case. 

The resulting F-histograms and the SSE comparison for the damaged and 

undamaged states of the structure are shown in Figure 6.9 and 6.10, 

respectively, and they are obtained by considering the vertical displacements at 

mid-span as response variable in the model of Equation (6.32). No information 

about damage can be achieved from these histograms, because no damage 

occurs at this location and the method is not sensitive to the small changes 

inferred by the damage to the vertical displacements at mid-span. 

 

 

 

 

Figure 6.8 Damaged state of the structure. 
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Figure 6.9 F-histograms for the damaged and undamaged states of the structure under different 

load conditions and for three levels of random noises in the measurements.  

Response at 20 m, and  k = 10 predictors. 

 
Figure 6.10 SSE-histograms for the damaged and undamaged states of the structure under 

different load conditions and for the highest random noises of level 1 in the measurements.  

Response at 20 m, and k = 10 predictors. 
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Therefore, the analysis must be performed for all the locations in which the 

measurements are available by permuting the variable considered as response in 

the model, so that histograms can be built in correspondence of each location. In 

particular, the histograms shown in Figures 6.11 and 6.12 are computed at the 

node of coordinate z = 9 m, which is the closest to the damage  among the nodes 

considered for measurements. The values of the corresponding damage indices 

are reported in Table 6.II together with those computed at all the other 

measurement locations along the beam for comparison. The sensors indices 

used to identify those locations are defined in Table 6.III. 

By simply looking at the pictures, one can observe that the damage is 

univocally localized only in the case of the lowest noise level 3, for both the F-

method (Figure 6.11) and the SSE comparison (Figure 6.12c). As the noise level 

increases, the results in Table 6.II show that the damage location may vary in a 

certain range. However, the SSE method is always able to detect the presence of 

damage, and to correctly localize it into the left hand side of the structure for all 

the noise levels. Furthermore, the sensor at 9 m is always identified as damaged. 

The F-method, instead, is not able to detect the presence of damage for the 

highest noise level 1, and it does not recognize the sensor at 9 m as damaged for 

noise level 2.  

The novelty and the better performance of the SSE-comparison technique 

with respect to the F-method led the further work to be focused on the first. In 

particular, the following chapters aim to show the applicability of the method to 

more practical situations than the one exposed here as first simple theoretical 

example. To easily understand how the method is applied to the more complex 

cases of study, a generalization and formalization of the procedure is previously 

provided in the last section of this Chapter. 
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Figure 6.11 F-histograms for the damaged and undamaged states of the structure under different 

load conditions and for three levels of random noises in the measurements.  

Response at 9 m, and  k = 10 predictors. 

 

 

 
a) 
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b) 

 
c) 
 

Figure 6.12 SSE-histograms for the damaged and undamaged states of the structure under 
different load conditions and for the random noises of  (a) level 1, (b) level 2, and (c) level 3.  

Response at 9 m, and k = 10 predictors. 
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TABLE 6.II DAMAGE INDICES AT DIFFERENT LOCATIONS IN INCREASING ORDER. 

THE COLUMNS CORRESPOND TO THE THREE LEVELS OF NOISE. FIRST ROW: MEAN VALUES OF THE F-

HISTOGRAMS. SECOND ROW: ADM OF THE SSE-HISTOGRAMS. THIRD ROW: REFERENCE VALUES OF THE ADM 

WHICH CORRESPOND TO THE MAXIMA COMPUTED FROM TWO SETS OF  MEASUREMENTS OF THE 

UNDAMAGED STATE. 

F1 COMPARISON = 

 

0.9341    8.0000 

1.0167    1.0000 

1.0320    9.0000 

1.0523   10.0000 

1.0627    7.0000 

1.0679    6.0000 

1.0922   11.0000 

1.2071    3.0000 

1.3448    2.0000 

1.3892    5.0000 

2.1005    4.0000 

F2 COMPARISON = 

 

0.9729    9.0000 

0.9981   10.0000 

1.0232    8.0000 

1.0573    7.0000 

1.0795    6.0000 

1.1673    5.0000 

1.1984   11.0000 

1.3609    1.0000 

2.1750    3.0000 

3.6065    4.0000 

11.7686    2.0000 

F3 COMPARISON = 

 

0.9561    9.0000 

0.9572   10.0000 

0.9625    8.0000 

0.9754    7.0000 

0.9812    6.0000 

1.1099   11.0000 

1.1469    5.0000 

1.7994    4.0000 

1.9291    1.0000 

7.5973    2.0000 

13.6574    3.0000 

ADM1 = 

 

0.0621    6.0000 

0.0797    1.0000 

0.0802    7.0000 

0.0837    8.0000 

0.0905   10.0000 

0.0981    9.0000 

0.1035    3.0000 

0.1039   11.0000 

0.1079    2.0000 

0.1433    5.0000 

0.1889    4.0000 

ADM2 = 

 

0.0570    9.0000 

0.0654   10.0000 

0.0794    6.0000 

0.0809    5.0000 

0.0937   11.0000 

0.0975    1.0000 

0.1001    8.0000 

0.1002    7.0000 

0.1872    3.0000 

0.3265    4.0000 

0.5829    2.0000 

ADM3 = 

 

0.0541    9.0000 

0.0551   10.0000 

0.0645    4.0000 

0.0753    6.0000 

0.0849   11.0000 

0.0854    7.0000 

0.0854    8.0000 

0.0902    5.0000 

0.1357    1.0000 

0.5646    2.0000 

0.5978    3.0000 

ADM1u = 0.0989 ADM2u = 0.1005 ADM3u = 0.0900 
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TABLE 6.III SENSOR LOCATIONS. 
 

SENSOR 1 2 3 4 5 6 7 8 9 10 11 

z [m] 1 5 9 13 17 23 27 31 35 39 20 

 

 

6.4 Generalization and Formalization of the SSE-

Approach 

 

The previous example indicates the SSE approach as a fascinating candidate for 

damage detection and localization. Indeed, this method meets all the 

requirements to be implemented in the long-term, continuous structural health 

monitoring system described in Chapter 3. However, the reliability and the good 

performance of the algorithm on real structures still needs to be validated. For 

this purpose, the method must be first theoretically adapted to the practical 

situations, so that the procedure used to achieve the results presented in the 

following chapters can be generalized and easily understood for all the 

considered study cases. 

In general, let NS the number of sensors placed on the monitored structure. 

The sensors measure the time histories of the quantity of interest (acceleration, 

strain, etc.) at different locations on the structure, for a given duration T, a given 

sampling frequency f, and a total number of points NP = T f. Each time history 

is considered as a set of clusters of experiments by dividing it into Nset 

successive segments of length n = γ NS each, where γ is an assigned positive 

integer. Therefore, Nset = int(NP/n). The selection of γ needs to provide a 
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number of measurements n which is significant with respect to the number of 

predictors in the model, k = NS – 1. 

By ordering the measured time histories in a matrix of size NP × NS, and by 

considering only n rows at the time, one obtains the data for multiple linear 

regression analysis in Table 6.I, where xij is the i-th value of the time history 

segment recorded by sensor j. The multiple linear regression coefficients are 

estimated by Equation (6.7), and the error sum of squares, which provides an 

estimate of the variance of the error in the model, can then be computed from 

Equation (6.11). By repeating for all the Nset clusters of n points each contained 

in the response time histories, one obtains  a histogram of SSE-values. By 

permuting the sensor whose measurements are considered as function of the 

others (i.e., the response variable), an SSE histogram can be built in 

correspondence of each sensor location. The described procedure is summarized 

in the flow-chart of Figure 6.13, and it takes as inputs the response time 

histories recorded during two different tests on the structure. 

If the two tests were performed during different periods of the structure 

lifetime, the method assumes one of the two as reference case and then plots 

twice its SSE-histogram together with the one obtained by considering the 

global set of available measurements. A damage index ADM is then defined as 

the non-dimensional difference of the means of the histograms (Equation 6.36), 

and it is used to evaluate if the other test still refers to the same structural 

condition, or if some modifications occurred during the period of time between 

the two tests. 

The procedure needs to first be applied to the measurements taken from two 

different tests on the undamaged structure, so that the maximum value of the 

correspondent non-dimensional mean differences of the SSE-histograms can be 
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assumed as damage index threshold value, ADMu. When the values of ADM, 

computed by considering the current unknown state of the structure together 

with its initial undamaged state, result to be greater than ADMu, it means that 

the model of the structural system has changed. This change can also be 

localized close to the sensors at whose locations the greatest values of ADM are 

found. 
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Divide all the response time histories into Nset groups of 
n time steps each, where n = γ NS and γ is a given positive 
integer number. 
 

Set GROUP INDEX: i = 1 

Consider the n data measured by sensor j as response 
variable, y, and the corresponding n measurements of the 
remaining k = NS-1 sensors as predictors, x1, x2, …, xk: 
 

εxxxy += ),,,( 21 kf   (1) 

Assume a polynomial form for f (.). Then, Equation (1) 
can be treated as a multiple linear regression model: 
 

)(0,~Hp), 2σNεεAβy +=  (2) 
 
 
 
 
 
 
 
 
 

Least square estimators of the linear regression 
parameters: 
 

yAAAb TT 1)( −=  (3) 
 
 
 
 
 

Residuals sum of squares: 
 

yAbyy TTSSE )(−=  (4) 
 
 
 
 

Set SENSOR INDEX: j = 1 

j = j + 1 

i = i + 1 i = Nset ? 

j = NS? 

Yes 

Yes 

No 

No 

End 

 

 
Figure 6.13  Flow chart of the proposed SHM scheme. 



Sara Casciati  Damage Detection and Localization in the Space of the Observed Variables 

 
 

144 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



145 

 

 

 

 

 

Chapter 7 

 

 

 

Analytical Studies Using the ASCE SHM 

Benchmark Problem 

 

 

 

In Chapter 6, a new method for damage detection and localization using the 

SHM-RSM via SSE-approach was proposed based on the results from a simple 

theoretical example, where the true response surface function was a priori 

known for the baseline case in absence of noise. The applicability of the method 

to an actual monitoring system needs to be validated by investigating cases of 

study which are close to reality. Before applying it to the measurements taken 

from existing structures (Chapters 8 and 9), it is appropriate to evaluate its 

performance when applied to response time histories which are numerically 

computed by classical structural dynamics algorithms, from a three-dimensional 

finite element model of a structure under different dynamic loads. Indeed, when 
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passing from static to dynamic problems, an acceleration term is added to the 

equation of motion, which becomes a second-order differential equation. From 

the solution of this equation, with given initial conditions, the acceleration time 

histories of the different nodes of the structural model can be computed. The 

relationship between the acceleration of one node of the structure and those 

computed for the other nodes, is not known and it may not be linear anymore. 

However, it can still be approximated by a first-order polynomial in a relatively 

small region of the observed variables. No attempt is made either to find the 

exact response surface function, or to approximate it with the most reliable 

function, since, as already mentioned in Chapter 6, the experimental design 

strategies are not allowed within a continuous monitoring system process. 

Instead, the goal is to show that, also in a dynamic context, the proposed SHM-

RSM is able to extract a damage sensitive feature from the comparison of SSE-

statistical distributions obtained by fitting first-order polynomials to the 

response surface variables. 

For this purpose, the method is applied to the normalized relative 

acceleration time histories obtained from the data generated by a computer 

program, which was developed by the American Society of Civil Engineers 

(ASCE) Structural Health Monitoring (SHM) task group to provide a common 

investigation tool for this research field. The computer program calculates the 

dynamic response to different excitation loads, in terms of acceleration time 

histories, of the three-dimensional analytical model of an existing reference 

structure. The structure is a two-by-two bays, four-story, braced steel frame, 

with slabs on each floor. Different baseline configurations of the analytical 

model are considered, and different excitations are applied. In particular, the 

ambient excitation due to the wind load and the force applied by a shaker are 
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modelled. Also different damage scenarios are possible, so that one can evaluate 

the performance of the diagnosis method relatively to the damage intensity 

(Level 3). The damage is represented by the complete or partial removal of 

some braces, thus varying the stiffness of the structure. We would like to show 

that the SHM-RSM approach not only detects the structural change (Level 1), 

but it also locates where the braces have been removed (Level 2). The results of 

the method are presented in the following, in view of its application to 

experimental measurements. 

 

 

7.1 The ASCE SHM Benchmark Statement 

 

As previously discussed in Chapters 3 and 4, the development of algorithms 

able to process the vast wealth of sensors information and to provide useful and 

simple measures of the current health state of a structure is a crucial problem 

involving the worldwide ongoing research activities. The coordination of these 

activities toward a common task is made difficult by the fact that the various 

studies apply different methods to different structures, thus preventing from the 

possibility of a side-by-side comparison. A benchmark study, where participants 

apply a number of monitoring techniques to a common structure with common 

objectives, was therefore needed to provide a platform for consistent evaluation 

of the proposed SHM methods. 

At the 1996 International Workshop on Structural Control [Chen, 1996], a 

plan was formed to create task groups to study the problem of structural health 

monitoring. Three task groups, one per region (Europe, Asia, USA), were to be 

formed. The USA task group solidified in 1999 jointly under the auspices of the 
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International Association for Structural Control (IASC) and the Dynamics 

committee of the ASCE Engineering Mechanics. The IASC-ASCE SHM Task 

Group has proposed a series of benchmark Structural Health Monitoring 

studies, beginning with a relatively simple problem and proceeding on to more 

realistic and more challenging cases of study, to compare and contrast the 

efficacy of various techniques. These problems focus on both analytical and 

experimental studies of an existing test structure. This work focuses on the first 

phase of the benchmark studies, which are  based on the simulation of the test 

structure that forms the cornerstone of all the benchmark problems. Starting 

with simulated data allows to better understand the sensitivities of the method to 

various aspects of the problem, such as difference between the identification 

model and the true model, incomplete sensor information, and the presence of 

noise in measurement signals. The use of simulated data from the analytical 

structural model based on an existing structure allows for future comparisons 

with data taken on the actual structure.  

The benchmark problem is based on the test structure shown in Figure 7.1a 

and located in the Earthquake Engineering Research Laboratory at the 

University of British Columbia (UBC). The structure is a 2-by-2 bays, 4-story, 

rectangular steel frame built at approximately 1:3 scale. The model is 3.6 m tall 

and 2.5 m wide. There is one floor slab per bay per floor: four 800 kg slabs at 

the first level, four 600 kg slabs at each of the second and third levels, and four 

400 kg slabs at the fourth level. Details of the structural members properties 

(beams, columns and braces) are given in [Johnson et al., 2000]. 

Two finite element models based on this structure were developed to 

generate the simulated data. The first is a 12DOF shear-building model that 

constrains all motion except two horizontal translations and one rotation per 

http://wusceel.cive.wustl.edu/asce.shm/structure.htm
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floor. The second is a 120DOF model that only requires floor nodes to have the 

same horizontal translation and in-plane rotation. The horizontal slab panels are 

assumed to contribute only towards the in-plane stiffness making the floor 

behave as rigid with respect to in-plane motions only. The remaining out-of-

plane degrees of freedom (namely, vertical motion and pitching/rolling of the 

floor) are active. This more complex 120DOF model was constructed to include 

model error effects. Indeed, most structures are not as simple as engineers often 

model them, which leads to the presence of model error. The columns and floor 

beams are modelled as Euler-Bernoulli beams in both finite element models. 

The braces are bars with no bending stiffness. A diagram of the analytical 

model is shown in Figure 7.1b. 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.1 The ASCE benchmark structural system: (a) real structure at UBC; and (b) 
analytical model. From [Johnson et al., 2000]. 

a) b) 
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The finite element models (either the 12 or 120 DOF models) represent the 

structural system in terms of active degrees of freedom q, related to the physical 

degrees of freedom x by 

 

x = Tq (7.1) 

 

where T is the transformation matrix for the consideration of rigid-floor effect. 

The equation of motion is 

 

fTKqqCqM T
d =++   (7.2) 

 

where M, Cd and K are the mass, damping and stiffness matrices, respectively; 

f is a vector of forces applied to the physical degrees of freedom. Both ambient 

and forced excitations are considered by applying the force at each floor in the 

weak (y-) direction as wind loading in Cases 1 and 2, and by assuming that a 

shaker on the roof at the top of the centre column excites the structure in a 

direction ±( î − ĵ ), where î  and ĵ  are unit vectors in the x- and y-directions, 

respectively, in Cases 3 to 5. Although the structure is excited in two directions, 

only the y-direction is to be analyzed for Case 3. Cases 4 and 5 introduce 

asymmetry by replacing one of the 400 kg floor slabs on the roof (the one with 

hatched shading in Figure 7.1b) with a 550 kg slab, and are analyzed with 3-D 

motion of the floors. Cases 1, 3, and 4 refer to the 12DOF data generation 

model, while cases 2 and 5 include the model error.  

The forces are modelled as filtered Gaussian white noise. The Gaussian 

white noise processes are passed through a 6th order low-pass Butterworth filter 
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with a 100 Hz cut-off. The data generation uses a discrete-time integration at 

1kHz, and provides the sensor measurements at 1kHz. 

Sixteen accelerometers, two in the x-direction and two in the y-direction of 

each floor, return noisy sensor measurements 

 

vDfCqy ++=  (7.3) 

 

where v is a sensor noise vector, whose elements are Gaussian pulse processes 

with root mean square (rms) equal to 10% of the rms of the roof acceleration. 

Damage to the structure can be simulated by removing the stiffness of 

various elements from the finite element models. Six damage patterns are 

defined for the structure: (i) all of the first floor braces are removed; (ii) all of 

the first and third floor braces removed; (iii) one brace is removed in first story 

(the one drawn as dashed line in Figure 7.1b); (iv) one brace is removed in each 

of the first and third stories (also drawn as dashed line in Figure 7.1b); (v) as the 

previous damage pattern but with the floor beam from (2.5m, 0, 0.9m) to (2.5m, 

1.25m, 0.9m) partially unscrewed from the column at (2.5m, 0, 0.9m) 

(consequently, the beam-column connection there can only transmit forces and 

cannot sustain any bending moments); (vi) the area of one brace in first floor is 

reduced to 2/3. 
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7.2 Application of the Method 

 

To compute the dynamic response of the analytical model of the benchmark 

structure, a data generation program called “datagen.m” was downloaded 

from the ASCE SHM Task Group web site (at 

http://wusceel.cive.wustl.edu/asce.shm/). This code presents the graphical user 

interface (GUI) in Figure 2, and allows the user to select which undamaged 

baseline case to run and which damage pattern to use among those described in 

the previous section, or to create new damage patterns. The fast Nigham-

Jennings algorithm, which makes use of the MATLAB SimuLink toolbox, was 

selected for the responses calculation. Given a constant initial excitation level of 

150 kN, different seed numbers were used for the force generation in the 

undamaged cases, to obtain couples of reference tests from which the threshold 

value ADMu of the damage index can be estimated. The other user-defined 

parameters shown in Figure 7.2 were set as their default values. In particular, a 

noise level of 10 is included in the analyses, the sampling time interval is 0.001 

s, and the total duration is 40 s. 

For each simulated case, the resulting acceleration time histories of length 

NP = 40001 points were computed at different measurement points and 

collected as column vectors of a measurements matrix, acc, of size NP × NC, 

where NC = 16 is the total number of measurement points in the x and y 

directions. The sensor locations in Figure 9.3 are denoted by the column 

number of the corresponding measurements in matrix acc. When performing the 

analyses in the weak y-direction, only the even column indices of acc are 

considered, while the odd column indices corresponding to the measurements 

http://wusceel.cive.wustl.edu/asce.shm/
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along the x-direction are used only in the three-dimensional analyses of Cases 4 

and 5.  

 

 

 

 

 

 

 

 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 7.2 Graphic User Interface (GUI) of datagen.m (from 
http://wusceel.cive.wustl.edu/asce.shm/). 

http://wusceel.cive.wustl.edu/asce.shm/
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Figure 7.3 Sensor locations and id numbers. 
 

 

The total number of sensors in each direction is therefore NS =NC / 2 = 8. 

Note that the distribution of sensors for this problem is rather sparse, because 

only two sensors per floor are available for each horizontal direction. The SHM-

RSM was instead developed for distributed monitoring systems, and it needs the 

presence of adjacent sensors to effectively localize the damage. However, this 
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application is useful to evaluate its efficacy when compared with the other SHM 

techniques whose results for the benchmark problem are reported in literature. 

The data obtained from “datagen.m” were used to compute the relative 

accelerations of one floor with respect to the one immediately below. The 

resulting time histories needed to be previously normalized by subtracting from 

each signal its mean, and by dividing it by its root mean square. 

The normalized relative acceleration time histories are used as inputs to the 

method described in section 6.3 and summarized in Figure 6.13. In particular, 

for each baseline configuration of the undamaged structure, the measurements 

from each damage pattern were regressed together with those of the reference 

undamaged case, and the resulting global SSE-histogram was compared with 

twice the one obtained by considering the undamaged case alone. For the 

benchmark case, the parameter γ was set equal to 40; therefore, the time 

histories were considered as 125 clusters of n = γNS = 320 points each. 

By permuting the response variable so that all the sensors are considered as 

functions of the others, a SSE-histograms comparison is obtained at every 

location. The damage index, ADM, is defined as the non-dimensional difference 

of the means of the two histograms. Since the input data were already made 

non-dimensional by dividing them by their rms, in this case it is not necessary 

to divide the means difference by the global one. The values of ADM are 

compared to the limit value, ADMu, of the considered baseline configuration. 

This limit is obtained by applying the method to two sets of measurements of 

the undamaged structure under different loads (simulated by assigning different 

seed numbers), and by computing the corresponding maximum value of the 

non-dimensional means difference of the SSE-histograms. 
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7.3 Results for the Benchmark Structure 

 

The results for the cases 1, 2, and 3 (see Figure 7.2) of the benchmark problem 

are given in Table 7.I, 7.II, and 7.III, respectively, for the damage patterns 1 and 

2. Damage pattern 1 is correctly identified in all cases by detecting the damage 

at the sensors on the first floor only. The histograms comparisons at each sensor 

location for case 2 and damage patterns 1 and 2 are shown in Figures 7.4 and 

7.5, respectvely. From these pictures, it is evident that a significant shift 

between the histograms occurs at the sensors located on the floors where the 

damage is introduced (floor 1 for damage pattern 1; floors 1 and 3 for damage 

pattern 2). In this case, all the other regions do not seem to be affected by the 

damage, since the histograms stay close to each other. However, for case 1 and 

damage pattern 2 (see Table 7.I) a small shift of the histograms is observed also 

for the second floor, whose response is influenced by the removal of the braces 

on the third floor. This effect becomes more significant for case 3 and damage 

pattern 2 (see Table 7.III), where the shifts at the sensors on the second floor are 

larger than the ones at the sensors on the third floor. Therefore, in this case the 

damage could have been introduced either at the second or at the third floor. But 

this ambiguity also depends on the inter-story position of the bracing system, 

whose edges correspond to both the second and third floors. 

Cases 4 and 5 and damage patterns 4, 5, and 6 introduce an asymmetry in the 

structure. This leads to high values of SSE, whose histograms become very 

narrow, i.e., with a very small variance. The change in the structural behaviour 

is due more to the new asymmetry than to the specific damage inferred to the 

structure. The ADM values are all far beyond their limit values, so that in these 

cases the presence of damage is detected, but it cannot be located.  
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As an example, the results for case 3, damage patterns 3 and 4 are given in 

the first row of Table 7.IV. Both damage cases give similar results, and the 

maxima ADM correspond to the first floor. To distinguish if damage occurs at 

the right or left hand side of the structure, one could separate the sensors on 

each side, and perform the analyses only on four sensors (second row of Table 

7.IV). The damage is located on the side where the maxima ADM values are 

observed. The high values obtained may be due to the fact that we are 

comparing an  asymmetric damaged condition to a symmetric baseline 

configuration. To distinguish damage pattern 4 from 3 we could compare them 

with each other (last row of Table 7.IV), thus recognizing a damage in 10. 

However, this procedure is not reliable, and what we should be able to do is 

to compare the sensor at the damage location with the adjacent ones on the same 

floor. The lack of a sufficient number of sensors prevents from locating 

damages of small entities. We will show in the next section how it is instead 

possible to locate the lack of a single bracing system by a more distributed 

sensors placement. 
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Figure 7-5: Histograms comparison at different sensor locations for CASE 2, damage pattern 1.  
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Figure 7-4: Histograms comparison at different sensor locations for CASE 2, damage pattern 2. 
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TABLE 7.I RESULTS FOR CASE 1 AND DAMAGE PATTERNS 1 AND 2. 

(THE DASHED LINE CORRESPONDS TO ADMu = 0.2858). 
 

CASE1, DAMAGE PATTERN 1 CASE1, DAMAGE PATTERN 2 

abs(ADM) Sensor abs(ADM) Sensor 

0.0305 

0.0396 

0.0471 

0.0593 

0.0752 

0.0828 

1.0757 

1.1150 

10 

12 

6 

8 

16 

14 

2 

4 

0.0735 

0.0794 

0.4782 

0.4959 

0.8333 

0.8496 

1.6321 

1.6671 

14 

16 

6 

8 

10 

12 

2 

4 

 

 

 
TABLE 7.II RESULTS FOR CASE 2 AND DAMAGE PATTERNS 1 AND 2. 

(THE DASHED LINE CORRESPONDS TO ADMu = 0.1958). 
 

CASE2, DAMAGE PATTERN 1 CASE2, DAMAGE PATTERN 2 

abs(ADM) Sensors abs(ADM) Sensors 

0.1040 

0.1056 

0.1326 

0.1344 

0.1481 

0.1537 

0.8721 

0.8887 

12 

10 

6 

8 

16 

14 

2 

4 

0.1465 

0.1492 

0.2244 

0.2357 

0.7142 

0.7151 

0.7298 

0.7339 

6 

8 

16 

14 

2 

4 

10 

12 
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TABLE 7.III RESULTS FOR CASE 3 AND DAMAGE PATTERNS 1 AND 2. 

(THE DASHED LINE CORRESPONDS TO ADMu = 0.5263 IN THE y-DIRECTION, 

AND TO ADMu = 0.31 IN THE x-DIRECTION ). 

 

CASE3, DAMAGE PATTERN 1 CASE3, DAMAGE PATTERN 2 

y-direction y-direction 

Abs(meandifference) Sensors Abs(meandifference) Sensors 

0.0041 

0.0118 

0.0353 

0.0477 

0.0724 

0.0816 

1.2044 

1.2091 

14 

16 

8 

6 

12 

10 

4 

2 

0.5813 

0.6023 

1.3998 

1.4100 

6.6094 

6.6256 

10.8644 

10.8765 

14 

16 

12 

10 

8 

6 

4 

2 

x-direction x-direction 

Abs(meandifference) Sensors Abs(meandifference) Sensors 

0.0116 

0.0148 

0.0567 

0.0597 

0.1302 

0.1307 

0.4573 

0.4704 

15 

13 

5 

7 

11 

9 

1 

3 

0.1126 

0.1172 

0.1221 

0.1258 

0.7058 

0.7070 

2.1328 

2.1370 

13 

11 

15 

9 

5 

7 

1 

3 
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TABLE 7.IV RESULTS FOR CASE 1 AND DAMAGE PATTERNS 3 AND 4 

(THE DASHED LINE CORRESPONDS TO ADMu = 0.2858). 
 

CASE1, DAMAGE PATTERN 3 CASE1, DAMAGE PATTERN 4 

abs(ADM) Sensor abs(ADM) Sensor 

1.9526  

2.3732 

2.9178 

3.3798 

3.5577 

3.9898 

4.6691 

4.8240 

8 

6 

12 

16 

10 

14 

2 

4 

2.0870 

2.4996 

3.2647 

3.5787 

4.0148 

4.1822 

4.9058 

5.2460 

8 

6 

12 

16 

10 

14 

2 

4 

CASE1, Damage Pattern 3 CASE1, Damage Pattern 4 

abs(ADM)    Sensor abs(ADM)    Sensor 

l.h.s. r.h.s. l.h.s. r.h.s. 

     0.9046    2.0000 

    1.4346    3.0000 

    2.1052    1.0000 

    4.1232    4.0000 

0.7004    1.0000 

1.8637    2.0000 

3.4261    3.0000 

13.6654    4.0000 

     0.8109    2.0000 

    1.7564    3.0000 

    4.0205    1.0000 

    4.7772    4.0000 

     0.4762    1.0000 

    1.8975    2.0000 

    3.5233    3.0000 

   13.6994    4.0000 

CASE1, Comparison Damage Pattern 4 and  Damage Pattern 3 

abs(ADM)    Sensor 

     0.0103    2.0000 

    0.0182    6.0000 

    0.0371    8.0000 

    0.1356   16.0000 

    0.1498   12.0000 

    0.1599   14.0000 

    0.2232    4.0000 

    0.2372   10.0000 
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As a final remark, it must be reported that we applied the Lyapunov 

exponent approach to the ASCE benchmark cases 1, 2 and 3, focusing on the 

damage paths 1 and 6. 

For case 1, when all the sensors are considered in the analysis a dimension 

larger than 10 (10.578267) is obtained. By contrast, when only the sensors in 

the direction of the excitation are retained, the dimension goes down to 2 

(2.281453).  

This testifies the quite ineffective role of the transversal sensors in this study. 

In other words, there are several sensors, but only a few of them provide useful 

information to detect the kind of damage that was introduced. 

It should be also noted that to use a window of data without the initial points 

is more accurate in detecting damage. The damage detection is pursued by 

observing the decreasing value of the Lyapunov dimension (2.346864 for 

the undamaged case and 2.282358, and 2.284072 for damages paths 1 

and 6 in case 1). But the few sensors allow one to detect just one positive 

Lyapunov exponent, which in this case increases with damage (from 

4.940176e-02 to 5.472561e-02 and 5.050406e-02 in the three 

situations, respectively). 

This confirms that more exponents must be compared, but in this case only 

one of them is positive. It is hard however to distinguish damaged and 

undamaged conditions from the estimated oscillations. 

We move now to case 2, with the following results: the Lyapunov exponent 

is equal to 2.378224 in the undamaged state, to 2.208108 and 

2.310382 for damage paths 1 and 6, respectively. Here the only positive 

Lyapunov exponent decreases from 5.619954e-02 to 4.427956e-02 

and 5.521079e-02, respectively. 
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These results authorize one to expect easy damage detection in case 1, while 

case 6 cannot be distinguished from the undamaged case. 

The results for case 3 when using all the 16 sensors give a Lyapunov 

dimension of 7.065286, while when considering only 8 of them the 

dimension becomes 2.237522 in the undamaged case and decreases to 

2.165715 and 2.146255 for damage paths 1 and 6, respectively. 

Here in case 3, the only positive Lyapunov exponent correctly decrease from 

the undamaged case value 4.846539e-02 to 4.164272e-02 and 

4.196441e-02, respectively. 
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Chapter 8 

 

 

 

Experimental Analyses 

 

 

 

The experimental data were obtained from two structures at the JRC-ELSA 

laboratory in Ispra: the “BABYFRAME” and the “Palazzo Geraci façade” 

specimens. The latter one is a continuous structure of nonlinear behaviour, 

exposed to environmental conditions. Hence, the complexity of the problem 

requires that it must be treated separately, in the next Chapter. To provide a first 

evaluation of the performance of the proposed damage detection method when 

applied to data recorded from real structures, the “BABYFRAME” specimen 

was instead selected for its simplicity. It is a steel frame with three reinforced 

concrete floors, which was built in a controlled laboratory environment, at scale 

2/3 of a real building. The damage is in this case represented by the removal of 

two braces at the first floor. 
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Since in most practical applications one cannot infer damage to a structure, 

an inverse procedure was adopted to perform the experimental analyses. 

Assuming that the structure in its present state is damaged, the undamaged 

situation is restored by adding stiffness elements or by filling the cracks with 

mortar (in Chapter 9). The data recorded before and after the strengthening 

operation are then statistically compared to detect and locate the structural 

changes. 

 

 

8.1 The JRC-ELSA Laboratory 

 

The ELSA (European Laboratory for Structural Assessment) of the European 

Union Joint Research Centre (JRC) in Ispra (north of Italy), aims to the 

definition of precise methodologies and procedures for structural health 

monitoring and retrofitting/repair techniques. Particular attention is paid to 

seismic prevention and protection. For this purpose, a reaction wall was built to 

perform pseudo-dynamic tests on real scale structures. The reaction wall is 16 m 

high and 21 m wide, so that a four or five-story real scale building, or multiple 

small buildings can be tested. 

The activities carried out at the laboratory cover different topic areas, among 

which it is worth mentioning the assessment and retrofit of reinforced concrete 

frames, the seismic evaluation of masonry structures, the seismic protection of 

structures by means of isolators and viscous-elastic dampers (passive control), 

and the active control of structures in the civil engineering applications. 

The introduction in the code of new construction techniques which meet the 

seismic requirements of a particular area, and the conservation of the cultural 
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heritage are of main concern in Europe. Specimens of historical monuments are 

therefore assessed at ELSA, and innovative retrofit techniques are studied for 

their seismic protection. The Palazzo Geraci façade, which will be analyzed in 

Chapter 9, was tested with a base isolator made of eight radial C-steel elements 

between two octagonal plates of support. The study of the Sao Vicente de Fora 

monastery cloister (Lisbon), within the project COSISMO, showed the good 

deformability of arch-column systems under seismic loading, and the 

effectiveness of placing pre-stressed bars above the arches is currently under 

investigation. The recent retrofits of the San Giorgio in Trignano bell tower and 

of the lateral tympani of the upper San Francesco di Assisi Basilica, which 

represent the first worldwide applications of innovative anti-seismic devices 

based on shape memory alloys, were performed following the excellent results 

obtained at the ELSA laboratory, within the project ISTECH (Innovative 

Stability Techniques for the European Cultural Heritage). A shape memory 

alloy, in its austensite form, presents the advantages of a super-elastic stress-

strain relationship, which is characterized by a wide hysteretic cycle (high 

dissipation of energy) within two plateaux of loading-unloading (constant stress 

at increasing strain), and small residual deformations. Comparative analyses 

were carried out by testing also fibre composite reinforcements. This latter 

retrofit technique decreases the shear collapse mechanisms and is not expensive, 

but it is not always applicable to monumental structures because of its anti-

elasticity. 
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8.2 The “Babyframe” Specimen 

 

The “BABYFRAME” specimen is a three-story steel frame with reinforced 

concrete slabs on each floor (Figure 8.1). The scale is 2/3 of a real structure. 

The geometric features of the specimen are given in Figure 8.2. The frame has 

two longitudinal bays of 4 m each (in the X direction) by one transversal bay of 

2.5 m (in the Y direction). The height of the each floor is 2 m. The profiles of 

the columns are HEB140 and those of the longitudinal and transversal beams 

are IPE180; all of them are made of standard steel Fe360 and welded. The 

details of the welded beam-column joints are shown  in Figure 8.3. The 

reinforced concrete slabs were poured on a corrugated steel sheet, which was 

clamped to the beams by nails, as shown in Figure 8.4. The undulations  of the 

steel sheet are oriented along the transversal direction. The structure was built 

within the ELSA laboratory and rigidly clamped to its strong floor.  

The “BABYFRAME” was used for several studies, in different topic areas. 

For example, passive and semi-active control devices were recently applied to 

the structure, and their performances under seismic excitation were evaluated 

and compared. The devices were designed specifically for this structure, which 

had been previously dynamically characterized by tests with the hammer and 

modal analyses. The structure was strenghtened by steel braces on the 

transversal sides, and it underwent several pseudo-dynamic tests, with and 

without the control devices. The braces and the devices prevented the structure 

from being damaged. However, after the tests the damaged braces were 

removed, and no braces are currently present on the structure. 



Charter 8 Experimental Analyses 
 

169 

  
 

Figure 8.1 BABYFRAME. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 

 
 
 

Figure 8.2 (a) Plant view and (b) Elevation of the BABYFRAME specimen. 

b) 

a) 
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Figure 8.3 Details of the welded beam-column connections. (a) Exterior joint. (b) Interior joint.  

(c) Internal view of an exterior joint. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8.4 Cross-section of the reinforced concrete slab on the beam flange 

 

 

8.3 The Test Setup 

 

The test was performed by placing seventeen accelerometers on the structure, and 

by measuring their response while an electro-dynamic shaker, mounted on the 

third floor in eccentric position, was providing a random excitation. An Analogue 

Device ADXL05EM-1 with a sensitivity of 20 m/s2/V was used to measure the 

force of the shaker. The accelerometers were ten Schaevitz S05-E001 with a 

sensitivity of 2 m/s2/V, and seven Crossbow CXL01LF1 with a sensitivity of 5 

m/s2/V. The position of the accelerometers and the shaker are shown in Figure 8.5. 

c) 

b) 

a) b) 
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The most of the accelerometers (nine) were placed on the first floor of the 

structure, so that at least the measurement of the acceleration in the longitudinal 

X-direction was taken at each beam-column joint. In particular, all the 

accelerometers Crossbow of higher sensitivity were placed here, together with 

two Schaevitz in node 7 (one for each horizontal direction). The upper two 

floors were instrumented with four Schaevitz each. Each couple of sensors was 

places at the opposite edges of the building with respect to the other, and it 

measured the acceleration in the X and Y direction, respectively. 

The shaker has a mass of 30 kg and was mounted at a position of coordinates 

(6.575, 2.275, 6) m. The signal given to the shaker was a random signal with a 

frequency range from 1 to 80 Hz. Each test has 12 excitation signals with a time 

distance of 20 s between them. The excitation was applied in the –X (longitudinal) 

direction, where the negative sign is assigned to the accelerations in the same 

direction. A technical description of the shaker is given in Figure 8.6.  

The signals were collected at a PC through a TEAC GX-1 front end with 16 

channels with an expansion unit, which has 16 channels. The sampling frequency 

was 200 Hz and a filter of 80 Hz was used in each channel. 

A bracing system was then mounted at the first floor in order to change the 

structure’s stiffness (Figure 8.7) and the same test was performed again. 

Figure 8.8 provides the records of the shaker time histories (along the X axis, 

i.e., longitudinal) and the records at the accelerometer 3, during the unbraced 

and braced  tests. 
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Figure 8.5 Sensors locations and types. 

 
 
 
 
 
 
 
 
 
 
 

a) 

b) 
Figure 8.6 (a) Shaker installed on the top of the structure. (b) Technical description of the electro-

dynamic shaker used as forced excitation.

Maximum Force:Maximum Force: 445 N445 N
Maximum Velocity:Maximum Velocity: 750 mm/s750 mm/s
Maximum Stroke, Maximum Stroke, pp--pp:: 158 mm158 mm
Armature Coil Impedance:         2 ohmArmature Coil Impedance:         2 ohm
Total Shaker Weight:Total Shaker Weight: 73 kg73 kg
Overall DimensionsOverall Dimensions
-- Length:                             526 mm Length:                             526 mm 
-- Width:                              314 mm Width:                              314 mm 
-- Height:                             178 mmHeight:                             178 mm
Moving Mass with 2 Blocks:Moving Mass with 2 Blocks: 18 kg18 kg
Moving Mass with 4 Blocks:     30 kg Moving Mass with 4 Blocks:     30 kg 
Power Amplifier:Power Amplifier: Average Output into shaker reactive load: 500 VAverage Output into shaker reactive load: 500 V--A A rmsrms
Peak Output:                      1000 VPeak Output:                      1000 V--A A rmsrms (24 A peak)(24 A peak)
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b) a) 

a) b) 

 

 

Figure 8.7 (a) Damaged state and (b) undamaged state of the structure. Note that the sensors 

located close to the damage are the accelerometers 17, 14, 16, and 18. 

 

Figure 8.8 Force-time histories measured by sensor 1 during (a) the damaged and (b) the 

undamaged tests. 

 

 

 

 

 

 

 

 

 

Figure 8.9 Acceleration-time histories measured by sensor 3 during (a) the damaged and (b) the 

undamaged tests. 

a) b) 
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8.4 Results 

 

The data collected during this laboratory test are the same ones that were used 

for the exemplifications of Chapters 2 and 5. Thence, for the data sets collected 

in the damaged and undamaged cases, one already knows that the presence of 

damage can be detected by using any of the measures introduced in Chapter 5, 

i.e., entropy, Kolmogorov entropy, Lyapunov exponent spectrum and Lyapunov 

dimension (see Figures 5.4 and 5.5 and Table 5.I). The SHM-RSM method is 

now applied to the same data to verify that not only it can detect the damage, 

but it is also able to correctly localize it. 

We recall that the time histories collected from the damaged and undamaged 

states of the structure contain 50479 points each. Before the damage detection 

method can be applied to the available measurements, the processes of data 

filtering, data cleansing and data fusion described in Chapter 3 need to be 

applied. 

The signals are filtered in the frequency domain by taking their 216 points 

fast Fourier transform (FFT) and by multiplying it by a function which consists 

of an increasing sine wave, a middle flat plateaux, and a decreasing sine wave. 

In this way, the high and low frequencies are eliminated from the frequency 

contents of the signals. The corrected signals in time domain are then obtained 

by inverse FFT. 

The points corresponding to the 20 seconds of pause between each couple of 

successive excitation pulses are extracted from the signals, and only the parts of 

time histories during which the excitation is active are used in the analyses. No 

data normalization is attempted. 
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The resulting measurements to which the damage detection method is 

applied are acceleration time histories, in physical units (m/s2), with zero means 

and a reduced number of points, NP = 9827. The force measurements obtained 

from sensor 1 are not used in the analyses, because we want the method to be 

independent of the input excitation. Hence, the total number of sensors, in the X 

and Y directions, is NS = 17. As in the previous Chapter, we collect the 

acceleration time histories in a NP×Ns matrix, from which the clusters of n 

measurements on which the multiple linear regression model is built are 

repeatedly taken until the entire length of the time histories has been considered, 

and then cycled according to the sensor whose measurements are considered as 

response. To achieve a significant number of clusters compared to the number 

of variables in the response surface model, a parameter γ = 5 was selected so 

that each of the reduced time history was divided into 115 segments of n = 85 

points each.  

Figure 8.10 shows the SSE histograms comparison at the sensor locations 

that surround the damaged area. The damage indices computed in Table 8.I 

show that the highest values correspond to these locations, thus correctly 

identifying the place where the longitudinal braces had been removed. Note 

that, when the method is applied to the accelerometers in the X direction, it 

correctly detects and localizes the damage at the first floor, and it recognizes 

that also the second floor response is slightly affected by the presence of 

damage, while the third floor response does not significantly change. In the Y 

direction, the damage at the first floor is detected only by accelerometer 15, 

while the other histograms do not significantly change. Although these 

accelerometers record the influence of the shaker because of its eccentric 
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position, no transversal braces were added or removed from the structure. 

Therefore, no structural change is detected in this direction. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 
 
 
 
 
 
 
 
 

Figure 8.10 SSE comparison for the accelerometers 17, 14, 18, and 16. 
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TABLE 8.I VALUES OF THE ADIMENSIONAL DIFFERENCE OF THE SSE-MEANS AT DIFFERENT SENSOR 

LOCATIONS; A DASHED LINE DIVIDES THE SENSORS WHICH DETECT DAMAGE FROM THOSE WHICH 

DO NOT, BY COMPARISON WITH A REFERENCE VALUE OF ADMu = 0.2553. 
 

ADM SENSOR 

0.1705 

0.1801 

0.2163 

0.2249 

0.2414 

0.2445 

0.2677 

0.2724 

0.2765 

0.3080 

0.3129 

0.3257 

0.3441 

0.3685 

0.4057 

0.4557 

0.5801 

3 

5 

4 

10 

13 

8 

9 

2 

6 

7 

12 

15 

11 

17 

18 

16 

14 

 



Sara Casciati  Damage Detection and Localization in the Space of the Observed Variables 

 
 

178 

References for Chapter 8 

 

Casciati S., Colabrese E., and Magonette G. (2003a). “Damage Detection and 

Localization by Statistical Comparison of Response Time Histories”, 

Structural Health Monitoring 2003, F.-K. Chang (ed.), DEStech, 

Lancaster, 733-741. 

Casciati S., Colabrese E., and Magonette G. (2003b). “Monitoring and 

Response Surface Methodology to detect and Locate Structural 

Damage, Structural Health Monitoring and Intelligent Infrastructures”, 

Z. Wu and M. Abe (eds.), Balkema, Lisse, The Netherlands, Vol. 1, 

423-429.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



179 

 

 

 

 

 

Chapter 9 

 

 

 

The Palazzo Geraci Case of Study 

 

 

 

The last presented application of the response surface damage detection method 

deals with a structure close to a real-case situation. Indeed, the structure under 

investigation is a complex continuum exposed to environmental conditions, so 

that it undergoes traffic and wind loading, as well as temperature gradients. In 

this case, the damage is represented by the cracks in the masonry. 

Measurements of the dynamic response of the cracked structure were taken 

applying different excitation methods, including a hammer, a shaker at the top, 

and ambient vibrations. The specimen was then retrofitted by filling the cracks 

with a mortar-type material to restore the undamaged condition of the structure. 

Thence, the measurements acquisition was repeated to obtain data from the 

reference undamaged case. The response surface method is applied to the 

recorded data sets in order to investigate its ability to detect and locate damage. 
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a) 

9.1 The Damaged Model of the Palazzo Geraci Façade 

 

Palazzo Geraci is an ancient, baroque, noble palace in Palermo, Sicily. It was 

first built in the seventeenth century as the residence of the prince of 

Roccafiorita, and then acquired by the family of the marquees Geraci. In 1780, 

the architect Venanzio Marvuglia was charged with consistently modifying the 

façade and re-organizing the interiors. As a result, in the nineteenth century the 

building presented itself as documented by Figure 9.1a. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.1 Front prospect (top) and plant (bottom) of Palazzo Geraci: (a) in the nineteenth 

century, and (b) at present. 

b) 
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The palace was built around the interior gardens and it was made of a ground 

floor, a split mid-floor, a noble floor, and a loft. The apartments between the 

ground floor and the noble floor were assigned to the servants, while the ground 

floor was occupied by shops. Three arch-gates, two lateral ones and the 

principal gate at the centre of the front façade, allowed the vehicles inside the 

gardens. The main central gate was between two smaller entrances for 

pedestrians, and it gave on a hall from where one could access the noble floor 

by the main stair on the left. Above the gate, the front façade was decorated by 

windows and balconies. The central balcony, or tribune, was supported by the 

two columns at the sides of the gate.  

The building underwent several transformations along the centuries, and it 

was partially destroyed before it assumed its present configuration. In 1875, 

some works were made on the building façade, including the addition of some 

balconies at the noble floor and the wet plaster finishing. At the beginning of 

the twenties, when the nobles were replaced by the middle-class, the building 

was partitioned into several properties and the access system to the various parts 

was changed, thus losing the architectonical integrity of the palace. To make 

matters worse, most of the interiors were destroyed by the bombing during 

Second World War, and currently the façade stands in precarious conditions, as 

shown in Figure 9.1b. 

The retrofit studies focused on the central part of the façade (Figure 9.2), 

including the main arch-gate, the openings, and the tribune supported by the 

two columns. This portion was reproduced in a 1:2 scale model at the ELSA 

Laboratory, in Ispra. Photogrammetry and Laser Vibrometry were used for the 

geometric and mechanic characterisation of the monument. The model design 

was commissioned to an architectural office in Palermo. The resulting “Palazzo 
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Geraci façade” specimen was mounted perpendicularly to the reaction wall of 

the ELSA Laboratory, and it underwent a series of pseudo-dynamic tests. 

Details of the construction of the specimen and of the pseudo-dynamic tests are 

given in Appendix B. 

The upper part of the wall, corresponding to the noble floor of the palace, 

was severely damaged by the last series of pseudo-dynamic tests, and it had to 

be demolished. The remaining part is 4.6 m high and 0.7 m thick, with a total of 

five openings. The reduced model was then transported from the laboratory to 

its present location outside of the building (Figure 9.4). During the move, new 

cracks formed in proximity of the openings.  

The cracked state of the reduced model is documented by the pictures in 

Figure 9.5. The cracks are present on both sides of the model front façade, but 

on the left side they are less evident than on the right side. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.2 (a) The central part of the façade of Palazzo Geraci nowadays, and  

(b) detail of the ground floor. 

a) b) 
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Figure 9.3 (a) The reduced model in its present location outside of the laboratory (the structure on 

the right is a 1:1 scale steel frame, which was assembled and then carried inside the laboratory for 

testing). (b) Front prospect and sections of the reduced model. 

 

 

 

 

 

9.2 Data Acquisition 

 

The measurements acquisition was carried out by Fabio Beni within the 

framework of his MS-thesis [Beni, 2000]. Modal analysis was applied for 

damage detection: in particular, the modal frequencies and the mode shapes 

were experimentally determined and compared with those computed by a two 

dimensional finite element model of the front facade of the structure. Therefore, 

the monitoring system was planned and developed with this specific task in 

mind. The experimental part of this thesis is reported here to understand how 

the measurements were taken. 

a) b) 
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Figure 9.4 Cracks at different locations of the reduced model: (a) left openings; (b) right 

openings; (c) central-left foot; (d) right-end foot (through cracks on the rear side). 

d) c) 

b) a) 
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Figure 9.5 Sensors locations and id numbers. Note that the main cracks in the structure are 

located close to sensors 5, 8, 12, and 2. 

 

 

9.2.1 The Monitoring System Installation 

Assuming as principal direction of the excitation the one parallel to the plane of 

the façade, the sensors were placed to best identify the mode shapes in this 

plane. The main concern was the correct determination of the lower modes of 

the wall for its dynamic characterization, while less attention was paid to the 

portal frame supported by the columns, which were instrumented with only a 

few sensors. Accelerometers were placed also on the short sides of the structure 

to depurate the experimental frequencies from the torsional and transversal 

contributions. The resulting sensors number and locations are shown in Figures 

9.5 and 9.6a. 

+ acc. 
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The selected type of sensors is a capacitive accelerometer, which functions 

exploiting the same principle of a condenser: the vibration of the device causes 

a distance variation between two plaques embedded in a dielectric fluid, varying 

their electric capacity, which results in a current or voltage change. Fifteen 

Lucas/Schaevitz accelerometers, with sensitivity of ±0.2 g/volt and powered at 

5 Vpk, were used. In the tests with the shaker, a further sensor (sensor 13), with 

a sensitivity of ±0.8 g/volt, was glued to the moving mass of the shaker at the 

top of the structure. 

The accelerometers were mounted by cementing aluminium plates to the 

masonry; the sensing devices were then attached to the plates by screws (Figure 

9.6b). 

The signals acquisition system (Figure 9.6c) consisted of an industrial PC, 

on which a data acquisition software developed by the ELSA laboratory is 

implemented. The software requires the user to input all the information 

concerned with the acquisition (e.g., the number of channels, the duration of the 

test, the sampling frequency, etc.). Once the acquisition is started, the data 

recorded by the accelerometers are not saved until a trigger is switched. No low-

pass filter for anti-aliasing was applied to the signals. 

The industrial PC was linked to a junction box, able to receive up to 16 

channels and powered at 15 V (Figure 9.6d). Each channel corresponds to a 

cable from an accelerometer, and all the inputs are passed to the industrial PC 

through one output. As one can see from Figure 9.6e, the most difficult and 

time-consuming part of the monitoring system installation was the cabling. 
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Figure 9.6 Monitoring system. (a) Sensors installation. (b) Accelerometer. (c) Data acquisition.  

(d) Junction box. (e) Cabling. 

b) 

d) c) 

a) 
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Figure 9.7 Forced excitation methods. (a) Instrumented hammer. (b) Shaker at the top of the 

structure, in central position. 

 

 

 

9.2.2 The Excitation Methods 

To record the dynamic response of the structure to different loadings, both 

forced and environmental excitation methods were applied to the specimen by 

performing different tests. 

In the ambient vibration tests, the wind was the main excitation source, since 

the near-by traffic is usually very low. Therefore, the results very much 

depended on the weather conditions of the days in which the tests were 

performed. 

The forced excitation was applied to the structure using either an 

instrumented hammer or a shaker. 

The size of an instrumented hammer (Figure 9.7a) depends on the mass and 

on the volume of the structure under investigation. Indeed, the energy 

transferred to the structure must be of a sufficient amount not to be absorbed by 

the structure, or covered by the environmental noise. In this case, the selected 

hammer has a mass of 5 kg and a rubber tip, appropriate to excite the low 
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frequencies. To correctly excite the structure, the strokes must be calibrated 

with intensities of the same order. Indeed, although the excited natural 

frequencies stay almost the same, the damping is strongly influenced by the 

intensities of the strokes due to the different motion mechanisms that they may 

generate. At the base of the hammer handle there is a BNC connection to which 

a cable can be linked for power supply. The cable gives current to the force cell 

located close to the rubber tip, and it sends the signal recorded by the force cell 

to the analyzer. However, the hammer can also be used as a simple excitation 

source, without power supply. 

The same electro-dynamic shaker used for the BABYFRAME tests and 

described in Chapter 8, was mounted at the top of the structure, in central 

position (Figure 9.7b). For this purpose, a plate was fixed to the top of the 

structure by metal pins embedded in designated holes, and the shaker was then 

bolted to the plate. Two other lateral plates were added to the top of the 

structure in view of performing other tests with the shaker in eccentric position. 

The resonance peaks of the signals vary due to the presence of the shaker on 

the structure. Indeed, the addition of a mass to the structure causes its resonant 

frequencies to decrease (accordingly to the relationship mk /=ω , for a single 

degree of freedom system of  natural frequency ω, stiffness k, and mass m). This 

effect must be taken into account overall when dealing with structures of small 

dimensions, as pedestrian bridges. Also the position of the shaker affects the 

frequencies of the structure, modifying the frequency associated to the first in-

plane mode shape more than the others. To obtain comparable results, the 

shaker was kept on the structure during all the tests. 
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9.2.3 The First Set of Tests on the Damaged Structure 

All the three excitation methods were used to record the response of  the 

structure in its damaged state. In particular, two ambient vibration tests (a01 and 

a13), two tests with the shaker (a09 and a10), and  eleven tests with the 

instrumented hammer in different positions were performed, for a total of 

fifteen tests which are described in Table 9.I. The results were then analyzed in 

the frequency domain by means of the spectral power density function, in order 

to judge the clearness of the signals, to compare the signals obtained with the 

same excitation method, and to compare the different excitation methods among 

each others. These observations are useful to select the most reliable time 

histories to which apply the SHM-RSM method, and therefore they are 

summarized here. 

The ambient vibration tests, a01 and a13, provided similar, but different 

results in terms of frequency content. Indeed, the spectral power densities of the 

signals recorded in a01 show well-defined peaks, while the ones in a13 have an 

irregular trend, i.e., a rich frequency content. In particular, a peak at 25 Hz is 

present in the signals recorded in a13 by the accelerometers located on the right 

hand side of the structure, thus indicating the motion of part of the structure, but 

the same peak is not observable in the signals of a01. These differences may be 

due to a change in the intensity of the excitation force, which can generate 

different mechanisms and excite new frequencies. During the day in which test 

a13 was performed, the wind was indeed blowing stronger than during the day 

of test a01. 

The tests with the instrumented hammer (which was used only as excitation 

source) provided clear results, especially after erasing the initial effects of the 

strokes. 
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TABLE 9.I TESTS PERFORMED ON THE DAMAGED STATE OF THE STRUCTURE. 

 

TEST EXCITATION 

METHOD 

SAMPLING FREQUENCY 

[Hz] 

DURATION 

[sec] 

a01 Ambient 100 300 

a02 Hammer in 5 100 100 

a03 Hammer in 6 100 100 

a04 Same as a02 500 100 

a05 Same as a03 500 100 

a06 Hammer in 17 500 100 

a07 Hammer in 15 500 100 

a08 Random hammer 500 100 

a09 Shaker chirp 040Hz 100 – 500 360 

a10 Shaker band 100 – 500 300 

a11 Hammer in 8 100 100 

a12 Hammer in 7 100 100 

a13 Ambient  200 900 

a14 Hammer in 7 100 100 

a15 Hammer in predefined positions 100 – 500 200 

 

 

However, the accelerometers close to the impact locations recorded signals 

of very high amplitude with respect to the other signals, and they often gave 

unsatisfactory results. The duration of the signals include the stroke and the 

following time-decay, which is a little longer than 1 s. In practice, the part of the 

signals away from the stroke (after approximately 650 points) is the 

environmental noise and it shows the same frequency characteristics of the 

signals recorded by the ambient vibration tests. In particular, the tests a04 and 
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a05 present the same irregular trend of the ambient vibration test a13; the peak 

at 25 Hz is also present in the signals recorded by the accelerometers on the 

right side of the structure. Erasing less than 650 points, an increase of the peak 

at 25 Hz is observed over all signals, also where it was not present. By erasing 

100 points, the trends in the frequency domain are unclear, and new frequencies 

appear, because at a high level of the stroke intensity there are relevant 

nonlinearities. 

From the comparative analysis of the tests a04 and a05, one observes that the 

frequency contents of the spectral power densities of the signals are the same 

for the low levels of the excitation, but they differ as the level of the excitation 

increases. For example, by hitting the right side of the structure (a04), the 

signals recorded on the opposite side have a richer frequency content than the 

ones on the same side, which highlight only a particular peak. This phenomenon 

does not appear at the low level of the excitation. The best results for a side of 

the structure are therefore obtained by hitting the opposite side (i.e., to obtain 

good results for the right side, one needs to hit the left side, as in a05).  

The tests with the hammer clarified the situation at 16 Hz, which was 

unclear from the ambient vibration tests. The results are more consistent with 

those of the test a13 than with the ones of the test a01. This also confirms that 

the test a13 involved more energy than the test a01. However, the tests with the 

hammer also revealed, in the signals 5 and 8, the presence of a peak at 14 Hz, 

which was not observed in the ambient vibration tests. Since only the signals 5 

and 8 show this peak, it probably corresponds to a local mechanism of the 

structure. The cross spectral densities analysis clearly detects at this frequency a 

local motion of the right part of the structure, which is significant of damage. 

Indeed, the cross-density function of the signals 8 and 9 is null at 14 Hz, 
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indicating that the two sensors are not both excited at this frequency, while the 

cross-density functions of signals 5 and 8 show a peak at 14 Hz, thus detecting a 

local mode of that part of the structure. In this case, the damage could therefore 

be detected by non-destructive techniques and simple signals analysis. 

The results obtained with the electro-dynamic shaker were difficult to 

analyze, probably because the intensity of the excitation was too high for the 

structure under investigation. By varying the intensity of the excitation applied 

to the structure, a change in its resonant frequencies was observed. The current 

intensity is related to the amplitude of the shaker motion: the longest is the path 

that the masses need to follow, at constant frequency, the largest is the 

excitation transferred to the structure. As the intensity of the excitation 

increased, the experimental frequencies of the structure decreased. That is, the 

peaks of the spectral power density functions shifted to the left as the excitation 

intensity increased. Also the height of the peaks varied, and they became taller 

as the excitation force was increased. This phenomenon was observed also in 

the tests with the hammer, and it is probably due to the nonlinear behaviour of 

the structure: indeed the increase of energy invalidates the small displacements 

theory. The asymmetric trend of the peaks with respect to the resonance 

frequency is also indicative of the nonlinear behaviour of the structure. 

 

9.2.4 The Retrofit of the Specimen  by Mortar Injections 

The main cracks observed in the structure were closed by mortar injections. For 

this purpose, holes of 14 mm diameter and 20 cm depth were drilled in 

correspondence to the cracks, with a spacing of 15-20 cm. A small rubber tube 

of length 15 cm was then placed in each hole for a depth of 5 cm. The junctions 

of the tubes to the holes were sealed by filling the cracks with mortar mixed 
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with a low amount of water. A liquid mixture for injections was prepared using 

a drill and a whip for five minutes, and finally shot into the tubes by a gun and a 

silicone cartridge. The injection technique was carried out starting from the 

bottom: when the mortar reached the hole above, the entrance hole was sealed 

and the upper one was injected. At the end of the injections, the mortar was 

allowed to set for twenty days. 

As a result of this retrofitting technique, the specimen now looks as shown in 

Figure 9.8. This state of the structure is referred to as undamaged. From the 

comparison of Figure 9.8 with Figure 9.5, one observes that the main repairs 

were performed in the proximity of the sensors 5, 8, and 12 on the right hand 

side (r.h.s.) of the structure, and of sensor 2 on the left hand side (l.h.s). 

 

 
 

Figure 9.8 Undamaged state of the structure. 
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Therefore, a structural change should be detected at these locations when 

statistically comparing the response time histories from the damaged and 

undamaged states of the structure. The acquisition of the latter measurements is 

described in the next section. 

 

9.2.5 The Second Set of Tests on the Undamaged Structure 

Based on the results of the analyses of the signals recorded on the damaged 

structure, it was possible to plan and to perform a reduced number of tests on 

the retrofitted structure. In particular, only two ambient vibration tests (x01 and 

x04) and four tests with the instrumented hammer in different positions, were 

repeated on the undamaged state of the structure, for a total of six tests which 

are described in Table 9.II. A couple of tests with the hammer (x02 and x05) 

was performed by hitting the right hand side of the structure in 5. The other 

couple (x03 and x06) was performed by hitting the left hand side of the 

structure in 6. The direction of the hammer strokes was always parallel to the 

structure façade. The shaker was not used anymore as excitation source, 

because of the unsatisfactory results that it provided for this type of structure. 

The two ambient vibration tests provided equal results, and they show an 

increase of the first natural frequency of the structure with respect to the 

damaged case. 

Among the tests with the hammer, the tests x05 and x06 were considered 

because the amplitudes of the accelerations were comparable with those 

recorded before the retrofit. The trends of the spectral power densities of the 

signals recorded in tests x05 and x06 are overlapping, and the range of the 

frequency variations is narrower than that observed in the damaged situation. 

This indicates a new monolithic behaviour of the structure, which before was 
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not possible due to its cracked condition. From the cross-spectral density 

analysis, the peak at 14 Hz is not visible anymore because the right side was 

successfully jointed to the rest of the structure. 

Both the ambient vibration tests and the tests with the hammer showed an 

increase of the 14% of the first natural frequency of the structure, with respect 

to the damaged case. This is because a crack was located in a strategic position 

for the stiffness of the first mode, preventing the right-end foot from 

contributing to it. The mortar injections partially restored this collaboration, 

thus increasing the stiffness and the first fundamental frequency. 

 

 

 

 

 

TABLE 9.II TESTS PERFORMED ON THE UNDAMAGED STATE OF THE STRUCTURE. 
 

TEST EXCITATION 

METHOD 

SAMPLING FREQUENCY 

[Hz] 

DURATION 

[sec] 

x01 Ambient 500 600 

x02 Hammer in 5 500 100 

x03 Hammer in 6 500 100 

x04 Ambient 500 600 

x05 Hammer in 5 500 100 

x06 Hammer in 6 500 100 
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9.3 Damage Detection by Global Measures 

 

Let us consider, for example, only the ambient excitation tests, x04 and a13, 

performed on the undamaged and damaged states of the structure, respectively. 

Signals of length 60000 points were collected during these tests. Therefore, 

eight windows of 7500 points each were extracted from the signals and analysed 

in terms of the global measures introduced in Chapter 5. 

When the analysis was conducted on the first window, the undamaged case 

signals gave the results reported in Table 9.III, but the damaged case signals run 

failed because not enough neighbours were identified. This observation gives 

evidence of the unreliability of such a data strip. By contrast, when window six 

is considered, both the damaged and undamaged case signals produce results 

which allow to distinguish between the two structural conditions. Indeed, a 

decrease in all the computed global measures is observed when passing from the 

undamaged to the damaged state of the structure. It can be concluded that, also 

for this example, all the measures of Chapter 5 are working very well in 

detecting damage. However, Table 9.III confirms that  the maximal Lyapunov 

exponent can result not very efficient in detecting damage, while the whole 

spectrum of Lyapunov exponents does it in a clear way. Indeed, by comparing 

only the first column of positive Lyaponuv exponents in Table 9.III, the slight 

change in the maxima can be undetected or considered as not significant of 

damage. Considering all the three columns of positive Lyaponuv exponents, 

instead, does not leave space for doubts. 
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TABLE 9.III GLOBAL MEASURES COMPUTED ON THE UNDAMAGED AND DAMAGED SIGNAL SETS. 
 

AMBIENT 

EXCITATION 

TESTS 

SIGNALS 

WINDOW 

POSITIVE LYAPUNOV EXPONENTS 

*∆t 

KOLMOGOROV 

ENTROPY  

ESTIMATE *∆t 

LYAPUNOV 

DIMENSION 

x04 

(Undamaged) 

Window 1 0.2335 0.1300 0.0383 0.4018 5.426223 

Window 6 0.2229 0.1326 0.0332 0.3887 5.377921 

a13 

(Damaged) 
Window 6 0.2219 0.1117 0.0068 0.3404 4.987422 

 

 

9.4 Damage Localization via SHM Response Surface 

Method 

 

The tests which were performed on both the damaged and undamaged states of 

the structure are summarized in Table 9.IV. In particular, four tests, a couple for 

each of the two structural states, were performed by applying the same 

excitation method: either environmental vibrations, hammer in 5, or hammer in 

6. For each of these methods, the two tests referring to the undamaged state of 

the structure contain the same number of points and they are both  considered in 

the analyses because they are not only useful for the comparison with a global 

set of measurement which includes also the damaged case, but they can also be 

compared one with the other to evaluate the damage index threshold value. The 

two tests performed on the damaged structure have, instead, different durations, 

and the one of lowest number of points is not suitable for the analyses, and 

therefore it is not considered. In conclusion, for each excitation method, we 

consider only one set of measurements from the damaged state of the structure, 
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and two from the undamaged state, for a total of three sets of measurements per 

excitation method (those written in bold in Table 9.IV). 

The accelerometers on the short sides of the structure (sensors 14, 15, and 16 

in Figure 9.5) were not used in the tests on the undamaged state of the structure, 

and therefore no comparison is possible in this direction. The two columns were 

shown to vibrate in a different manner with respect to the structure and to each 

other. Therefore, the corresponding sensors 3 and 4 of Figure 9.5 are not 

significant for regression. Furthermore, Figure 9.9 gives evidence that sensor 11 

was not functioning during the tests on the undamaged structure, since the plots 

of the recorded accelerations are flat, especially when compared to the spikes 

induced by the hammer strokes on the damaged structure. The resulting number 

of sensors that can be used in the analyses is NS = 9. Namely, sensors 1, 2, 5, 6, 

7, 8, 9, 10, and 12 are considered. 

Based on the previous analyses, we expect to detect damage at sensors 5 and 

8, where a local mechanism was recorded in the signals frequency content. In 

particular, the measurements of sensor 5 should be affected by the restored 

collaboration of the right hand side foot of the structure, which was severely 

fractured in the damaged case. Additionally, cracks were repaired also near 

sensors 12 and 1 on the right, and near sensor 2 on the left hand side of the 

structure (see Figures 9.5 and 9.7). Therefore, these sensors should also be able 

to detect a structural change. 

As for the BABYFRAME case, the experimental measurements need to be 

filtered before the method for damage detection and localization can be applied. 

The 216 points fast Fourier transforms (FFT) of the signals are computed and 

multiplied by a function of the same form as the one used in Chapter 8 to cut the 
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low and high frequencies. The inverse FFT of the resulting signals is then 

applied to go back to the time domain. No data normalization was attempted. 

The measurements from the environmental vibration tests are the easiest 

ones to analyze, while the ones obtained with the hammer present different 

number of spikes of different highest intensities depending on the test during 

which they were taken. Therefore, in the latter case, the process of data 

cleansing is fundamental to obtain comparable results. The results from the 

ambient excitation tests are presented in the following section, while the 

hammer tests need to be separately discussed. 

 

 

TABLE 9.IV STATISTICALLY COMPARED RESPONSE TIME HISTORIES  
(ONLY THE ONES IN BOLD WERE USED FOR THE ANALYSES). 

 

EXCITATION 

METHOD 

STATE OF 

THE STRUCTURE 

TEST 

NAME 

SAMPLING 

RATE [s.p.s.] 

DURATION 

[sec] 

NUMBER OF POINTS 

Ambient Damaged a01 100 300 30,000 

a13 200 900 180,000 

Undamaged x01 500 600 300,000 

x04 500 600 300,000 

Hammer in 5 Damaged a02 100 100 10,000 

a04 500 100 50,000 

Undamaged x02 500 100 50,000 

x05 500 100 50,000 

Hammer in 6 Damaged a03 100 100 10,000 

a05 500 100 50,000 

Undamaged x03 500 100 50,000 

x06 500 100 50,000 
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Figure 9.9 Accelerations recorded by sensor 11 during the tests performed with different 

excitation methods on (a) the damaged state, and (b) the undamaged state of the 

structure. 
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9.4.1 Results from the Environmental Vibrations Tests 

The tests with ambient excitation were performed using different durations and 

sampling frequencies on the damaged and the undamaged structure, 

respectively. As a result, the data in a13 (damaged) contain 180000 points 

measured at a rate of 200 samples per second (s.p.s.), while both the undamaged 

tests, x01 and x04, recorded 300000 points long time histories at a rate of 500 

s.p.s. (see Table 9.IV). To build a global linear regression model on the 

damaged and undamaged sets of data, for then comparing its SSE-histograms 

with twice those obtained by considering the undamaged state alone, the 

response time histories need, of course, to be of the same length. Therefore, 

time histories of length equal to the maximum common denominator of 60000 

points were extracted from the original ones with sampling rates of 1 every 2 

and 1 every 5 points, respectively. The points were sampled from a fixed 

window of the original signals, which included the points from 1001 to 

(60000*2)+1 and to (60000*5)+1, respectively.  

For each test, the resulting signals of NP = 60000 points each were filtered as 

previously described, and then collected in an acceleration matrix of size 

NP×NS, where NS = 9. The method defined in section 6.4 was then applied to the 

two matrices obtained from each couple of tests, with a parameter γ = 40 

resulting into 166 undamaged response surface models built on n = 360 points 

each, at each sensor location. The corresponding SSE-histograms are multiplied 

by two and compared with those obtained from the global set of measurements, 

i.e., from the 166 global response surface models built on n = 720 points each, 

at each sensor location. 

The absolute value of the damage index, ADM, defined as the non-

dimensional difference between the means of each pair of histograms (Equation 
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6.36), is computed in Table 9.V for each sensor location and undamaged test. 

These values are compared to the maximum ADMu = 0.0663 obtained by 

applying the SHM-RSM method to the measurements from the two undamaged 

tests x04 and x01. 

Both the comparisons of the undamaged tests with the global one including 

also the damaged test, highlight sensors 5 and 8 as the ones closest to the most 

relevant damage. 

A structural change is also clearly recognized at sensors 2 and 12, which are 

close to cracks that have been repaired. In particular, sensor 2 is the only one on 

the left hand side of the structure to be close to a repaired crack. Sensors 9 and 1 

are on the right hand side of the structure, where most of the cracks are located, 

and therefore they are correctly included into the damaged set. The remaining 

sensors 6, 7, and 10 are instead located on the left hand side, where no repair 

was needed. Therefore, they are correctly classified as undamaged by the 

comparison with the undamaged test x04. However, when considering x01 as 

reference undamaged case, the ADM value computed at sensor 7 is greater than 

the threshold value, ADMu, by a small amount. Therefore, when using this 

damage detection method in practical applications, we should consider the 

sensors whose ADM values differ the most from the threshold value as the most 

reliable of damage, while those which show slighter deviations should undergo 

further investigations. 
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TABLE 9.V RESULTS FROM THE AMBIENT EXCITATION TESTS  

(THE DASHED LINE CORRESPONDS TO ADMu = 0.0663). 
 

a13-x01 a13-x04 

abs(ADM) SENSOR abs(ADM) SENSOR 

0.0153 

0.0379 

0.0778 

0.0902 

0.1779 

0.2178 

0.3472 

0.9323 

0.9584 

10 

6 

1 

7 

9 

12 

2 

5 

8 

0.0034 

0.0183 

0.0519  

0.0818 

0.1970 

0.2068 

0.3668 

0.9325 

0.9602  

10 

6 

7 

1 

9 

12 

2 

5 

8 

 

 

9.4.2 Results from the Tests with the Hammer 

Of the measurements recorded during the tests with the hammer in Table 9.IV, 

we consider only the ones that were collected with the same duration and 

sampling rate, which result in a common number of points equal to 50000. 

However, the several tests of same duration were performed by inferring to the 

structure with the hammer a different number of strokes, of different highest 

intensity. Note that, in this case, the excitation is an impact load whose 

expiration time is very short, almost instantaneous. Therefore, not enough 

points could be obtained by considering only the parts of the signals recorded 

when the excitation was active, as it was done for the BABYFRAME specimen 

in Chapter 8 when the excitation was instead applied by the shaker for a certain 

duration. Hence, to make the measurements collected during different tests 
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comparable with each other, the spikes need, in this case, to be eliminated from 

the signals. For this purpose, every peak is extracted together with the 50 points 

before it, and the 850 points after it. The total number of points of the resulting 

signal is  obtained by subtracting 900S from the original 50000 points, where S 

is the number of spikes in the signal and its value depends on the test being 

considered. Therefore, the obtained signals have different lengths according to 

the value of S corresponding to the test during which they were measured. The 

lowest length is assumed as common number of points, NP. In particular, NP is 

equal to 16818 for the tests with the hammer in 5, and to 26265 for the tests 

with the hammer in 6. 

The sensors located close to the hammer impacts recorded accelerations of 

too high intensities to be considered in the analyses. Therefore, sensors 5 and 8, 

and sensors 6 and 7 were not included in the analyses of the tests with the 

hammer in 5 and 6, respectively. In both cases, the total number of sensors is NS 

= 7. Assuming again a parameter γ = 40, the acceleration time histories were 

divided into 60 and 93 clusters for the tests with hammer in 5 and 6, 

respectively, of n = 280 points each. 

Tables 9.VI and 9.VII report the results obtained from the tests with the 

hammer in 5 and 6, respectively. Sensors 2 and 12 are clearly identified as 

damaged in both cases, probably because they are the ones that are the least 

influenced by the hammer position due to their central locations. In particular, 

sensor 2 shows the most significant structural change with respect to the other 

sensors, because it is the only one on the left hand side of the structure to be 

close to a repaired crack. The sensors on the right hand side of the structure are 

then identified by values of the damage index greater than the threshold 

computed from the pairs of undamaged tests.  
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The results from the tests a04 and x05 (hammer in 5) correctly classify as 

undamaged the sensors 6, 7, and 10, which are located on the left hand side 

where no repair was needed. The same consideration drawn for sensor 7 when 

using x01 as reference undamaged case for the ambient tests, needs to be done 

also when comparing the tests of the hammer in 5 with the undamaged case 

x02. 

The results from the tests with the hammer in 6 successfully capture the 

presence of damage close to sensor 5, but sensor 8 is too faraway from the 

impact location to be recognized as damaged. 

In conclusion, the results obtained from the tests with the hammer in 

different positions are consistent among each others, and with those obtained 

from the environmental vibration tests. In particular, sensor 2 is always 

recognized as the only one on the left hand side of the structure to be close to a 

repaired crack, and the right hand side is identified as damaged with respect to 

the remaining sensors on the other side. The environmental vibration tests are 

the easiest ones to analyze and they provide a rather complete and precise 

description of the actual damaged state of the structure. The obtained results are 

optimal in view of applying this excitation method for the continuous, long-

term structural health monitoring of civil infrastructure pursued in Chapter 3. 
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TABLE 9.VI RESULTS FROM THE TESTS WITH HAMMER IN 5  

(THE DASHED LINE CORRESPONDS TO ADMu = 0.0923). 
 

a04-x02 a04-x05 

abs(ADM) SENSOR abs(ADM) SENSOR 

 0.0228 

0.0497 

0.1053 

0.1848 

0.2014 

0.2271 

0.3958 

10 

6 

7 

1 

9 

12 

2 

0.0246 

0.0536 

0.0832 

0.1702 

0.2297 

0.2333 

0.3780 

7 

10 

6 

1 

12 

9 

2 

 

 

 

 

TABLE 9.VII RESULTS FROM THE TESTS WITH HAMMER IN 6 

(THE DASHED LINE CORRESPONDS TO ADMu = 0.1563). 
 

a05-x03 a05-x06 

abs(ADM) SENSOR abs(ADM) SENSOR 

0.0076 

0.0421 

0.1661 

0.1682 

0.2055 

0.2137 

0.4112 

10 

8 

5 

1 

9 

12 

2 

0.0493 

0.1026 

0.1374 

0.1805 

0.2019 

0.2280 

0.4065 

10 

8 

1 

5 

12 

9 

2 
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Chapter 10 

 

 

 

Conclusions and Future Developments 

 

 

 

The author presented her first results in the area of structural damage detection 

two years ago [Casciati and Faravelli, 2002]. They were obtained in a traditional 

way, by identifying the system eigenvalues and by comparing the associated 

eigenmodes. Despite the widely distributed cracks across the investigated 

system (the Memnon Colossi, in Luxor, Egypt), the results were barely 

satisfactory in terms of damage detection and quite null in terms of damage 

localization. 

The subsequent attempt to build a more efficient procedure also had to 

satisfy some mandatory requirements in present international research toward 

the realization of smart sensors [ESF, 2004]. In extreme synthesis, the demand 

was to do the job relying on limited computational capacities, i.e., forget those 

methods pursuing a peculiar local description (as based on finite element 
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schemes) of the structural systems. Thence, the results achieved throughout the 

study were pursued with the final objective of implementing them in a software 

simple enough to be downloaded in the micro-processor which, coupled with 

the sensor, realizes the smart sensor device.  

This remark led the research to be focused on the methods that work in the 

space of the observed variables, where global information measures are used to 

detect damage. This is a quite innovative approach which 

1) only needs the availability of measured responses (in the form of 

multivariate time series) in the original undamaged state and in the current 

one of potential damage; 

2) does not require any structural system identification; 

3) shows an accuracy which strongly depends on the density of the sensor array 

deployed on the structural system. 

Damage detection is here demanded to global measures as entropy or 

Lyapunov exponents, which showed to be quite efficient. It must be said that 

not all their potentiality toward damage localization was exploited within the 

reported activity. For this purpose two aspects could be pursued in view of 

further developments 

i) to compute these global measures in subspaces of the observed variables; 

this would allow to perform a sort of sensibility analysis on the role of the 

variables which were in turn removed; 

ii) to repeat the analysis conducted on the space of the observed variables, in 

larger spaces which account for an embedding dimension larger than 1, for 

instance 2. Also in this case, successive sub-structuring of this enlarged 

space could be the way toward a sensitivity analysis. 
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As an alternative to such developments, the relationships among these 

observed variables are approximated by response surface techniques, which also 

allow to localize the damage. This new damage detection method showed to be 

reliable and robust when applied to both the results of numerical simulation and 

experimental data. The global measures discussed above help in the extent that 

they preliminarily state whether or not the problem is well posed, i.e., whether 

the set of measured quantities are able to detect the specific damage to be 

localized. A fascinating future development along this track is that of building a 

sensor placement policy driven by such considerations. 

It must be underlined that the numerical study case of Chapter 7 and the 

experiments which provided the data for Chapter 8 and 9 are so rich of 

information that there will always be room for further adjustments and 

investigations. In particular the ASCE benchmark studied in Chapter 7 can be 

used to generate always new situations of damage and of monitored response. It 

will certainly provide a gymnasium to further test and improve the robustness of 

the approach developed and implemented along the thesis. 

The results of Chapter 9 are quite impressive. The ability to identify crack 

locations on a continuous wall opens the way to the new generation of sensors 

for which accuracy (but not sensitivity) is traded off by extremely low cost, 

which is the first requisite toward the availability of dense sensor arrays 

[Faravelli and Shoureshi, 2003]. The second requisite, of course, is their 

wireless nature which represents the necessary future development of the 

proposed approach for its application to structural health monitoring. The 

process can be easily downloaded in the microprocessor coming with the sensor 

and driving its activity, including its trans-receiver ability. 
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Appendix A 

 

 

 

Multivariate Regression Analysis 

 

 

 

In the presence of measured values y and xj, j=1,…, k, the linear model  

 

εββββ +++++= kk xxxy 22110   (A.1) 

 

is guessed. Multivariate linear regression analysis pursues the estimation of the 

model parameters. 

 

A.1 Estimation of the Parameters in Linear Regression Models 

The least squares method is typically used to estimate the regression coefficient 

in a multiple linear regression model. Suppose that n > k observations on the 

response variable are available, say y1, y2, …, yn. Along with each observed 

response yi, an observation on each regressor variables is recorded. Let xij 
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denote the i-th observation or level of variable xj. The data will appear as in 

Table A.I.  

We assume that the error term ε in the model has E(ε) = 0 and Var(ε) = σ 2, 

and that the {εi} are uncorrelated random variables. We may write the model in 

Equation (A.1) in terms of the observations in Table 7.I as 

 

 

TABLE A.I DATA FOR MULTIPLE LINEAR REGRESSION 
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The method of the least squares chooses the β’s in Equation (A.2) so that the 

sums of the squares of errors, εi, are minimized. The least squares function is 
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The function L is to be minimized with respect to kβββ ,,, 10  . The least 

squares estimators, say kbbb ,,, 10  , must satisfy 
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and 

 

,02
1 1

0

,,, ,10

=









−−−=

∂
∂ ∑ ∑

= =

n

i
ij

k

j
ijji

bbbij
xxyL

k

ββ
β



  (A.4b) 

 

where j = 1, 2, …, k. 

Simplifying Equation (A.4), we obtain 
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  (A.5) 

 

These equations are called the least squares normal equations. Note that there 

are p = k + 1 normal equations, one for each of the unknown regression 

coefficients. The solution to the normal equations will be the least squares 

estimators of the regression coefficients, kbbb ,,, 10  . 

It is simpler to solve the normal equations if they are expressed in matrix 

notation. We now give a matrix development of the normal equations that 

parallels the development of Equation (A.5). Expressing the model in terms of 

the observations, Equation (A.2) may be written in matrix notation as 

 

εAβy +=   (A.6) 

 

where 
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In general, y is an n × 1 vector of the observations, A is an n × p matrix of the 

levels of the regressor variables, β  is a p × 1 vector of the regression 

coefficients, and ε  is an n × 1 vector of the total errors. 

We wish to find the vector of least squares estimators b, that minimizes 
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TT
n

i
iL ε   (A.7) 

 

Note that L may be expressed as 

 

AβAβyAβyy
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2   
  (A.8) 

 

since yAβ TT  is a 1 × 1 matrix, or scalar, and its transpose AβyyAβ TTTT =)(  

is the same scalar. The least squares estimators must satisfy 

 

0AbAyA
β b

=+−=
∂
∂ TTL

22   (A.9) 

 

which simplifies to 

 

yAAbA TT =    (A.10) 
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Equation (A.10) is the set of least squares normal equations in matrix form. It is 

identical to Equation (A.5). To solve the normal equations, multiply both sides 

of Equation (A.10) by the inverse of ATA. Thus, the least squares estimator of 

β  is 

 

yAAAb TT 1)( −=    (A.11) 

 

It is easy to see that the matrix form of the normal equations is identical to the 

scalar form. Writing out Equation (A.10) in detail, we obtain 

 



























=





















































∑

∑

∑

∑∑∑∑

∑∑∑∑

∑∑∑

=

=

=

====

====

===

n

i
iik

i

n

i
i

n

i
i

k

n

i
ik

n

i
iik

n

i
iik

n

i
ik

n

i
ikii

n

i
i

n

i
i

n

i
i

n

i
ik

n

i
i

n

i
i

yx

yx

y

b

b

b

xxxxxx

xxxxxx

xxxn

1

1
1

1

1

0

1

2

1
2

1
1

1

1
12

1
1

1

2
1

1
1

11
2

1
1












   (A.12) 

 

If the indicated matrix multiplication is performed, the scalar form of the 

normal equations, i.e., Equation (A.5), will result. In this form it is easy to see 

that ATA is a p × p symmetric matrix and ATy is a p × 1 column vector. Note the 

special structure of the matrix ATA. The diagonal elements of ATA are the sums 

of squares of the elements in the columns of A, and the off-diagonal elements 

are the sums of the cross-products of the elements in the columns of A. 

Furthermore, note that the elements of ATy are the sums of the cross-products of 

the elements of the columns of A and the observations {yi}. 

The fitted regression model is 
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Aby =ˆ    (A.13) 

 

In scalar notation, the fitted model is 
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The difference between the observation iy  and the fitted value iŷ  is a 

residual, say iii yye ˆ−= . The n × 1 vector of the residual is denoted by 

 

yye ˆ−=    (A.15) 

 

 

A.2 Properties of the Least Squares Estimators and Estimation 

of σ  2 

The least squares method produces an unbiased estimator of the parameter β  in 

the multiple linear regression model. This property may be easily demonstrated 

by finding the expected value of b as follows 
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because 0)( =εE  and IAAAA =− TT 1)( . Thus, b is an unbiased estimator of 

β . The variance property of b is expressed by the covariance matrix 

 

{ }
12 )(            

)]()][([)Cov(

−=

−−=

AA

bbbbb

T

TEEE

σ
   (A.17) 

 

The covariance matrix of b is a p × p symmetric matrix, whose ( j, j)-th element 

is the variance of bj and whose (i, j)-th element is the covariance between bi and 

bj. 

It is also necessary to estimate σ 2. To develop an estimator of this parameter 

consider the sum of squares of the residuals, 
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Substituting Abyyye −=−= ˆ , we have 
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Because yAAbA TT = , this last equation becomes 
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yAbyy TTTSSE −=    (A.18) 

 

Equation (A.18) is called the error or residual sum of squares, and it has n – p 

degrees of freedom associated with it. It can be shown that 

 

)()( 2 pnSSEE −= σ  

 

so an unbiased estimator of σ 2 is given by 

 

pn
SSE
−

=2σ    (A.19) 

 

The estimate of σ 2 produced by Equation (A.19) is model-dependent. That 

is, its value depends on the form of the model that is fit to the data. For 

example, if we fit a quadratic model to the data, the estimate of σ 2 may result to 

be larger than the estimate obtained from a first-order model, suggesting that the 

first-order model is superior than the quadratic in that there is less unexplained 

variability resulting from the first-order fit. If replicate runs are available (that 

is, more than one observation on y at the same x-levels), then a model-

independent estimate of σ 2 can be obtained. 

 

A.3 Hypothesis Testing in Multiple Regression 

In multiple linear regression problems, certain tests of hypotheses about the 

model parameters are helpful in measuring the usefulness of the model. In this 

section we describe several important hypothesis-testing procedures. These 
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procedures require that the errors εi in the model are normally and 

independently distributed with mean zero and variance σ 2, abbreviated εi ~ 

),0( σN . As a result of this assumption, the observations yi are normally and 

independently distributed with mean ∑ =+ k
j ijj x10 ββ and variance σ 2. 

 

A.4 Test for Significance of Regression 

The test for significance of regression is a test to determine if there is a linear 

relationship between the response variable y and a subset of the regressor 

variables x1, x2, …, xk. The appropriate hypotheses are  
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Rejection of H0 in (7.30) implies that at least one of the regressor variables x1, 

x2, …, xk contributes significantly to the model. The test procedure involves 

partitioning the total sum of squares ∑ = −= n
i i yySST 1

2)(  into a sum of 

squares due to the model (or to regression) and a sum of squares due to residual 

(or error), 

 

SSESSRSST +=    (A.21) 
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If the null hypothesis 0: 210 ==== kH βββ   is true, then 2/σSSR  is 

distributed as 2
kχ , where the number of degrees for 2χ  is equal to the number 

of regressor variables in the model. Also, we can show that 2/σSSR  is 

distributed as 2
1−−knχ  and that SSE and SSR are independent. 

The test procedure for 0: 210 ==== kH βββ   is to compute 

 

MSE
MSR

knSSE
kSSRF =

−−
=

)1/(

/
0    (A.22) 

 

and to reject 0H  if 0F  exceeds 1,, −−knkFα . Alternatively, one could use the P-

value approach to hypothesis testing and, thus, reject 0H  if the P-value for the 

statistic 0F  is less than α. The test is usually summarized in a table such as 

Table A.II. This test procedure is called analysis of variance because it is based 

on a decomposition of the total variability in the response variable y. 

 
 

TABLE A.II ANALYSIS OF VARIANCE FOR SIGNIFICANCE OF REGRESSION 
 

SOURCE OF 

VARIATION 

SUM OF 

SQUARES 

DEGREES OF 

FREEDOM 

MEAN 

SQUARE 

F0 

Regression 

Error or residual 

Total 

SSR 

SSE 

SST 

k 

n – k – 1 

n – 1 

MSR 

MSE 

MSR / MSE 
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A computational formula for SSR may be found easily. We have derived a 

computational formula for SSE in Equation (A.18), that is 

 

yAbyy TTTSSE −=  

 

Now because the total sum of squares is 

 

( ) ( ) nynyySST n
i i

Tn
i i

n
i i

2

1

2

11
2 ∑∑∑ === −=−= yy    (A.23) 

 

we may rewrite the Equation (A.18) as 

 

( ) ( ) 



 −−−= ∑∑ == nynySSE n

i i
TTn

i i
T 2

1

2

1 yAbyy  

 

or 

 

SSRSSTSSE −=    (A.24) 

 

Therefore, the regression sum of squares is 

 

( ) nySSR n
i i

TT 2

1∑ =−= yAb    (A.25) 

 

The coefficient of multiple determination 2R  is defined as 
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SST
SSE

SST
SSRR −== 12    (A.26) 

 

2R  is a measure of the amount of reduction in the variability of y obtained by 

using the regressor variables x1, x2, …, xk in the model. From inspection of the 

analysis of variance identity equation [Equation (A.21)], we see that 10 2 ≤≤ R . 

However, a large value of 2R  does not necessarily imply that the regression 

model is good. Adding a variable to the model will always increase 2R , 

regardless whether the additional variable is statistically significant or not. Thus 

it is possible for models that have large values of 2R  to yield poor predictions 

of new observations or estimates of the mean response. 

For example, if we add quadratic terms to a first-order model, we can show 

that the value of 2R  increases. However, if this increase in 2R  is relatively 

small, it suggests that the quadratic terms do not really improve the model. 

Because 2R  always increases as we add terms to the model, some regression 

model builders prefer to use an adjusted 2R  statistic defined as 

 

)1(
1

1
)1/(

)/(
1 22

adj R
pn

n
nSST

pnSSER −
−
−

−=
−
−

−=    (A.27) 

 

In general, the adjusted 2R  statistic will not always increase as variables are 

added to the model. In fact, if unnecessary terms are added, the value of 2
adjR  

will often decrease. 
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For the same first-order model, the adjusted 2R  will be very closed to the 

ordinary 2R . When 2R  and 2
adjR  differ dramatically, there is a good chance 

that non significant terms have been included in the model. If the adjusted 2R  

actually decreases when the quadratic terms are added to the model, this is a 

strong indication that the quadratic terms are unnecessary. 
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Appendix B 

 

 

 

The Palazzo Geraci Façade Specimen 

 

 

 

B.1 The Construction of the Specimen 

The laboratory specimen was built by four workers in twenty days, trying to 

follow the same construction technique used to actually build the palace in the 

seventeenth century. The masonry was made of squared ashlars of limestone 

and sand. The dry ashlars were grooved laterally and at the base, and the liquid 

mortar was poured only after each course was emplaced. The mortar was 

poured from the top into the vertical joints and then it spread along the grooves 

on the horizontal surfaces. In this way, the mortar joints between the ashlars 

rows are not visible from the exterior. 
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a) 

d) c) 

b) 

 

 

 

 

 

 

 

 

 

 
 
 

Figure B.1 (a) The original 1:2 scale model of the Palazzo Geraci façade built at the ELSA 
Laboratory, in Ispra. (b) Front prospect and sections of the original model. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B.2 Construction phases of the specimen: (a) support plane; (b) round-headed arch; (c) 
wooden beams at the intrados of the platbands above the lateral openings; (d) steel anchored to 

the top of the column capitals. 

 b) 

a) 

b) 
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A first plate of stone ashlars, of 100 mm thickness, was glued to the abraded 

surfaces of four steel plates, two central ones of dimensions 2.3 x 2.3 x 100 mm 

and weight 2.33 tons each, and two lateral ones of dimensions 1.25 x 1.25 x 100 

mm and weight 1.218 tons each. The four steel plates were placed on steel 

elements at 60 mm height from the ground level, to allow the future insertion of 

pressure cells. The support plane, shown in Figure B.2a, was finally levelled by 

a layer of bastard mortar, which was let to set. 

The first three layers of stone ashlars are 330 mm high, while the following 

ones are 225 mm high (see Figure B.1). The base layers were made of thick 

stone ashlars, previously wetted and sealed by a thin layer of mortar; the liquid 

mortar was then poured from the top into the vertical grooves to form the 

vertical joints. All the other courses of stone ashlars were instead emplaced in 

completely drained conditions according to the construction technique of the 

time.  

Until the height of 4.6 m, the wall was made of head and fillet stone ashlars, 

staggered of 175 mm with respect to the previous row. At the end of each layer, 

the irregular horizontal surfaces were levelled to allow the emplacement of the 

next layer. The verticality of the stone ashlars and the horizontality of the layers 

were checked by rods, levels, and a plumb-line. 

The upper part of the façade was made of one head masonry. The stone 

ashlars were 250 mm thick and they were shaped with not parallel, but slightly 

convergent, horizontal surfaces, resulting in a height of 225 mm in the front and 

of 220 mm in the rear. The support of the next row of stone ashlars was granted 

exteriorly by the refinement of the ashlars edges, and interiorly by small 

lateritious flakes. The joints of the rear side were then sealed with mortar. Once 
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the mortar started to set, the liquid mortar was poured through the lateral 

grooves of the stone ashlars. 

The original 1:2 scale model included several components whose main 

characteristics and construction techniques are briefly described below. 

The central round arch of the ground floor is made of wedge-shaped ashlars 

(quoins) of limestone and sand, it spans 1.5 m, and it is about 0.6 m high. The 

total thickness of 700 mm was achieved by building two laterally adjacent 

arches (Figure B.2b). The arches were set up on two dosserets (pulvins). Each 

arch was made of six stone ashlars, which were emplaced in drained condition 

using a centre. At the middle height of the dosserets, four wooden posts were 

jointed together to hold a leaning floor, which offered support for the objects 

holding the stone ashlars during the emplacement. Once the emplacement was 

completed, the liquid mortar was poured into the grooves on the interior faces of 

the ashlars. The centres were then removed, and the lateral surfaces, the 

intrados, and the extrados of the arch were regularized by removing the excess 

of material. 

The central opening of the noble floor, above the portal frame in Figure B.1, 

is surmounted by a lintel and a lowered arch of unloading (sordino). This 

structure, together with the two piers, is 0.4 m thick. The lowered arch was built 

in a manner similar to the one used for the round arch of the ground floor. In 

this case, the operation was facilitated by the presence of the monolithic lintel, 

at whose edges the arch was set up. 

Six lateral openings are located at three different levels (0, 2.8, and 4.6 m 

above the ground level), and they are surmounted by platbands (flat arches) 

made of three shaped ashlars each. Two wooden beams were observed at the 

intrados of the platband of one of the highest windows (the other was destroyed 
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during the war), and therefore they were included in the model. In particular, 

beams of second class fir-wood (of section 100 x 100 mm) were installed in 

designated spaces drawn at the top of the openings (Figure B.2c). Four wooden 

beams were placed, with a 10 mm spacing, at the top of each of the openings of 

the ground floor. The above platband was then emplaced using two orders of 

ashlars, a front one and a rear one. The liquid mortar was finally poured into the 

grooves on the interior faces of the ashlars. Because of the reduced (250 mm) 

thickness of the upper wall, only two wooden beams and one course of ashlars 

were used for each of the platbands above the highest windows of the noble 

floor. 

The afore-standing portal frame is composed by the two columns and the 

above lintel. The monolithic columns have a base diameter of 0.4 m and a top 

diameter of 0.3 m. Each column stands on a basement made of two 

parallelepipeds blocks, of 0.5 m height each and square bases of sides 0.6 m and 

0.5 m from bottom to top. The columns were constructed by assembling 

frustum-conic blocks with groove-and-tongue joints (Figure B.3), and by 

sealing the whole with mortar. The lintel is 0.5 m thick, 0.45 m high, and 2.8 m 

long. An iron of the same length and 6-9 cm thickness was observed at the 

intrados along the lintel centre axis (Figure B.2d). To include this element into 

the model, two steel plates (250 x 250 x 10 mm) were cemented in designated 

spaces at the top of the capitals. Each edge of the steel element, of section 80 x 

80 mm and of 2.6 m length, was then anchored with bolts to two welded steel 

angles set ajar (Figure B.4). The steel element was then embedded in a groove 

at the intrados of lintel. The axial joint with the portal frame was realized 

pouring liquid mortar in the designated lateral grooves. The portal frame was 
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completed by three large plates embedded in the masonry and supported by the 

lintel.  

The resulting structure in Figure B.1 was 8 m long and 8.2 m high, with a 

total of eight openings. The wall thickness varied from 0.7 m for the first 4.6 m 

of height above the ground level, to 0.25 m for the remaining height. 

 

 

 

 
 

Figure B.3 Structural details of the columns. 
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Figure B.4 Structural details of the anchorage of the steel element to the top of the column 
capital. 

 

 

 

B.2 The Pseudo-Dynamic Tests 

The “Palazzo Geraci façade” specimen was mounted perpendicularly to the 

reaction wall of the ELSA Laboratory (Figure B.5), and it underwent a series of 

pseudo-dynamic tests.  

To best excite the first fundamental frequency which was numerically 

computed from a finite element model of the structure, the selected 

accelerogram was not representative of the Sicily region, but it was recorded in 

Irpinia (signal 612-IRP01 Campano/Lucano, direction NS). The total duration 

of the signal (40 s) was truncated at 8 sec, and the signal was corrected to start 

from zero acceleration. The signal was also modified by the similitude rules 

required by the model. The reference earthquake used to perform the pseudo-

dynamic tests is shown in Figure B.6. 
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Three different types of tests were carried out using different structural 

configurations, and each test was repeated for different intensities of the 

reference earthquake: (1) model with base isolation, and reference earthquake at 

100% and 200%; (2) model without base isolation, and reference earthquake at 

20%, 100%, and 200%; (3) repaired model without base isolation, and reference 

earthquake at 100% and 200%. 

In the first case, the base isolation consisted of a mechanic isolator with 

elastoplastic response, and it was made of eight radial C-steel elements between 

two support plates. After this first series of tests, no cracks were evident on the 

structure and the stiffness matrix, measured before and after the tests, showed 

only slight changes. 

The second series of tests caused damage to the structure. After the test at 

100%, two vertical cracks formed in the lower parts of the right central foot and 

of the column support. The test at 200% damaged all four feet of the structure, 

where sub-vertical cracks appeared not necessarily following the vertical joints 

of the masonry (Figure B.7a ). 

For the third series of tests, the damaged model was consolidated to avoid 

that the cracked stone blocks could be pulled out of their locations by the large 

horizontal displacements. The repair consisted of confining the cracked stones 

of the low parts of the feet of the model, by adding steel brackets at different 

levels. The limits of this retrofitting technique were shown after the repetition of 

the test at 200%; indeed, the feet protection transferred the damage to the upper 

part of the structure (Figure B.7b). 
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Figure B.5 Pseudo-dynamic tests of the specimen. 

 

 

 

 
 
 
 
 
 
 

 
 
 
 

Figure B.6 Reference earthquake used for the pseudo-dynamic tests. 
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Figure B.7 Cracks formed into the structure following the pseudo-dynamic tests. (a) Model 
without the base isolation after the test at 200%. (b) Repaired model (without base isolation) after 

the test at 200%. 
 

a) b) 
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