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Description of the Ph.D. course

1l dottorato di ricerca in Ingegneria Civile & stato istituito presso la Facolta di
Ingegneria dell’Universita degli Studi di Pavia nell’anno accademico 1994/95 (X
Ciclo).

11 corso, sino alla sua ridefinizione in concomitanza con il XVI Ciclo, consentiva
al dottorando di scegliere tra due curricula: idraulico o strutturale. Egli svolge
la propria attivita di ricerca rispettivamente presso il Dipartimento di Ingegneria
Idraulica e Ambientale o quello di Meccanica Strutturale.

Durante i primi due anni sono previsti almeno sei corsi, seguiti dai rispettivi esami,
che il dottorando é tenuto a sostenere. Il Collegio dei Docenti, composto da pro-
fessori dei due Dipartimenti, organizza i corsi con lo scopo di fornire allo studente
di dottorato opportunita di approfondimento in alcune delle discipline di base per
entrambe le componenti, idraulica e strutturale. Corsi e seminari vengono tenuti
da docenti di Universita nazionali e estere.

11 Collegio dei Docenti, cui spetta la pianificazione della didattica, si & orientato
ad attivare ad anni alterni corsi sui seguenti temi:

- Meccanica dei solidi e dei fluidi

- Metodi numerici per la meccanica dei solidi e dei fluidi

- Rischio strutturale e ambientale

- Metodi sperimentali per la meccanica dei solidi e dei fluidi
- Intelligenza artificiale

a questi si aggiungono corsi specifici di indirizzo.

Al termine dei corsi del primo anno il Collegio dei Docenti assegna al dottorando
un tema di ricerca da sviluppare, sotto forma di tesina, entro la fine del secondo
anno; il tema, non necessariamente legato all’argomento della tesi finale, & di nor-
ma, coerente con il curriculum, scelto dal dottorando (idraulico o strutturale).
All’inizio del secondo anno il dottorando discute con il Coordinatore ’argomento
della tesi di dottorato, la cui assegnazione definitiva viene deliberata dal Collegio

iii



Roberto Nascimbene Sail Modelling for Maximal Speed Optimum Design

dei Docenti.

Alla fine di ogni anno i dottorandi devono presentare una relazione particolareg-
giata (scritta e orale) sull’attivita svolta. Sulla base di tale relazione il Collegio dei
Docenti, ”previa valutazione della assiduita e dell’operosita dimostrata dall’iscrit-
to”, ne propone al Rettore 1’esclusione dal corso o il passaggio all’anno successivo.
Il dottorando puo svolgere attivita di ricerca sia di tipo teorico che sperimentale,
grazie ai laboratori di cui entrambi i Dipartimenti dispongono, nonche al Labora-
torio Numerico di Ingegneria delle Infrastrutture.

11 ” Laboratorio didattico sperimentale” del Dipartimento di Meccanica Strutturale
dispone di:

1. una tavola vibrante che consente di effettuare prove dinamiche su prototipi
strutturali;

2. opportuni sensori e un sistema di acquisizione dati per la misura della rispo-
sta strutturale;

3. strumentazione per la progettazione di sistemi di controllo attivo e loro
verifica sperimentale;

4. strumentazione per la caratterizzazione dei materiali (macchina di prova
universale biassiale), attraverso prove statiche e dinamiche.

1l laboratorio del Dipartimento di Ingegneria Idraulica e Ambientale dispone di:
1. un circuito in pressione che consente di effettuare simulazioni di moto vario;
2. un tunnel idrodinamico per lo studio di problemi di cavitazione;

3. canalette per lo studio delle correnti a pelo libero.

The Graduate School in Civil Engineering at Department of Structural Mechanics,
University of Pavia, was established in 1994/95 (X Ciclo).

Two different type of curricula are available for students: hydraulic and structural
engineering. The student works either at the Department of Structural Mechanics
or at the Department of Hydraulics and Environmental Engineering.

Each student must select at least six courses with homeworks and final exams.
The Teaching Council, compounded by professors coming from both departments,
organise the courses with the aim to give the student the opportunity of improving
his basic knowledge in the field of structural and hydraulic engineering. The
courses and the seminars are held by national and international lecturers.

The following courses are organised every two years:

- Continuum Mechanics (Fluids and Solids)
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- Computational Solids and Fluids Mechanics

- Structural and Environmental Risk Analysis

- Experimental Methods for Solids and Fluids Mechanics
- Artificial Intelligence

At the end of the first year, the Teaching Council assigns a homework covering
one the above themes. This homework is not necessarily related to the final topic
of the thesis.

During the second year the student will start his PhD thesis often discussing it
with the Course Coordinator. The Teaching Council assigns the task.

At the end of each year the student has to present a detailed report regarding his
research activity. The Teaching Council will decide, after a detailed revision of
this report, to admit the student to the next year course.

A number of numerical and experimental laboratory can be used by all the students
to improve their skill in civil engineering.

At the “Experimental and Teaching Laboratory” of the Department of Structural
Mechanics the following equipment is available:

1. a shaking table for dynamic and control testing on small scale prototypes;
2. sensors and acquisition systems for measuring the structural response;

3. instrumentation for the design of active and semi-active control and their
experimental validation;

4. instrumentation for material characterisation (bi—axial universal testing ma-
chine) with static and dynamic tests.

At the laboratory of the Department of Hydraulics and Environmental Engineering
one has available:

1. a circuit in pressure able to model the unsteady motion of fluids;
2. a hydrodynamic tunnel to simulate cavitation problems;

3. a small scale model of channel.
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Sommario esteso

La maggior parte delle conoscenze teoriche sul moto di una barca a vela deriva
dalla ricerca aeronautica, nella quale la spinta principale & sempre stata fornita
dagli enormi interessi economici in gioco, se si esclude il caso dei pionieri dell’aria
per i quali lo stimolo fondamentale era senz’altro costituito dal desiderio di vincere
I’antica sfida del volo.

La forza trainante che ci porta alla conoscenza della natura delle azioni sulle vele
€ molto simile a quella che animava i pionieri dell’aeronautica e consiste probabil-
mente nel desiderio di trovare il modo per estrarre la massima energia possibile
dalla natura.

Ci sono molti modi per descrivere le forze che agiscono sulle vele e in generale su
superfici in movimento. Il piu semplice consiste nel dividere le forze in portanza e
resistenza. La portanza &, per definizione, perpendicolare alla direzione del vento
apparente; la resistenza & parallela ad essa (Capitolo 1).

La circolazione o portanza di una vela dipende da tre fattori: ’angolo di incidenza
del vento, la forma della vela e la lunghezza della corda. In generale queste tre
quantita variano se ci si sposta lungo la vela, oltre a variare con l'intensita e la di-
rezione del vento, con la situazione di sforzo della vela e con la flessione dell’albero.
Per ogni andatura esiste senz’altro una distribuzione ottimale della portanza, ma i
modi per ottenere una medesima distribuzione sono probabilmente molti. Si tenga
inoltre conto che un problema arduo e in continua evoluzione & che la forza della
pressione del vento cambia continuamente e viene influenzata dalla forma della
vela, mentre accade che la forma della vela, attraverso lo stiramento del tessuto e
la flessione, ¢ influenzata dalla pressione del vento.

Due modi principali consentono di ottenere maggiore portanza: il primo e incre-
mentare ’angolo di incidenza della vela. Per esempio si puod cazzarla oppure pog-
giare senza lascare la vela. Il secondo modo & rendere la vela piu grassa: regolando
la sua curvatura, ghindando meno la drizza, lascando il tesabugne, incrementando
la flessione dello strallo e cosi via.

Per una vela, una forma ottimale e una curvatura corretta forniscono un ingresso
facilitato dei flussi d’aria. Quindi dato un certo angolo di incidenza, una vela op-
portunamente grassa, facilita ’ingresso dei filetti fluidi, e puo fornire una portanza
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maggiore.

Obiettivo di questo primo capitolo € quindi quello di determinare, sotto oppor-
tune ipotesi semplificative, la forma aerodinamicamente ottimale di una vela. 1l
problema di ottimo verra impostato cercando come obiettivo la massima forza
propulsiva e imponendo due vincoli: uno sulla portanza e uno sullo sbandamento
laterale.

Una progettazione ottimale che controlli la forma migliore di una vela non pud
prescindere da considerazioni di tipo strutturale che si basino anche su un attento
studio della natura del tipo di carico applicato (vento) (Capitolo 2). L’estrema
complessita di questo aspetto, influenzata notevolmente anche dalla stretta e mu-
tua correlazione tra vento e forma della vela assunta durante I’esercizio, ci porta a
semplificare il problema trasferendolo in campo completamente statico, congelando
idealmente I’applicazione del campo di pressioni ad un generico istante. Inoltre
in questo capitolo verranno evidenziate alcune delle principali tattiche usate nel
campo di regata. Questo perche, come sempre accade in ogni settore, ricordiamo
che, come il migliore strumento musicale non fa del possessore il migliore dei mu-
sicisti, cosi la migliore vela non sempre ¢ associata allo skipper migliore!

Dopo avere ottenuto una forma ottimale della vela (Capitolo 1) per una data
condizione di regata e per un assegnato vento (Capitolo 2), si passa a consid-
erare un secondo aspetto, non meno importante del precedente (Capitolo 3): il
materiale con cui ¢ realizzata!

Un famoso detto popolare vuole gli italiani come ... popolo di santi, poeti e naviga-
tori ... In effetti, tralasciando le prime due definizioni, poco consone all’ambiente
ingegneristico, stiamo assitendo in questi ultimi anni ad una rinnovata rinascita
della passione per la vela. Complici le affascinanti imprese sportive delle imbar-
cazioni italiane impegnate nelle pil recenti edizioni della Coppa America, come 11
Moro di Venezia, Luna Rossa e Mascalzone Latino, molti italiani hanno passato
piu di una nottata a seguire incollati allo schermo le gesta dei nostri portacolori.
Tali imprese sportive, anche se ci piacerebbe pensarle come frutto esclusivo di
cuore e passione, derivano dalle pit innovative rivoluzioni tecnologiche introdotte
negli ultimi decenni. L’industria navale fa ormai uso delle piu ardite soluzioni
tecnologiche, sfruttando in modo massiccio i benefici introdotti dall’uso dei ma-
teriali compositi e dei laminati fibrorinforzati. Tali materiali vengono impiegati
con successo sia per la costruzione degli scafi e di tutte le parti strutturali delle
imbarcazioni quali alberi e timoni, sia per il confezionamento delle vele.

Il progetto, la fabbricazione e 'utilizzo delle nuove vele, oltre a fare tesoro della
vastissima tradizione velaia, fatta piu di esperienza pratica e di sensibilita person-
ale dei velai piuttosto che da precise e codificate regole tecniche, si affida anche alle
collaborazioni con I’industria tessile e con l'industria meccanica. In un’era domi-

xii



SOMMARIO ESTESO

nata ormai dall’elettronica, diffusa in ogni settore, anche un campo artigianale per
tradizione come quello dell’industria delle vele sta subendo l'influenza delle piu
moderne analisi fluido-strutturali eseguite dai potenti codici di calcolo ad elementi
finiti di ultima generazione, spesso appositamente concepiti ex—novo parzialmente
modificati da sofisticate routine.

Nel corso degli ultimi due secoli lo sviluppo di questo settore & stato frenetico:
abbiamo assistito dapprima al passaggio del confezionamento delle vele a mano a
quello fabbricato in larga scala grazie ad appositi macchinari, e poi siamo passati
da rudimentali vele in fibra naturale (tipicamente cotone) a vele costruite con fi-
bre sintetiche (come il nylon, a partire dai primi anni trenta), per passare ai pit
recenti prodotti dell’industria chimica come poliestere, dacron, spectra e mylar (a
partire dagli anni cinquanta e sessanta). Lo sviluppo & stato continuo e nel giro
di qualche anno si & arrivati ai giorni nostri dove ormai e indispensabile I'uso dei
materiali compositi fibrorinforzati.

Come e naturale ed ovvio aspettarsi, nelle imbarcazioni a vela e proprio 'interazione
di quest’ultimo strumento con ’azione del vento ad assicurare la spinta necessaria
all’avanzamento della barca. Lo scopo delle vele ¢ dunque quello di intercettare
una porzione del campo di pressioni disordinate del vento e di convertirle in una
piu ordinata causa di moto facilmente governabile, incanalando ’energia eolica
nella direzione piu favorevole. E’ facile allora intuire come una vela progettata
in modo ottimale possa assicurare prestazioni piu elevate e risparmi in termini di
tempo dell’ordine di qualche secondo (che spesso decidono ’esito di una compe-
tizione). Non solo, per chi non ha velleitd sportive, una vela adeguata comporta
benefici effetti in termini di durata e di affidabilita.

Un materiale composito ¢ ottenuto dall’associazione di due o pitt materiali diversi,
rinforzati da orditi di fibre opportunamente intessuti ed orientati, annegati in un
altro materiale, detto matrice, che conferisce la forma definitiva alla vela nelle
sue diverse configurazioni di esercizio, quando sottoposta all’azione dinamica del
vento. Oggetto di questo terzo capitolo, una volta affrontata e ottenuta la forma
ottimale della vela nel primo capitolo, & sostanzialmente un problema di ottimiz-
zazione il cui scopo e quello di trovare, mediante lo sviluppo di un opportuno
codice di calcolo in linguaggio FORTRAN 77, la configurazione e I’orientamento
ottimale delle fibre all’interno della matrice delle vele in modo che, quando la vela
¢ investita dal vento, la direzione delle fibre stesse sia tale da far si che in esse
lo sforzo sia il minore possibile e sia distribuito il piu uniformemente possibile,
compatibilmente con le loro caratteristiche meccaniche di resistenza.
Anticipiamo fin da ora che il metodo da noi impiegato, nonche il modo piu effi-
ciente di orientare le fibre & quello che le costringe a seguire le linee isostatiche di
sforzo di trazione che si diffondono nelle vele quando vengono caricate. Alla luce di
questo fatto, quindi, il primo passo sara quello della ricerca di tali linee. In seguito,
si disporranno le fibre e se ne ottimizzera la distribuzione di area trasversale.
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Nell’ottica della elevata spesa computazionale che comporta un algoritmo di ot-
timizzazione e tenendo inoltre presente 'inadeguatezza dei modelli tessili usati
in letteratura per descrivere le vele, si & preferito introdurre un nuovo modello
matrice—fibra capace di coniugare insieme la snellezza computazionale (pochi gradi
di liberta) con lefficenza applicativa (ottimo riscontro con i dati sperimentali). In
definitiva, come meglio verra descritto nel Capitolo 5, si discretizzeranno le fibre
con elementi finiti corda e la matrice con elementi finiti membrana concepiti ap-
positamente per queste simulazione e rivelatosi successivamente capaci di essere
estese alla modellazione di casistiche assolutamente pilt generali.

Una progettazione ottimale che controlli 'orientamento di queste fibre all’interno
di una vela non puo prescindere da due fondamentali considerazioni di tipo struttu-
rale-geometrico riguardanti la modellazione della superficie velica (Capitolo 4) e
Iintroduzione, come detto prima, di opportuni elementi finiti capaci di descrivere
contemporaneamente le corde (utilizzate per modellare le fibre) e le membrane
(impiegate per modellare la matrice—guscio) (Capitolo 5).

L’estrema complessita del primo aspetto, influenzata notevolmente anche dalla
stretta e mutua correlazione tra vento applicato e conseguente cambio di forma
della vela, ci porta a studiare il problema in campo altamente non lineare in-
troducendo lipotesi di grandissimi spostamenti il tutto in opportuni sistemi di
riferimento curvilinei locali (Capitolo 4).

Inoltre per sopperire alle carenze in letterature di elementi finiti capaci di arrivare
a modellare, sia nel monodimensionale (fili) sia nel bidimensionale (membrane—
gusci), spessori dell’ordine del decimo di millimetro, si & dovuto introdurre nuovi
modelli ad interpolazione mista allo scopo di risolvere questo problema.

In definitiva si & scelto di modellare la vela con una mesh di membrane su cui
si sovrappone una mesh di corde, che modella I’andamento delle fibre di rinforzo
(Capitolo 5).

La vela, nel Capitolo 6, ormai ottimizzata nella forma e nel materiale, verra
investita da una raffica di vento (in una virata!) capace di farle cambiare concavita.
Verranno quindi presentati i risultati delle simulazioni in grandissimi spostamenti
ottenuti utilizzando i codici di calcolo implementati in FORTRAN 77 seguendo le
direttive dei precedenti capitoli.
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Chapter 1

How fast is fast?

Both men and ships live in an unstable element, are
subject to subtle and powerful influences and want
to have their merits understood rather than their
faults found out.

Joseph Conrad, The Mirror of the Sea

1.1 Speed performance

Sailing has grown enormously in popularity as a means of sport (America’s Cup)
and recreation in the last three decades. Most recent major developments, result-
ing in a large variety of types of contemporary sailing craft, have been inspired by
desire for greater speed. It appears that the fascination with speed for speed’s sake
has more of a hold today than ever before. Unthinkable futuristic shapes, some
resembling aeroplanes more than boats, and the speed records achieved, have cap-
tured the public attention and attracted almost unlimited financial sponsorship,
without which such creations could not have appeared and proliferated so rapidly.
Speed fever, which has descended recently on a large part of the sailing population,
is well reflected in Table 1.1 that illustrates the increase in speed recorded by a
variety of sailing craft during their west—east transatlantic passages over the last
100 years or so. The increase in speed listed against time in Table 1.1 is expressed
in terms of relative speed, that is speed—length ratio V;/v/ LWL (see Appendix A).
These terms refer to the fact that simply increasing the size of the vessel, with no
change in basic design philosophy, will increase its sailing speed roughly in propor-
tion to the square root of the increase in the waterline lenght of the hull. Thus, for
instance, if the size of the hull is increased twofold, all other things being equal, its
potential speed should increase roughly in proportion to v/2 = 1.4 ~ 40 %. There-
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Year Name of Yacht Type LWL (Ft) BDR (Miles) V;/LWL
1851 America mono 90 284 1.25
1866 Henrietta mono 84 280 1.27
1866 Alice mono 48 207 1.24
1869  Sappho mono 121 315 1.19
1887 Coronet mono 124 291 1.09
1905 Atlantic mono 135 342 1.23
1928 FElena mono 96 282 1.20
1931 Dorade mono 37 210 1.44
1935 Vamarie mono 54 222 1.26
1952  Caribbee mono 44 212 1.33
1977 But mono 70 298 1.48
1980 Desperado ULDB® 47 245 1.49
1981 Kriter VIIT ULDB 62 304 1.61
1983 La Vie Clare ULDB 213 447 1.28
1988  Phocea ULDB 213 490 1.42
1979 Kriter IV tri 66 340 1.74
1980 Paoul Ricard tri 46 357 2.19
1981  Elf Aquitaine cat 62 370 1.96
1981 Sidinox proa 52 350 2.02
1981 FMV cat 60 361 1.94
1981 Le Turnesol tri 46 312 192
1981  Fleury Michon IV cat 42 301 1.94
1981  Dict Robert tri 50 301 1.77
1981  Gautier IT tri 43 250 1.59
1981 Brittany Ferries tri 60 400 2.15
1982  Gauliosis IV tri 42 325 2.09
1984  Jet Services 1T cat 60 433 2.33
1984  Formula Tag cat 74 420 2.03
1984  William Saurin tri 80 447 2.08
1986  Royale I cat 80 468 2.18
1990 Jet Services V cat 75 454 2.18

Table 1.1: Relative speeds V;/vLWL achieved by some outstanding mono and
multihulls when sailing across the Atlantic west—east.

“ULDB stands for ultra light displacemet boat
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fore when comparing the speeds of different types of sailing craft size for size, it is
not speed alone that should be used as a yardstick of the design excellence or the
crew achievement, but speed in relation to the length of the craft. In other words,
in order to compare objectively the speed potential of boats of different length,
one must reduce them to the same corrected length. It has been understood for a
long time that one cannot hope to continue indefinitely the speed improvements of
the displacement type of yacht (in which the lateral stability needed to carry sails
is provided by heavy metal keels), but, for no immediately reasons, this interest in
high speed sailing has driven people to discuss new concepts of high performance
sailing machines, build them and finally sail almost unthinkable, spider-like sea
monsters bordering on pure fantasy.

Filippo Tommaso Marinetti, the founder and leader of Italian Futurism, in his
Futurist Manifesto published in 1916, developed his idea of the new religion of
speed. The following extract is evidence of the remarkable sensitivity of Marinetti
as an artist who was capable of giving expression to a powerful trend that was
hardly discernible at his time:

La velocita, avendo per essenza la sintesi intuitiva di tutte le forze in movimento, & natu-
ralmente pura. La lentezza, avendo per essenza 1’analisi razionale di tutte le stanchezze in
riposo, € naturalmente immonda. Dopo la distruzione dell’antico bene e dell’antico male,
noi creiamo un nuovo bene: la velocita, e un nuovo male: la lentezza. Velocita = sintesi di
tutti i coraggi in azione. Aggressiva e guerresca. Lentezza = analisi di tutte le prudenze
stagnanti. Passiva e pacifista. Velocita = disprezzo degli ostacoli, desiderio di nuovo e
d’inesplorato. Modernita, igiene. Lentezza = arresto, estasi, adorazione immobile degli
ostacoli, nostalgia del gia visto, idealizzazione della stanchezza e del riposo, pessimismo
circa I'inesplorato....... L’ebbrezza delle grandi velocita in automobile non & che la gioia
di sentirsi fusi con 'unica divinitd. Gli sportsmen sono i primi catecumeni di questa
religione. Prossima distruzione delle case e delle citta, per formare dei grandi ritrovi di
automobili e di aeroplani.

No doubt the peculiar fascination and exhilaration of high speed under sail was,
and still is, a powerful emotive drive to stir man’s creative imagination and desire to
build and sail faster and faster craft. Progress towards higher speed is not always,
however, a continuous process, and has been achieved in a rather spasmodic fashion
through the last 100 years (see Table 1.1). Right now the majority of sailing men
seem inspired by dreams of ultimate speed under sail: the Transatlantic Single
Handed Race and the JohnPlayer World Sailing Speed Record are just two extreme
examples of the competitive spirit which dominates the sailing scene.
Concentrating on the competitive and high speed aspect of sailing boats, we may
divide existing and anticipated sailing craft into five categories, as follows:

1. Light, flat bottomed skimming forms (dinghies, scows, maxi-raters, etc).
2. Heavy displacement forms (heavy conventional ballasted yachts).

3. Multihulls (catamarans, trimarans, proas).
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4. Sailing hydrofoils.

5. Other, various, craft, using sail for propulsion (land yachts, ice boats, surf-
boards, skimmers).

We will focus our attention on a typical International America’s Cup Class Yacht
(Fallow 1996; Richards, Johnson, and Stanton 2001) that we can insert in the
point 1. To explore ways and means of sailing faster, we shall review the basic
factors and underlying principles that govern the behaviour and limit the perfor-
mance of a variety of sailing crafts. Since sailing boats are not constant cruising
speed vehicles such as aircraft, but operate in a variety of wind velocities, ranging
from calm to gale (see Appendix C), and on various courses relative to the wind,
one should not expect that any simple set of criteria can succesfully be applied to
judge the merits of rigs or hulls.

The choice of a rig or the concept of a hull to match it, must necessarily be a
compromise, depending largely on what one is trying to achieve: to improve a
boat’s performance on a triangular course, or on an arbitrary course when racing
offshore, to beat some absolute speed record in sheltered water or to cross the
Atlantic in the shortest time singlehanded.

However crude and difficult to determine, a set of evaluation criteria must be es-
tablished or agreed upon, in order to estimate the quality of a sailing boat and
the eventual progress made. With no criteria it is difficult to make any sensible
judgement concerning the excellence of a design or development. The criteria by
which the merits of a particular type of boat are evaluated will of course change
with the particular design aims of the vessel.

Taking into account the opinion expressed by the late Lord Brabazon of Tara at
one time British Minister of Aircraft Production and also member of the Advisory
comittee for Yacht Research

....the designing of aircraft is child’s play compared with diffi-
culties of the sailing craft.

in order to understand the not-so—easy fundamental factors governing yacht per-
formance one may reasonably look at the sailing yacht as:

1. a combination of two distinct systems: one of which is the aerodynamic (rig),
and the other the hydrodynamic (hull with appendages), whose performances
can be considered and measured separately, or

2. a complex dynamic system consisting of two interdependet parts, aerody-
namic ans hydrodynamic, in which case each part is the cause and effect of
the other part, and of the whole system; and the system itself is the cause
and effect of its parts. In other words, the whole system’s characteristic
are more than just the sum of the characteristics of its parts. Hence, the

4
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resulting performance cannot be estimated directly from model results by a
simple, straightforward process.

The first approach is more tempting than the second, since it suggests the pos-
sibility of relatively uncomplicated, direct comparison between different rigs, or
different hulls that, for example, can be developed and measured separately in
the wind tunnel and towing tank respectively. An immediate practical purpose
of such method is in a optimal design process in order to determine whether one
proposed design is better than another, either proposed, or already constructed.
As mentioned earlier, the essence of the second alternative approach to the es-
timate of sailing yacht performance is that the craft is regarded as one complex
aero—hydrodynamic machine, so that the boat speed cannot be determined from
the characteristic of its aerodynamic and hydrodynamic components alone. As
might be expected, to achieve a goal in this design a great deal of sail and hull
data are required.

1.2 The symmetry of sailing

Whether you sail well or poorly, Nature sees to it that the forces between wind and
boat are always precisely balanced by the forces between water and boat. This
symmetry of sailing is happening all the time:

I have become an avid symmetry fan, addicted beyond cure, utterly convinced
of the fertility of symmetry in scientific study and research as a unifying and
simplifying factor.

Joe Rosen, Simmetry Discovered

Because the aerodynamic of yacht sails is complex, and because its application to
yachts differs in fundamental ways from aeronautical applications, it is essential
to begin by focussing on the objectives of a study on sail aerodynamics. This
requires a basic understanding of the overall equilibrium of forces and moments
on a yacht. The words drag and lift, borrowed from aeronautics, refer to key
concepts in understanding sailing. Aspects of sailing which depend primarly on
drag, namely downwind sailing, are discussed in Section 1.2.1; both lift and drag,
or more specifically their relationship, form the kernel of understanding windward
or upwind sailing in Section 1.2.2.

1.2.1 Downwind sailing
The key concept associated with downwind sailing is fluid drag even if:
It is deplorable fact that no theory of drag yet exist which even approximately

does justice to the experimental results.
Prandtl and Tientjens, Fundamentals of Aero and Hydrodynamic
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and, although this quotation dates 1934 it is still true. We would like to minimize
the hydrodynamic drag of the hull through the water and maximize the aerody-
namic drag of the sails originated entirely from the pressure distribution over the
sails. Drag is defined as the net force in the direction of the undisturbed flow.
Fluid drag is not brought about a single mechanism but, it is the combination of
several effects. These can be divided into two main categories (Marchaj 1979):

1. surface friction drag
2. normal pressure drag that consists of three distinct parts:

- boundary layer pressure drag
- vortex drag or induced drag

- wave drag.

1.2.1.1 Surface friction drag

The way in which these various forms of drag manifest themselves, is best seen
by looking carefully at the fluid flow close to the surface of a keel (Cebeci 1999).
This flow will be close to the ideal, unlike that around the mainsail, for instance,
which is disturbed by the mast. What we would like to study here, is the flow close
to the surface because it is in this region that the drag—producing effects mainly
operate.

The nature of the flow at a particular point on the keel depends on the history
of events leading up to that point. Air (sail) or water (hull and keel) flowing uni-
formily in the absence of any obstruction will continue to flow without turbulence,
but in the presence of some object like a sail or keel the nature of the flow will
change as one moves from the leading edge to the trailing edge. The change does
not occur immediately on encountering the obstruction but in three fairly discrete
steps as we move back along the surface. Figure 1.1 shows the extent of a flow
regime known as the boundary layer, a region near the surface where the flow
velocity is changing rapidly with distance out from the surface (Thwaites 1960).
Within the boundary layer the flow speed varies from zero at the surface to that
of the external flow. In this Section, we will be looking only at the flow within
the boundary layer, since it is here that the effects of viscosity are manifested and
where most of the drag has its own origins. The character of the external flow,
or separation region, will be discussed in Section 1.2.2.2 because of its greater
importance for lift than for drag.

There are three kinds of boundary layer: a laminar one, a turbulent one and a
transition region.
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Laminar flow: large shearing forces
no turbolence
thin boundary layer ~ 2mm
drag a V/or) R<10%

Transition region: not well defined depends critically
on roughness and turbulence in flow.

Rn~10%

Turbulent boundary layer ~ 2mm thick

keel profile

| =g /\VA_//

| - 7T _
undisturbed water
flow speed 4kts
top of boundary layer

Figure 1.1: The general nature of the flow which is always found when fluid moves
past an obstacle. Figure given here is for water flow at 4 knots past a fin keel.

Laminar flow region: in order to understand the formation of the boundary
layer and also the fundamental origin of nearly all drag forces, one must understand
clearly what is meant by viscosity. We consider two smooth flat plates of area A
with a fluid filling the space between them. To move the plates at a constant
speed, it requires a force F' which is found by experiment to depend exactly on the
following parameters: it increases in proportion to the area A and to the velocity
v and is inversely proportional to the thickness of the fluid ¢; clearly F' will be
greater for a high viscosity than a low one, so we can write:
A

F= % (1.1)
where 7 is called the coefficient of viscosity and is a measure of the resistance to
sliding of one surface over another when they are separated by a thickness of fluid.
In order to see how this relates to the boundary layer and fluid drag in general
there is one more important ingredient that must be added: intermolecular forces.
The ultimate origin of fluid viscosity lies in the forces between molecules; such
forces exist between all molecules of whatever kind, but taking into account that a
molecule feels an attraction only for those others immediately surrounding it. It is
now easy to see what must happen very close to the surface of a hull or sail when
the water or the air is flowing past without any turbolence. The layer of fluid
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molecules next to the solid interact strongly with its molecules and also with the
adjacent fluid molecules, but not to any significant extent with any others. So the
first layer moves hardly at all with respect to the solid. The second layer, being
held by the first one, moves slowly with respect to it but therefore a bit faster
with respect to the solid. As one continues out through millions of such layers a
point is reached where the speed of flow is the same as that of the external flow
at some distance from the surface. It is therefore clear that the velocity of flow
increases smoothly as one moves away from the surface. Thus the frictional drag
of the laminar boundary layers brought about by the forces that have to be applied
to make these layers move with respect to one another against the intermolecular
attraction.

The man who first investigated the characteristic of laminar and turbulent flow
was Osborne Reynolds in 1883, using an apparatus in which the flow of a stream of
coloured fluid was observed. More will be said later about the onset of turbulence,
which is such an important part of the fluid flows which power all boats. For
the moment we are concerned only with the fact discovered by Reynolds that the
ongset of turbulence in an otherwise non—turbulent flow depends on three quantities:
the speed of the flow, the viscosity (actually the kinematic viscosity) of the fluid
and the length of the flow which refers to the distance along the flow direction
from the leading edge of the sail or keel. It is assumed that the air is moving
without turbulence, a pretty crude approximation, of course, and it is simply the
introduction of a sail (or keel) into this stable state that produces turbulence in the
flow. This doesn’t happen immediately, but only after the air has been in contact
with the sail (or keel) over a distance which we call L. Reynolds discovered that
the turbulence always occurs when the product of L and the speed divided by the
kinematic viscosity, has a numerical value equal to about one million, or:

L 106
Lo_f — =% (1.2)
v v

where v is the velocity, v = u/p is the kinematic viscosity (vair = 1.510~°m?/sec;
Vwater = 1.0107%m? /sec), p is the air density pair = 1.20kg/m? or water density
Pwater = 1000kg/ m®. We have two results for the maximum length of the laminar
flow region (Garrett 1990), depending on whether we are looking at sails or hulls
as shown in Table 1.2.

So because of the physically simple circumstances of laminar flow we are able to
calculate quite precisely the friction drag due to the laminar part of the flow. The
first step is to calculate the velocity distribution through the boundary layer and
then the rate of growth of the thickness of the laminar boundary layer. To get
the total flow these contributions are mathematically added and we find that the

8
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Water (Keel) Air (Sail)
1 15
L (metres)
v metres per sec | v metres per sec
2 30
L t
(metres) v knots v knots

Table 1.2: Length of the laminar flow region.

friction drag force in purely laminar flow is (Thwaites 1960):

is proportional to

laminar—frictional l
boundary layer drag o« /2 x wetted area, (1.3)
force

here v is the hull speed (for a keel) or apparent wind speed for a sail. Of course it
also depends on the viscosity, but this is not a variable over which we have much
control.

Transition to turbulence: Figure 1.1 shows the location of the transition re-
gion between the laminar boundary layer and the turbulent boundary layer. As
has already been said, fluids which are initially non—turbulent soon get tired of this
state of orderliness and turbulence sets in. It is part of the grand scheme of things
in Nature, where it is known that the total amount of disorder in the Universe is
constantly increasing. In summary, the characteristics of the transition region are
as follows:

- sources of turbulence appear randomly in time and position as spots in the
laminar flow which grow as they move downstream;

- the frequency of appearance of these source spots depends on the turbulence
in the incident flow;

- transition can be triggered by a particle of dust which acts as a continuous
source spot.

Turbulent boundary layer: two important differences between laminar and
turbulent boundary layer flow are evident: first, the turbulent boundary layer is
nearly five times as thick as the laminar one, and second, the rate of increase of

9
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velocity, as we move away from the surface, is much greater in the turbulence case.
This means that near the surface the shear forces within the fluid are greater, and
hence a greater drag is expected. Also, because the turbulent boundary layer is
so much thicker, a greater mass of fluid is affected by these shearing forces. It is
clear that laminar flow, over as much of the hull or sail surface as possible, should
be maintained in order to minimize the surface friction drag. Unfortunately, in
sailing, laminar flow is the exception rather than the rule, because laminar flow is
a rather unstable condition compared with turbulent flow. Any turbulence in the
incident flow will quickly destroy the laminar condition so that only when we are
sailing in very smooth water with a steady but not too strong wind, is it likely that
there will be regions of laminar flow on the sails and hull. Thus in practice most of
the surface friction drag has its origins in the region of turbulent boundary layer
flow. As we saw for laminar flow, the friction drag force in turbulent flow is also
determined entirely by the shape of the velocity gradient curve and the boundary
layer thickness. When the calculation is carried through in the same ways as in
the laminar case we find:

is proportional to

turbulent—frictional J
boundary layer drag o v
force

9/% x wetted area. (1.4)

Thus the surface friction drag increases almost as the square of the speed. If the
speed is doubled the drag increases by nearly 4 times.

1.2.1.2 Normal pressure drag

In Section 1.2.1 it was pointed out that the phenomenon of drag could be divided
into two broad categories. The first, surface friction drag, has already been dis-
cussed; the second, normal pressure drag, will occupy the remainder of this section.
The drag associated with lift or vortex drag or induced drag will be treated in Sec-
tion 1.2.2.2. If we were able to determine the total drag force on a small area of
hull, say 1 cm?, it might have a magnitude and direction represented by the arrow
in Figure 1.2(a). The component of the total drag force which is parallel to the
hull or sail is of course the surface friction drag already discussed in Section 1.2.1.1.
The component perpendicular to the hull or sail is the normal pressure drag. Any
object immersed in water or air has pressure forces on it. These come from the
fluid and are always perpendicular to the surface. The situation is also the same
for an object moving in a non—viscous fluid. This is an idealisation which is of
course not true, as all fluids under normal conditions have viscosity, but we discuss
this case first because it helps in understanding normal pressure drag. For a simple
shape like a cylinder, it is easy to calculate the fluid flow if there is no viscosity

10



HOW FAST IS FAST?

-

Skin friction drag

Total drag force Normal

pressure
drag
Hull surface Hull surface
(a) (b)

Figure 1.2: A small section of a hull and a measure of the drag on it.

(Figure 1.3). From such a flow pattern, one can deduce the pressure distribution:
since the flow pattern is symmetrical, so must be the pressure distribution. Dia-
metrically opposite pressures are the same so the net force on the cylinder is zero.
Thus in this case of no viscosity there is certainly no surface friction drag, but
also no normal pressure drag either. This state of affairs is known as d’Alembert’s
paradozr (Thwaites 1960). Like all paradoxes, it is only a paradox if one doesn’t
know enough. Its resolution is simple: no real fluids are completely non—viscous.
What is interesting, however, is the fact that when viscosity disappears, not only
does the surface friction drag (Section 1.2.1.1), which depends directly on viscosity,
disappear, but so also does the normal pressure drag.

Boundary layer normal pressure drag: This is also known as form drag. It
arises from the dissipation of energy within the boundary layer, which modifies the
symmetrical pressure distribution that would be obtained in a non-viscous fluid.

Vortex drag: we will consider the induced drag or vortex drag in Section 1.2.2.2.

Wave drag: That the formation of waves in the wake of a boat gives rise to drag
is well known. That immutable law of Nature, the conservation of the energy,
is basically responsible. The production of waves requires energy, supplied by
the moving hull. If the hull did not have to produce such large waves, as for
instance when planing, more energy would be available for overcoming other forms
of resistance, so that the hull would go faster. So we reach the somewhat obvious
qualitative conclusion that the bigger the bow and stern waves, the greater the

11



Roberto Nascimbene Sail Modelling for Maximal Speed Optimum Design
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Figure 1.3: Flow distributions around a cylinder, such as mast or a shroud, under
different conditions.

wave resistance. Furthermore, the size of these waves (and hence the resistance)
depends upon the speed and shape of the hull. At low speed the bow and stern
waves are more or less independent and have a wavelength A (distance from crest
to crest) much less than the waterline length of the boat LWL. As the boat speeds
up, the height of the bow and stern waves increases and, as the stability of a water
wave requires, the wavelength increases. Eventually the wavelength is such that
the second crest of the bow wave coincides with the stern wave: this magnifies the
size of the stern wave and hence also the wave drag. At this point we have the hull
speed at which resistance is increasing rapidly so that in order to raise the speed
over, much more power is needed. In the case of water waves this hull speed is
given by (Prandtl 1952):

Vs = Q, (1.5)
27

where g is the acceleration due to gravity. Because of the way in which the bow
and stern waves are produced, the maximum wavelength for the combination wave
is going to be approximately equal to the waterline length LWL of the hull. Since
the bow and stern are stationary with respect to the boat they must be moving
across the water at the same speed as it is. For waves there is a unique relationship
between their speed and their wavelength (Eq. (1.5)), and since their wavelength
is just the waterline length of the boat we get from this the well known value for
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hull speed (Claughton, Wellicome, and Shenoi 1998):

‘ speed of boat ‘

-
LWL
v, = (J9 = IRV o vEWE (1.6)
27 27
1

‘ speed of water waves ‘

where V, is in metres/sec and LWL in metres. If V; is in knots and LWL in
metres, then Vy; = 2.4/ LWL. When Vj is in knots and LWL in feet, the equation
is Vs = 1.34v/LWL.

The generation of lift (see Section 1.2.2.2) will in general alter the magnitudes of
the boundary layer normal pressure drag and wave drag, and in addition give rise
to a trailing vortex system. It should be emphasised that these drag concepts are
not independent of one other.

1.2.2 Upwind sailing

The idea of symmetry in Section 1.2 is also present in the much more complex
situation of windward sailing. The verses of Samuel T. Coleridge from The Rime
of the Ancient Mariner:

At length did cross an Albatros.
through the fog it came;

As if it had been a Christian soul.
We hailed it in God’s name.

are one of the most preferred works to yachtsmen an lovers of the sea because it is a
story of the age of sail and human dependence on the elements. Sailors struggling
to beat to windward in an inefficient square-rigger (Tilley 1994), easily believed
in the supernatural powers of the incredible Wandering Albatross or Toroa as it is
known to the Polynesian navigators of the South Pacific, which could effortlessly
follow them to windward with never the slightest movement of its wing, by simply
flying in great tilted circles about their ships. The question is: how could it fly
to windward without flapping its wings as any other bird would? It was not until
1883 that the albatross’s secret was laid bare (Roberts 1995). The first person
to understand this was the englishman John William Strutt who later became
Baron Rayleigh. He lived in a period of time in which it was thought that all
phenomena of Nature were explanable in terms of the laws of classical physics.
Understanding the flight of the albatross was a problem which he solved in terms
of the fundamental laws of physics, years before a practical airplane was built.
Friction slows the wind at sea level and just above, with the result that the wind
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speed increases from zero to its full value in the first 30 or so metres above the
waves. It is from this gradient in velocity that the albatross extracts the energy for
its flight. The bird glides downward, converting potential energy to kinetic energy
and picking up air speed as well as ground speed. Just above the waves it wheels
into the wind, acquiring initial lifting acceleration from an abrupt increase in wing
incidence or angle of attack. As the bird rises it encounters ever higher wind
speeds and, with its air speed thereby maintained, is able to rise again without
any expenditure of its own energy to the altitude from which it first descended. In
a similar way but with a slight change of path, it can proceed to windward again
without expending its own energy. Thus it is not correct to say that is the relative
speed of air and water that enables boats to sail to windward; now we see, using a
similitude with the Nature, that we don’t need to media, just a velocity gradient
within one will do.

1.2.2.1 Balance of air and water forces on a yacht going to windward

Because the aerodynamic of yacht sails is complex, and because its application to
yachts differs in fundamental ways from aeronautical applications, it is essential to
begin by focussing on the objectives of a study on sail aerodynamics. In turn, this
requires a basic understanding of the overall equilibrium of forces and moments
on a yacht (Marchaj 1979; Claughton, Wellicome, and Shenoi 1998). Figure 1.4
illustrate the hull of a yacht sailing upright at a constant speed with the centre of
effort (CE) of the sail and the centre of lateral resistance (CLR) of the submerged
hull coincident at the point O. These simplifications do not affect the geometri-
cal relationships (1.7) we shall derive (Marchaj 1990). In Figure 1.4 we use the
following notations:

O for the velocity field:

Ving speed made good to windward or velocity made good;
V.  apparent wind velocity;
Vi true wind velocity;

Vs  boat speed through the water;

O for the angles:

A leeway angle;

I} angle between apparent wind and course or course angle; it is
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Figure 1.4: Velocity triangle and forces on a boat in the water plane with heeling
angle ¢ = 0.
obviously a measure of how high the boat is pointing;

B' = B8 — X measured apparent wind angle between apparent wind and
heading; angle measured by on-board instruments;

angle between true wind and course or true wind angle;

g
é sheeting angle or angle between boom and centreline;
@ angle of incidence of wind on the sail or geometric angle of attack.

The geometrical relationships between the six quantities, apparent wind
speed V,, apparent wind angle 3, boat speed V;, true wind speed V;, true
wind angle v and speed made good to windward V,,, are fundamental and
applicable to any boat on any point of sailing. Even without any reference to
the details of hull and sail characteristics, these relationships impose severe
restriction on the range of possible performance of a sail boat. The following
useful formulae are simply algebraic statements of the geometry of Figure 1.4
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or 1.6:

Ving = Vi cosy (1.72)
Visiny =V, sin 8 (1.7b)

Vssiny = Vg sin(y — ) (1.7¢)

(Vi + Ving)? + (Ving tany)? = V.2 = (Vs + Vi cosy)? + (Vi siny)?  (1.7d)

where from Equation (1.7d) we may write:

Lt [mg [/mg ?
=79 L ,[1-— . 1.
Va Va \/ (Va tany (18)

O for the forces acting on the hull:

F, total hull force;
Ly hull lift force perpendicular to fluid (water) flow direction;

D;, hull drag force along fluid (water) flow direction;

O for the forces acting on the sail:

Fy  total sail forces or driving force;

L, sail lift force perpendicular to fluid (apparent wind air) flow direc-
tion;

D, sail drag force along fluid (apparent wind air) flow direction;

Fg heeling force of sails where (see Figure 1.8):

H = Fg cos ¢ sideforce in horizontal plane;
Fy = Fysin ¢ vertical force of sail;

Fr driving force of sails along course direction or propulsion or thrust
force

The geometry of sailing windward: the sailing yacht operates at the interface
between two fluids: the immersed part of the hull moves through water along the
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yacht’s track, the above water part of the hull, the mast and sails move through the
air, experiencing an incident wind field that is the vector sum of the natural or true
wind V; and the wind arising from the yacht’s motion through the air. The true
wind, vectorially added to the wind produced by the boat’s motion, creates the
apparent wind V, as felt by the sails. It is obvious that if one sails dead downwind
at 8 knots (V) in a 15 knot wind (V;), the apparent wind (V,) over the deck will
be only 7 knots. It is not, however, so obvious that after turning back and now
moving through the water at 6 knots with the wind direction indicator showing
B = 33°, the wind over the deck will now be 19.7 knots (V,). In Figure 1.4 the
arrow marked V; specifies the magnitude and direction of the true wind, that is
measured by an observer fixed with respect to the sea; V; is the speed of the boat
with respect to the water and is therefore measured directly from the knotmeter
providing the leeway is not extremely large; V, is the apparent wind speed and can
be measured directly on board. This three quantities, Vs, V; and V, form what is
usually called a vector triangle. The other quantities are: the angle 3, which is
the angle between the direction of the apparent wind and the course sailed; the
angle v which is the angle between the true wind and the course sailed, and finally
the important quantity Vi, which is the speed made good to windward. This
latter quantity is the component of the boat speed which is directly opposite to
the true wind. Given any three of the six quantities Vg, Vi, Vs, Ving, 8 and vy it is
possible to determine the other three from the Equations (1.7) and (1.8). It should
further be remembered that the crew has direct control over only two variables:
the apparent wind angle via the helm (rudder) and the angle of incidence of wind
on sails via the sheets. Of course a number of adjustments are possible, mainly
concerned with sail shape.

In windward sailing it is the ratio of lift to drag that is substantially important in
determining the characteristics of the boat. A description of windward sailing is
somewhat like an exercise in geometry, so you will not be surprised to learn that
lift /drag ratio can be represented by an angle, the drag angle= ¢. In Figure 1.5 we
show that the total forces F; and F}, acting on a object in a fluid flow (air/water
respectively) are generally at some angles to the undisturbed flow direction. If
these forces slopes aft a long way, the drag component is large compared to the lift,
whereas if it is near to the perpendicular at the apparent wind, the lift component
is relatively larger than the drag. The drag angle € is therefore defined as the angle
between the direction of the lift force and the total force. Clearly a large drag angle
implies a larger drag or to be more precise a large drag/lift ratio. When we refer
to the sail, g, is the drag angle between F; and L,; whereas with reference to the
hull, ¢, is the angle between Fj and Lj. Since we will more often be speaking of
the ratio of lift to drag rather than drag to lift we define drag angle by:

L 1

D tane

D
or ¢ = arctan I (1.9)
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From Figure 1.4 it is easy to write the relation:
B =¢s+en, (1.10)
moving from which we can write the following theorem:

Theorem 1 (Beta Theorem or Course Theorem) The angle § between the
apparent wind and the course actually sailed is equal to the sum of the sail £, and
hull e, drag angles.

This simple geometrical relationship was first identified by Lanchester in (1907)
and it is of fundamental importance in understanding principles which control the
performance of any sailing boat. The apparent simplicity of the Theorem 1 tends
to obscure the complex interactions of physical effects which are involved when a
boat sails to windward, as we shall see later in Section 1.2.2.3.

Aerodynamic and hydrodynamic forces: let us limit our attention to the
windward leg, generally regarded as the most important sailing course. This
course, more than any other, intensifies the conflict between the aerodynamic
efficiency of a rig and the hydrodynamic efficiency of a hull, together with its
resistance and stability. The most obvious manifestation of this conflict in the
traditional monohull yachts is that between resistance against stability (i.e. nar-
rowness and lightness, giving an easily driven hull) and beam and weight (giving
power to stand up to the sail forces). Yacht performance, particularly when sailing
to windward, is in fact a complicated game of hull resistance, the driving power
of the sail and stability. Figures 1.5, 1.6 and 1.9 show a yacht sailing at a steady
speed in calm water: in this quasi static equilibrium condition the net forces and
moments acting on the vessel are zero. The forces acting on the above water part
of the yacht Fy, propel underwater part, which produce an equal and opposite
force F},. By adjustement of the sails (sheets) and rudder, the yacht can be made
to hold a steady course. The waterplane in Figures 1.5 and 1.6 is conventionally
treated as the divide between the aerodynamic and the hydrodynamic forces. The
behaviour of the yacht can be viewed as a balancing of the forces in these two
domains. As we can see in Figure 1.5, hydrodynamic and aerodynamic charac-
teristics are usually presented on track azes, that is a right-hand orthogonal axis
system in the vertical and horizontal water plane with X, axis aligned with the
yacht’s direction of motion, Yy is positive to port and Zj positive upwards. On
the contrary, structurally based characteristics are generally considered in a co-
ordinate system that moves together with the body of the yacht. It is another
right—-hand orthogonal system based on the centre plane of the yacht, aligned with
the hull centreline and mast: X forward along the yacht centre line, ¥ normal to
the centreline of the yacht in the plane of the deck and Z vertical in the plane of
the mast.
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TRUE WIND
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Figure 1.5: Forces acting on a sailing yacht.
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Figure 1.6: Components of forces acting on a sailing yacht in the plane of the
water surface.

The total resultant aerodynamic force, Fy, generated by sails, can be resolved into
two components in a plane passing through the centre of effort (CE), as shown in
Figure 1.4 and 1.5. These components are:

O a driving force Fr acting along the direction of the course sailed;

O a heeling force Fy acting perpendicular to both the course and the mast.
This force can be further resolved into two components, whose magnitudes
will depend on the angle of heel ¢:

- H = Fp cos ¢ horizontal or lateral force,

- Fy = Fy sin ¢ vertical force.

When beating against the wind, we should like to have the maximum possible
driving force Fg and simultaneously a minimum heeling force Fg so that we may
sail at high speed with neglegible heel and drift. It will be seen from the following
trigonometrical relationship that the magnitudes of Fr and Fy depend on the
angle 8 between the course and the apparent wind, and on the lift Ly and drag
D, that are assumed to act normal to the centre plane of the hull and mast, and
may be resolved into the space axis system (X, Yo, Zo) by the following relations:
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Fr=L,sinf — Dscosf3 (1.11a)
H = Fycos¢ = (Lscos B+ Dy sin B) cos ¢. (1.11b)

It is evident from relations (1.11) that the drag not only decreases the driving force
Fgr (Equation (1.11a)), but also increases the harmful heeling force Fy (Equa-
tion (1.11b)). It is not difficult to see that if the aerodynamic force on the sails,
F,, and the hydrodynamic force on the hull, F}, are equal and opposite, as shown
in Figure 1.4, then the components of these forces, if taken along the same direc-
tions, must also be equal and opposite. This is shown in Figure 1.4 where Fg is
the component of Fs along the course sailed; for this reason it is called the driving
force of the sails. This is exactly opposed by the hull drag force Dy, measured
along the direction of undisturbed water flow, which is simply the direction of the
course sailed. At right angles to these are the two indipendent force components
Fy and L; which are also equal and opposite. They are at right angles to the
boat’s direction of motion and so do not contribute to its speed but only to its
tendency to heel. As well as forces the boat is subject to torques or moments (Fig-
ures 1.7, 1.8 and 1.9). If the boat is sailing with a constant angle of heel ¢, the
clockwise torque or heeling moment My produced by Fy and L, must be exactly
opposed by a counterclockwise moment, or righting moment Mg, produced by W,
the total weight of the boat plus crew and B, the buoyancy force resulting from
the displaced water (see Figures 1.7 and 1.8). Obviously W and B are equal and
opposite, otherwise the boat would either rise up out of the water or sink farther
into it.

1.2.2.2 What about lift? Two—dimensional effects.

Although we saw in Section 1.2.2.1 that there are only two prime forces acting on
a boat moving through the water F; and F}, it is useful to decompose these into
components such as lift and drag. Drag is the component of the total force which is
along the direction of motion and was discussed in detail in Section 1.2.1. We have
a strong intuitive notion about drag but the situation is completely reversed in the
case of lift. It is not so easy to understand why there can be such large component
of force at right angles to the direction of flow. For this reason, classically (Prandtl
and Tietjens 1934; Garrett 1990; Vinh 1993), the lift, which is so important in
sailing, can be explained in three different ways:

1. flow line method,
2. momentum change approach,

3. mathematical approach.

21



Roberto Nascimbene Sail Modelling for Maximal Speed Optimum Design

A w BTW

@ RA - Righting arm

Fs

M Yw(Weather helm)

s
—
—
—
Course
B Course sailed Vs
) My,
7 (Lee helm)
4 Ly F
M Geometry of the velocity

triangle

Va @ @

Figure 1.7: Fundamental relations.
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Figure 1.8: Torques or moments on a boat.

Flow line method: this is perhaps the standard method for explaining lift in
books about sailing (Glénans 1975). We begin by drawing a diagram of the flow
lines, called streamlines, around a sail without a mast, as shown in Figure 1.10.
The result is the potential flow, or ideal flow, around an object. It gives the correct
flow distribution in situations where separation does not occur. Since this is what
is desired with sails and can be accomplished in many real sailing situations, the
distribution of the flow shown in Figure 1.10 can then be regarded as qualitatively
correct. We notice that at the left of the diagram the streamlines are equally
spaced, indicating that there is no variation in flow rate from top to bottom along
the left hand edge. For practical reasons we limit the extent of the flow into a
region where the sail is placed in the centre. All the streamlines which pass to
leeward of the sail, go through the area Ap, and all those passing to windward of
the sail go through Ay, . About eight streamlines flow through the small area Ap:
if we follow them back to the region in front of the sail we see all of them pass
through an area A which is much larger than Ar. In other words, the flow around
the leeward side of a sail is such as to constrict the streamlines; on the other hand,
on the windward side of the sail, the streamlines open out from a small area to a
larger one Ayy. This means that flow over the leeward side is faster than in front
and over the windward side slower than in front (see Figure 2.18 and example at
pag. 85). To make a connection between speed of flow and lift, we must introduce
another law of Nature: the Law of Conservation of Energy. In incompressible fluid
flow, the sailing’s case, we are concerned only with two forms of mechanical energy:
kinetic and potential. If the system is purely mechanical and there is no exchange
of energy to other forms, then conservation of energy requires that the sum of
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Figure 1.9: Roll moment equilibrium.
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Figure 1.10: The flow around a sail under conditions where no separation is oc-
curring. All the streamlines that flow through the area A ahead of the sail also
flow through the smaller area Ap .

the kinetic and potential energies remains constant. It is only approximately true
because in all systems, friction is present giving a change of energy to heat. Think
now of a particle of fluid in a region of flow. If it finds itself in a region of high
pressure and there exists nearby a region of low pressure, then the particle will be
compelled to flow to the point of lower pressure. As a result of moving from the
high pressure to the low pressure area the particle of fluid has speeded up. Thus
we can associate high pressure with large potential energy and low pressure with
large kinetic energy. We are now able to write the fluid form of the Conservation
of Energy (Prandtl and Tietjens 1934):

2
% + = = const., (1.12)

Sl

where p is the density, w is the velocity of a fluid particle and p the difference
between the actual pressure and the pressure which would exist if the fluid were
at rest. This result (Equation (1.12)) usually goes under the name of Bernoulli’s
Law, formulated in 1738. What we find for a sail, applying the Bernoulli’s Law,
is something like that shown in Figure 1.11 (a), where the length and direction
of the arrows give the magnitude and direction of the pressure, respectively. As
expected, the arrows are longer on the windward side, indicating that the pressure
there is greater than to leeward. The vector sum of all these forces gives the total
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Figure 1.11: (a) Distribution of pressure for the flow shown in Figure 1.10. (b)
The air flow around a fixed sail is equivalent to a deflection of the air stream. (c)
If the boat is allowed to move forward energy is extracted from the air flow.

sail force which has a component perpendicular to the wind direction: this is the
lift.

The momentum change approach: we use here the concept of the sail as an
air deflector, see Figure 1.11 (b). It is a rather strange kind of deflector because
the air is deflected not just from the windward side, but from the leeward side as
well. The objective in sailing is to extract as much energy as possible from the
air and water flow. If energy is to be taken from the wind, the wind speed will be
reduced. To see just how this comes about, we consider in Figure 1.11 (c) a boat
moving forward at 5 knots. In the absence of any true wind, the apparent wind felt
on board would be 5 knots from dead ahead. If we add to this a true wind of 12
knots at 62° to the yacht’s heading, using relations (1.7), we find that the apparent
wind is 15 knots at 45°. After the wind leaves the sail it will still have an apparent
speed of 15 knots. This is because apparent wind is measured with respect to
the boat. However, an observer in an anchored boat would measure a true wind
speed of 12 knots just ahead of the sail and a speed of 10.3 knots downwind of the
leech. This reduction of true wind speed by 1.7 knots represents a loss of energy
by the wind which has been transferred to the yacht. We now have to examine the
physics of what is happening. The magnitude of the momentum, or quantity of
motion, is simply the product of mass and velocity. One of the most fundamental
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t=0 t=0.1c/v t=chv

(b)

Figure 1.12: (a) Ideal potential flow around a fixed cylinder. (b) How the stream-
lines change with time around a symmetrical keel section at a fixed angle of leeway.

laws of classical mechanics concerns the relationship between force and change of
momentum described by Sir Isaac Newton (1642-1727). The proper understanding
of mechanics that Newton accomplished represents perhaps the greatest single leap
forward in human understanding of Nature. Known nowdays as Newton’s Second
Law of Motion, it states that:

...the rate of change of momentum of an object is equal to the net
external force applied to it...

Rate of change refers to a change with time, and since the mass of an object is
usually fixed, rate of change of momentum refers to a change in its velocity, or
direction, or both. If the speed is moored, (Figure 1.11 (b)) the speed of the
air flow after it leaves the sail is unchanged: only its direction is changed. This
amounts to a change in momentum of the air which gives rise to a force on the sail.
In this way, the apparent wind in Figure 1.11 (c) is turned, but its speed remains
unchanged. The symmetry of the situation suggests that the resultant force on the
sail makes equal angles between the direction of the incident wind and the wind
leaving the sail: this is of course the total sail force. The lift is the component
perpendicular to the incident wind direction. The momentum change approach in
order to understanding lift is a macroscopic theory: it can tell nothing about how
a sail deflects the wind, but simply that if one knows the approaching and leaving
wind directions and speeds then one can determine the resultant magnitude and
direction of the total sail force. To be able to understand how the wind works, one
must read the mathematical approach to understanding lift.
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The mathematical approach: the ideal fluid flow, where viscosity is unim-
portant, is called potential flow because the equations involved are the same as
those describing the potential in an electric field. In the 18" century mathemat-
ics developed a theory able to describe situations where viscosity effects can be
neglected.

Figure 1.12 (b) shows the sequence of events for the flow around a keel section when
a boat starts to move forward at a constant leeway angle. The movement begins
at time ¢ = 0: initially the streamlines are exactly as potential theory would have
them (Ashley and Landahl 1965). A short time later ¢ = 0.1¢/v, when the water
has moved about a tenth of a chord length, it is already having trouble rounding
the trailing edge and is separating from the surface forming a vortex. After the
keel has moved forward to a distance about equal to its own chord, the vortex
formed has been left astern and the flow over the keel is now smooth and attached
at time ¢ & ¢/v. The vortex, which is left behind, is known as the starting vortex.
The crucial point here is that because of the inability of the water to flow around
the trailing edge, a vortex has formed. Now, before proceeding with the final step
of the argument explaining lift, something has to be said about the behaviour of
these vortices.

Our understanding of vortex behaviour comes mainly from the work of Hermann
Ludwig Ferdinand von Helmholtz (1821-1894) whose three Theorems are usually
enunciated as follows (Ashley and Landahl 1965):

Theorem 2 (First Vortex Theorem) The circulation around a given vortex
tube (strength of the vortex) is the same everywhere along its length.

Theorem 3 (Second Vortex Theorem) A wortex tube can never end in the
fluid, but must close onto itself, end at a boundary, or go to infinity.

Theorem 4 (Third Vortex Theorem) Vortices are preserved as time passes
and they cannot decay or dissapear except through the action of viscosity or some
other dissipative mechanism. So circulation or vortex motion in o fluid can neither
be created nor destroyed.

Such Theorems require a little explanation. The amount of circulation, or vortex
strength, is equal to the line integral of the tangential component of the velocity
along any closed curve surrounding a general airfoil (Batchelor 1967). Of these
three Theorems of vortex behaviour, the one that concern us here is Theorem 4.
We apply this Theorem to a situation of sailing in clear air and smooth water,
when the apparent flow approaching the boat will normally contain no vortex
strength: no eddies, just translational flow. If we now start sailing in this idyllic
situation, we know that the first thing that happens is that a starting vortex
is created in the water. According to Theorem 4 the total amount of vorticity
cannot change. The only way this is possible is that there must exist an equal
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and opposite vorticity called bound vortex or circulation around the keel section
as depicted in Figure 1.12 (a). This circulation when added to the potential flow
of Figure 1.12 (b) is precisely that needed to modify the flow near the trailing
edge to produce the situation in Figure 1.12 (b) where the stagnation point has
moved to the sharp trailing edge and flow over this point of the keel is free of
discontinuities. Now, at last, the true origin of the lift should be appearing out
of the mist: the key to the generation of the lift is the presence of circulation in
the flow (in aeronautical parlance (Vinh 1993) the circulation around the wing is
known as the bound vortex as opposed to the starting vortex which is left behind
on the airfield) and if the circulation is known then lift can be calculated. Thus
in order to summarize the mathematical theory of lift:

1. A fundamental feature of the flow around a lifting section is that the down-
stream stagnation line comes smoothly off the sharp trailing edge (Ashley
and Landahl 1965).

2. The price for the production of this type of flow is the production of a starting
vortex in the fluid. A physical role of the starting vortex is to shift the rear
stagnation point towards the trailing edge, so that the velocity of the flow
leaving the upper surface at the tailing edge is equal to that of the flow
leaving the lower surface. This assumpton is called the Kutta—Joukowski
condition (Marchaj 1979; Garrett 1990).

3. The fundamental Theorem 4 of fluid flow tells us that the existence of one
vortex must be associated with the presence somewhere in the flow of an
equal and opposite vorticity. This is the bound vortex or circulation around
the lifting section. It has been understood from points 2 and 3 that the
generation of circulation round an airfoil (see Figure 1.12 (b)) is necessarly
accompained by a starting vortex (Whidden and Levitt 1993).

4. Just as a spinning ball, Figure 1.12 (a), produces circulation and has lift,
so a lifting section has lift by virtues of its circulation although it does not
have to physically rotate to produce it. The magnitude of the lift L per unit
span b (cutting out from the infinitely long wing) perpendicular to the flow,
applicable to two—dimensional flow, is given by:

L
3= pvol, (1.13)

where I" being, of course, the circulation round any circuit enclosing the
aerofoil; vy is the undisturbed tangential flow velocity of an infinite extent
of fluid and p the fluid density as defined in pag. 8. This results constitutes
what is known as Kutta—Joukowski theorem of lift. This is an extremely
important results in fluid flow theory and forms the basis for the lifting line
theory of sail and wing forces (Tanner 1967; Guermond 1989).
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1.2.2.3 Three—dimensional lift effects.

The kind of ships referred to by William Shakespeare in The life of King Henry
V, Act. III, Prologue:

...behold the threaden sails

Borne with the invisible and creeping wind
Draw the huge bottoms through the furrow’d sea
Breasting the lofty surge...

could not go to windward. Only drag forces, as explained in Section 1.2.1, were
involved in determining the driving force of the sails and the resistance of the
hull. In Section 1.2.2.2 we saw that fluid flow, as well as generating drag, can also
generate lift. The origin of lift which acts at right angles to the flow was fully
explained in Section 1.2.2.2, however entirely in terms of two—dimensional flow.
This is the kind usually measured in a wind tunnel (Wang, Plate, Rau, and Keiser
1996; Diana, DePonte, Falco, and Zasso 1998) where the effects of the ends of the
foils are eliminated. For yachts, these three—-dimensional effects are very important
indeed, both under the water and especially in the air (Flay, Locke, and Mallinson
1996). End effects, or three-dimensional effects, arise simply because there is a
difference in pressure between the two sides of a sail or keel (Garrett 1990). Fluid
always wants to flow from a region of high pressure to a region of low pressure.
If a sail is porous, air will flow straight through it from windward to the leeward
side. Good sail cloth doesn’t allow this (Whidden and Levitt 1993) so that the
only other open course for the air is to flow under the boom or over the head of
the sail in order to equalise the pressure difference. This gives rise to an additional
form of drag, as we saw in Section 1.2.1 and as we shall see right now. As a general
rule, the farther the ends are from the main body of the sail, the less is this extra
drag: a tall sail (high aspect-ratio=AR) is aerodynamically more efficient than a
short one (low aspect—ratio) (Marchaj 1990). Let us now look at the physics of
this in more detail considering, as shown in Figure 1.13, a sail set so close to a flat
deck that there is a hermetic seal between it and the deck. This means that the
air flow near the foot of the sail is going to be close to the two—dimensional ideal
one. So, the theory of Section 1.2.2.2 is directly applicable in this lower region
of the sail. Because of the sail’s shape and the geometric angle of incidence «
of the undisturbed flow mesured between the direction of the flow at a distance
from the sail and the sail chord, a circulation or bound vortex is set up aroun
it. The lift produced in this region is directly proportional to the strength of the
circulation as given by the Kutta—Joukowski relation (1.13). If we imagine the sail
as being divided into a series of horizontal strips, then we expect the circulation
and hence the local lift to decrease with height; the main reason for this is simply
that the sail chord and also the area of each strip is decreasing. So the picture we
have of the sail is a system in which the strength of the circulation is decreasing
with height. Thus when the circulation decreases from one region to the adjacent
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Figure 1.14: How the bound vortex and the starting vortex shown in Figure 1.12
are connected by the trailing vortices to form a closed loop, as demanded by the
Theorem 3.

region of a sail, the difference in vorticity, as shown in Figure 1.15, must appear
somewhere as a consequence of the Theorem 4. It does so in the form of a shed
vortex from the leech of the sail (see Figure 1.14). Of course, the process is not
dicontinuous as implied by the Figure 1.13 but it consists of an infinite number
of infinitesimal vortices which all add up to a finite amount. At the top of the
mast, there is a component of flow from the high pressure side over to the low
pressure side which is just part of the overall system of shed vortices. That these
shed vortices combine downwind to form one large vortex appearing emanate from
the tip of the sail is beautifully demonstrated by vapour trails from high-flying
aircraft in Figure 1.16. The variation of the circulation and lift with height is often
referrred to as distribution of loading; this term comes from aeronautics where the
wing lift must support the weight of the plane (Vinh 1993).

The consequence of this trailing vortex will now be looked at. The flow in a vortex
is, of course, circular and the tangential speed of the flow varies inversely as the
distance out from the center. This vortex motion is now imposed on the incoming
flow, modifying it in the region of the sail. If we concentrate our attention on
the velocities near the plane of the sail (Figure 1.13) we see that the contribution
of the trailing vortex is the tangential velocity distribution at the bottom of the
vortex flow. This velocity, w, is perependicular to the oncoming flow vy, and falls
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Figure 1.15: According to the Theorem 4 the total vorticity or circulation within
a fluid must remain fixed and the vortex must be a continuous loop unless there
is a solid surface for it to end on.

off with distance from the centre of the vortex. For aeronautical reason (Vinh
1993) w is referred to as downwash velocity. Looking now Figure 1.13 at a cross
section part way up the sail, the downwash velocity w is vectorially added to the
undisturbed oncoming velocity flow vy giving the resultant local flow velocity vg,
as graphically shown. If we add, as vectors, the downwash velocity w at the foil
to the oncoming flow velocity vy, we find that the resultant local velocity vy is
deflected downwards through an angle o; whose tangent is w/vo. This angle is
usually called the induced angle. The downwash reduces the effective angle of
incidence and it can be seen in Figure 1.13 that:

aef:a—ai:a—ﬂ. (1.14)

Vo

Hence, the lift generated at the effective incidence (aer in (Marchaj 1979) and oo
in (Garrett 1990; Claughton, Wellicome, and Shenoi 1998)) is smaller than would
be expected from the geometric angle of incidence «. For a foil of infinite aspect—
ratio (two—dimensional flow as in Section 1.2.2.2), the induced angle of incidence
a; is zero. Therefore the effective angle of incidence aer is equal to the geometric
incidence a so that:

Qef = Q. (1.15)
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Figure 1.16: Tip vortex of an airplane performing agricultural spraying.

Therefore, for finite span foils (three-dimensional effects), the geometric angle of
incidence is the sum of aer and «;:

o = Qef + . (1.16)

Thus, in order to produce the same lift L, as is produced in the two—dimensional
flow condition, the finite span foil must be set at the geometric angle of incidence
a which is larger by «; than the effective incidence aer for the foil of infinite
aspect-ratio. But there is a more serious effect. Lift is the component of the total
force (i.e. Fj) which is perpendicular to the direction of the undisturbed flow.
Because of the downwash velocity, the perpendicular to the local flow direction is
angled downwind. From the point of view of the undisturbed flow, the local lift
has a component parallel to the flow. As we have seen in Section 1.2.1, such a
component is a contribution to the drag. Since this drag has its own origin in lift,
it is often referred to as induced drag or vortex drag. The vortex drag depends
on the vorticity shed from the leech, which in turns depends on the change in
circulation with height up the sail, so it should be not surprising to discover that
the overall vortex drag depends on the sail form and shape. It is natural then to
ask ourself what kind of sail shape will give the minimum vortex drag for a given
lift. Perhaps surprisingly, there is no unique answer to this, though that is because
it is not a good question. We must ask ourself a slightly more fundamental one:

what loading distribution will result in minimum vortex drag?
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This refers to the way in which the lift varies with height. Since lift is related to
circulation by expression (1.13), we are concerned with the variation of circulation
with height. We will try to answer the question in Section 1.3 after having defined
a good relation between the most important quantities previously introduced: lift
L, drag D and geometric angle of attack a.

1.2.2.4 Lifting line theory: wings and sails of large aspect ratio

A calculation of the lift and induced drag forces exerted on a wing of given shape
and attitude may employ the methods of inviscid fluid theory when the wing is
sharp—tailed and boundary layer separation does not occur upstream of the sharp
trailing edge (Batchelor 1967). The main difficulty lies in the determination of
the strength and position of the vortices which trail downstream from the wing
and which influence the flow near the wing. A theory which enables the trailing
vortex system and the lift and the induced drag forces on the wing to be calculated
under certain conditions was initiated by Lanchester (1907) and Prandtl (1952)
in the early days of aeronautics and then was extended to sail by Tanner (1967),
Milgram (1968) and Wood and Tan (1978).

This theory, the lifting line theory, is still of considerable value in the design
and testing of aeroplane wings intended for use at sub—sonic flight speeds (Vinh
1993), and a brief account of it will now be given. The theory rests on two main
assumptions about the wing under consideration:

1. the first is that the trailing votices are straight and parallel to the direction
of flight, with consequent simplification of the expression for the velocity
field induced by the trailing sheet vortex;

2. the second main assumption is that the ratio of the span 2s to the mean
chord ¢, known as the aspect ratio of the wing (AR), is large and that as
a consequence (for a wing which is not extensively swept back!) the flow
in the neighbourhood of any one section of the wing is approximately two—
dimensional.

Figure 1.17 shows the coordinate system and the notation to be used. The axes
are fixed relative to the wing, and at infinity the fluid has uniform speed vg in the
direction of the negative X-axis. The wing is assumed to be symmetrical about
the central vertical plane on which Z = 0. The chord ¢, the geometrical angle of
incidence a between the chord line and the direction of flight of the wing, and the
cross—sectional shape of the wing (all shown in Figure 1.17) may all vary with the
spanwise coordinate Z. Now when AR > 1 (Assumption 2), the planform of a

1Foils such as sails, keels and rudders are frequently raked bodily backward or, much more
rarely, forward, through some angle called sweep—back or sweep—forward respectively.
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Figure 1.17: Coordinate system for a wing with the Y-axis vertical. Furthermore,
the trailing vortex system from a lifting line.

wing without sweep-back (see footnote (1)) reduces to a straight line? The only
relevant property of this lifting line is the circulation T' round a circuit enclosing
the wing in a plane normal to the Z-axis. I' may vary across the span of the
wing, and the variation in I'(Z) gives rise to a trailing vortex sheet of strength
~vr(Z). The sign convention chosen for I'(Z) and yr(Z) is the right—-handed screw
convention, so that yr(Z) is given by:

dr(Z)

—7 = -1(2). (1.17)

yr(Z) = —
A quantity which we have already introduced in pag. 33 is the downwash velocity
induced at position (0,0, Z) on the lifting line by the whole vortex system. It is
evident from the geometry that this induced velocity is vertical and reads:

_ 1 [*d0(Z) dZ 1 [*d(Z) dZ
oL 4z _ 1 [ d2) dz 1.1
WA =-5 | Tz 7-7Z 1 ][_ iz 7 -7’ (1.18)

2A wing with a small degree of sweep-back would be represented by a curved line making
a small angle with the Z-axis everywhere and can be brought within the scope of this the-
ory (Batchelor 1967).
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where s is the semispan and since the integral becomes indeterminate at Z = Z
on account of the integrand f(Z) becoming infinitely large, it is necessary to take
the so called Cauchy principal value (Tricomi 1957) of it, defined by:

e Z*E 8
L f(2)az = 1im (/ +/Z+5) £(2)dz. (1.19)

where

0<e<min(s+ Z,s — Z)

The definition (1.19) is such that the value of Z has to be approached from both
Vo y Vo
Z < <
c
X oz
\4

z

!
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Figure 1.18: Coordinate system and notation to be used for a wing with the Y -axis
vertical.

sides at the same rate. We shall denote this integral by placing a bar over the
usual integration symbol.

The key point of the theory is that under the conditions stated above the induced
vertical velocity w due to the trailing vortex system associated with the wing is
approximately uniform over the neighbourhood of any section of the wing and is
therefore equivalent in its effect on the flow past this section to a small change in
the direction of the undisturbed stream velocity vg. We see then that the two—
dimensional flow near a section of the wing at station Z is that due to an aerofoil
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immersed in a uniform stream of speed vy and working at an effective angle of
attack aef calculated by subtracting from the geometrical angle a (measured from
zero-lift attitude), the contribution of the downwash velocity w:
Eq. (1.14) = Oef = ¢ — =2
Yo
1 8 dl(Z2) dZ
4 ][ iz Z-2

(1.20)

—8

The foregoing results may be interpreted physically as follows: the influence of
finite span on the flow over a wing is to reduce the local incidence at any station
Z by an induced angle of attack:

1 [*dl(2Z) dZ
= iy 1.21
4o ][, iz Z-2Z (1.21)

The resultant forces in the fluid, by what has been said above, have two compo-
nents: the lift L and the induced drag D;:

L = puo / r(Z)dZ (1.22)

—8

D; = p/s wl'(Z) dZ, (1.23)

—8

where equation (1.22) is none other than the Kutta-Joukowski Theorem applied
to the finite aerofoil (see pag. 29 and Equation (1.13)).

The extension of lifting line theory to a sail has been done by Tanner (1967)
and Milgram (1968). We consider in Figure 1.18, the same right—handed coordi-
nate system of Figure 1.17, in which the X — Y plane coincides with the water
surface, with the X-axis aligned parallel to the centreline of the yacht hull and
facing forwards. The Z-axis is vertically upwards at the position of the sail which
is replaced by one lifting line of variable strength I'(Z) on the Z-axis. First of all,
it brings to light the salient difference between aerodynamic theories for sails and
for wings in a free stream:
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Figure 1.19: Mirror image concept makes easier to grasp the distinction between
the hidden essentials and delusive appearance. For the sake of simplicity, the
downwash and upwash velocity are drawn qualitatively.

We know nothing of how the vastly important wing tip vortices (so important in aviation)
affect our sails. Here is an aircraft approaching: Our sails is one of these wings. There
is a small vortex up aloft and there must be a big one, greatly modified by the hull and
the sea, low down at the foot and, in a sharply heeled keel yacht, what happens? Does
the sea’s surface act like the top wing of a bi—plane and give the same adverse effect on
the lower wing, the sail?

Gen. H. J. Parham, Yachts and Yachting, 1956

No doubt that the salient difference is the proximity of the sea that will have
an effect on the flow round the sail, and therefore on loading distribution, and of
course on the associated phenomena, induced drag and induced angle of incidence.
In order to obtain a picture of the influence of the water plane on the flow round
the sail and in order to satisfy the boundary condition of no flow normal to the
horizontal plane (Assumption 1), the best way is to introduce the so—called mirror
image method. By using this method, the effect of sea presence can be obtained
by replacing the water plane by an inverted mirror image of the boat as shown
in Figure 1.19 and considering the new but easier problem of interacting of flow
around the two sails, or rather two boats since the hull below the sail should not
be ignored. So, the flow pattern and interactions resulting from a combination
of a real and a mirror image boat symmetrically placed on the other side of the
boundary, will be identical with the flow pattern on a real boat over a flat plane.
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1.3 Optimal sail design

Although sails have been used as a means of propulsion for thousands of years, no
method for the design of sail shape based on fundamental aerodynamics (Munk
1923c) has come into use until the work of Milgram (1968). There are numerous
reasons for this; not the least significant being that:

We cannot raise the winds. But each of us can put up a sail, so that when
the wind comes, we can catch it.
E.F. Schumacher in Small is Beautiful

This to say that a sail of almost any shape can be attached to the spars of a vessel
and provide a motive force in the presence of wind. Although such a sail will move
the vessel, there is only a very small probability that the driving force will be close
to its optimum value. Within the framework of existing classical aerodynamic
theory (Ashley and Landahl 1965; Cebeci 1999), it is now possible to take an
almost completely analytical or numerical approach to the optimal design of sails.
The purpose of Section 1.3.1 is to provide the state of the art in optimum design
of yacht sails during the last century. It’s important to underline, as is the case
with almost all fields of design engineering, that the best results can be obtained
only by the proper blending of analytical methods with practical experience of
generations of sailors:

When the wind shifts against the sun,
Trust it not, for back it will run.

The clouds look black, and the glass is low;
Last night the sun went pale to bed;
The halved moon now hides her head.

Look out, my lads! A wicked gale
With heavy rain will soon prevail.

First rise after low
Foretells stronger blow.

Evening red and morning gray,
Two sure signs of one fine day.

1.3.1 State of the art

In this Section a variety of approaches to sail optimization are reviewed. As with
any optimization problem, there are two major decisions to be made before a sys-
tematic optimization study of sails may be effected: the choice of the parameters
defining the sail which are to be optimized, and the choice of objective or merit
function, which effectively determines the aspect of performance to be maximized
or minimized.
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The first of these is apparently the easier decision to make: the designer would,
in an ideal world, like to know the three—dimensional geometry of the sails which
will give the best performance. One difficulty immediately encountered with the
optimization of sail geometry is that the flying shape of the sails and spars is likely
in many cases to be substantially different from the shape generated by the rig pre—
tension alone. If the problem is tackled using a purely aerodynamic approach, only
the flying shape may be optimized; the designer, however, is required to know the
unloaded shape. The inclusion of a structural model of the sails, spars and rigging
is thus desirable, but adds a substantial degree of complexity and computational
cost (Day 1996). Even if is accepted that the geometry to be optimized is that
of the flying shape, a full three-dimensional model is somewhat complex: around
thirty parameters would probably be necessary for each sail in order to allow
realistic variation in both the:

planform parameters: such as luff, leech, foot length, roach shapes (on both
the leech and in some cases, the foot) and mast bend;

sectional shape parameters: such as the magnitude and position of the maxi-
mal camber and the entry and exit angles.

This is likely to lead to unmanageably large numbers of parameters even for simple
sloop rigs. Much of the published work has rejected this geometrical full three—
dimensional approach and opted instead to examine the spanwise distribution of
lift (see Section 1.2.2.3). This type of approach allows the use of simple and
computationally cheap lifting line type models (Munk 1923a; Thwaites 1960), at
least for high aspect ratio rigs. Some research, predominantely experimental, has
been carried out to investigate the effect of varying the sectional shape on the
flow around two—dimensional sails, both with and without the presence of a mast,
though little appears to have been published on systematic optimization in this
regard. This presumably reflects the difficulties of predicting the effects of flow
separation on the leeward side of the sail particularly aft of the mast and near the
trailing edge. Here, we think that the approach offering most potential for guiding
designers is a compromise in which the sectional shape parameters are assumed
fixed (at values chosen from experience as being typical of those representing flying
shapes) and the basis planform parameters are optimized.

The choice of objective function is rather harder than the choice of parameters.
In the case of a cruising yacht for example, a very wide variety of factors must
be taken into account: speed both on and off wind will certainly be important in
terms of the ability to sail away from hazards; reliability and structural integrity;
cost will always be of some relevance and may in some cases provide active con-
straints on the options available. Here we consider an out and out racing yacht
where the decision is, at least superficially, somewhat easier: it might be argued
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that the best yacht is the yacht which would win the most races if all the crews
were of equal ability. However, this by no means leads to a simple criterion for
an optimal rig. The type of racing for which the yacht is intended is of obvious
importance: match racing (Richards, Johnson, and Stanton 2001), for example,
will place a higher premium on maneuvrability than short handed offshore racing.
The likely windspeeds in the area or areas where the yacht is to be raced will affect
the optimal rig size; the choice of the course type for which the yacht is intended,
either inshore or offshore, will influence the relative importance of speed on var-
ious points of sailing (see Section 2.3). Reliability and structural integrity will
still be important factors: as has been said many times, in order to win, it is first
necessary to finish. Cost will in many cases still provide some constraints (Fallow
1996). A final difficulty faced in the design of yachts intended for racing under a
handicapping rule such as (Offshore Racing Council 2002) is that outright speed
is often less important than speed relative to the yacht rating. Given the wide
range of factors to be considered, it is necessary to attempt to simplify the criteria
in order to make some progress.

A simple criterion, already seen in Section 1.2.2.1, often discussed for lifting surface
is the maximization of lift to drag ratio (Garrett 1990), though it is arguably more
convenient in the context of yacht rigs to deal with drive force Fr and sideforce H.

As a consequence, a more sophisticated criterion is the maximization of drive force
with or without constraint on forces and/or moments (Sparenberg 1984) taking
into account that the simple optimization of the lift/drag ratio has therefore not
yielded maximum performance. To introduce this advanced criterion of thrust
force optimization we move from an age far removed from our own, exactly 1923b,
when Max Munk, a German scientist, who later emigrated to the USA to work for
the National Committee for Aeronautics (NACA) proved mathematically that,
for a single wing, minimum induced drag (see Section 1.2.2.2) occurs when the
airstreams are deflected with the same downwash velocity all along the trailing
edge. The elliptic wing of the famous Spitfire aircraft (Figure 1.20) has exactly
this property, and in this sense might be considered as an ideal planform. Munk
used the lifting line theory and the variational principle to minimize the induced
drag of wings with finite spans, and obtained the optimum circulation that is the
elliptic circulation (Munk 1923b). Several authors, Prandtl and Tietjens (1934),
Jones (1950) and Klein and Viswanathan (1973) have extended the problem of
minimizing the drag to take account of practical constraints. These studies have
revealed the fact that the elliptic circulation is largely dependent on constraints.
So it should be emphasized that the elliptic circulation is not always optimum.
Extensions to sail aerodynamics and analyses on it have been conducted, at first,
by Tanner (1967) and Milgram (1968) using the lifting line theory. They approx-
imated sails as horseshoe vortex systems (see Figure 1.14) with mirror images
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L

Figure 1.20: The Supermarine Spitfire first flew in 1936. Some of its Second World
War success was due to its elliptic wing form.

reflected by the sea surface (see Figurefig:specular)in order to neglect the hull
effect and at the same time taking into account the sea effect. One of the key
parameters in their analises, is the gap between the sail foot and the flat sea sur-
face. The Fourier series expansion is used to obtain numerical solutions. They
concluded unanimously that sail designers should trade off drag reduction against
the heeling moment constraint, and that the gap between the sail foot and the sea
surface enhances the induced drag considerably. Sparenberg and Wiersma, (1976)
have treated this trade off problem by introducing Munk’s variational principle to
analysis of sails (Munk 1923b). They presented asymptotic and numerical solu-
tions for the optimum circulation which maximize the thrust with a given side force
and a given heeling moment. Wood and Tan (1978) also computed the optimum
circulation about sails having the maximum thrust and a given heeling moment
through trial-and-error procedure; whereas Sugimoto (1993) computed the opti-
mum sail under more practical constraints on forces and moments with the aid of
the classical lifting line theory. Furthermore Sugimoto extended earlier work to
take into account effects due to the heel of sailing craft (Sugimoto 1995) and the
wind shear ((Sneyd and Sugimoto 1997) and Figure 2.5(b)) and some other wind
conditions (Sugimoto 1999). Wohlfahrt (1988) has analyzed sail aerodynamics
based on the extended lifting line theory called Weissinger’s method (Weissinger
1947; Weissinger 1949). He postulates that the elliptic circulation is optimum,
ang gives the optimum sail geometry. His analysis, in comparison with the pre-
vious ones, takes into account of deformation of elastic leech. In order to avoid
the hull-deficiency, it is necessary to model the underwater body of the yacht in
some way (Wiersma 1978), avoiding the use of the mirror images reflected by the
sea surface. This immediately complicates the problem somewhat whilst simulta-
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Figure 1.21: Knowing the direction from which the wind is blowing is fundamental
to the art of sailing.

neously restricting the applicability of the results obtained to the particular hull
form chosen, or, at best, to similar hull forms. The lack of generality of results thus
obtained make it somewhat harder to establish trends or guidelines for designers.
One manner in which this may be achieved is to represent the hull as a thin upright
lifting surface, thus neglecting viscous and wavemaking resistance (Wiersma 1979).
This allows a relatively simple model of the hull induced drag to be incorporated
in an optimization based on maximization of drive force, effectively resulting in a
constraint on hydrodynamic sideforce as well as heeling moment, but inevitably
lacks a degree of realism.

1.3.2 Design procedure

The art of knowing what can be safely ignored in scientific analysis is often difficult,
but vitally important. The analysis of sailboats requires understanding of complex
interactions among aerodynamic and hydrodynamic forces (see Section 1.2.2.1)and
structural stresses. Though it might be possible to approach the complex problems
directly, we believe that it is valuable to study, as a starting point, a simplified
analytical model which reveals skeletal structures of relations between function
and shape. We assume that:
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. the air is steady, inviscid and incompressible;

. because it is a hard task to sail to windward in lighter winds, we shall
optimize the sail performance in lightwinds;

. as a consequence of point 2 we may neglect the effects of the boundary layer
on waters and the surface wave in the first approximation. So we assume
that the sea surface is flat;

. for the driving force F; created by the relative motion of sails and air, it is
important that the resistance forces be small. These may be listed, according
to the definitions in Section 1.2.1, as induced drag, friction drag, form drag
and additional resistance of rigging. Here we will consider only the induced
drag D;, which, as discussed by Milgram (1968), is a substantial part of the
total drag of the rig;

. since upright single mainsails produce large thrust than heeled ones, we
design sails to trim at zero heel angle (¢ = 0). Furthermore, the function
of jib sails is to prevent separation on mainsails. As it is inconsistent to
consider viscous effects due to jib sails by the inviscid theory, we confine
ourselves to the mainsail design;

. we neglect sail flexibility in the first approximation. When we will study sail
mechanics in detail, it is going to be necessary to combine aerodynamic and
structural analyses (Bisplinghoff, Ashley, and Halfman 1955). Deformation
of sails is caused by their elasticity and leech slackness that has the effect of
causing twist and reducing the effective angle of attack (). We should avoid
unfavorable effect by neglecting the chamber effect due to the elasticity of
fabric sails;

. we postulate that sail is set flat;

. we neglect the effect of the hull. The flow around the sail will be affected by
the close proximity of the sea and the presence of the hull, but if we neglect
the latter entirely a reasonable estimation of the sea effect when the sail
is in vertical attitute (= ¢ = 0, zero heel angle, point 5) can be made by
assuming that the surface acts as a reflecting plane so that an exact image
of the real sail appears below the surface as shown in Figure 1.19 (Marchaj
1979; Prandtl and Tietjens 1934);

. America’s Cup and Louis Vuitton Cup yacht races (the challenger series) are
simply a series of windward and leeward legs as shown in Figure 1.21(a).
Because the most important performance of a yacht is its ability to sail to
windward (see Section 2.3.2), we will study a single mainsail assumed to be
set close-hauled (see Figure 1.21(b)).
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To resume: we consider a single mainsail assumed to be set close—hauled in uniform
wind and upright on the flat sea surface.

1.3.2.1 Optimization procedure: windward performance

The most important performance of a yacht is its ability to sail to windward.
As Marchaj (1979) points out:

At the present time it is commonly agreed that the performance of a sailing yacht in
close-hauled conditions is ultimately measured by the distance it has travelled directly
to windward in a given time.

This is usually referred to as the speed made good to windward V;,,, which should
be a maximum at each true wind velocity V;. Whatever the hull form and rig size
of the boat, all yachts experience the following three modes when sailing upwind.
These can be termed: under—powered, powered up and overpowered. Each mode
is defined by the actual V2% to windward relative to the maximum V,72* of the
yacht. The maximum hull speed can be determined by the following empirical
relationship (Fallow 1996):

Vomax = (water length in feet)%®. (1.24)

If the szat < Ving™ then the boat is said to be underpowered. In this situation,
the primary consideration is to develop the maximum possible force from the sails.
This is achieved by increasing the camber of the sails, at the expense of skin friction
drag. If the VT‘;‘;‘“ = Vg™ at the minimum possible wind speed then the boat is
powered up. Here the boat is sailing in its most efficient mode; hence the most
efficient yacht should have the largest Vi, :

Vmg =V, cosy < Equation (1.7&), (1-25)

where Vs and 7y denote the yacht speed and the angle of the true sailing course,
that is the angle between true wind and course directions. We can deduce from
Equation (1.25) that the optimum Vj,, is attained by larger V, and smaller ~.

1.3.2.2 Optimal design concept

The question that we are going to answer in this section is: how can we obtain in
our sail-boat system the larger Vi and smaller v?

1. Since the square of Vj is in direct proportion to the boat drag D;, (Garrett
1990) and the boat drag is in equilibrium with the sail thrust Fg in steady—
state sailing, hence the largest V; is obtained by maximizing the thrust.
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Furthermore, the smaller «y is also obtained by maximizing the thrust. In-
deed, the following relation holds:

Vs cosy ~ \/Fgcos, (1.26)

where the optimum + is given from the condition:

0 (V'Fr cos7) 1 OFg
DY = — . 1.2
ka 0 = ope = cot [2FR 67] (1.27)

It is a hard task the optimization of 0Fg /07, because it depends on equi-
librium between hydrodynamic and aerodynamic forces; however, Equa-
tion (1.27) implies that the larger Fr makes 7op¢ smaller.

Though the windward performance of sailing yachts can be optimized by
maximizing the thrust Fg, it is evident that aerodynamic and hydrodynamic
forces and moments have their maxima, so we need to consider that the lift
L and the heeling moment My are constrained.

. In steady state close-hauled sailing (Hypothesis 9) with ¢ = 0 (Hypothe-
sis 5), aerodynamic and hydrodynamic forces are in equilibrium; using Equa-
tions (1.11) we can write:

Fgr AAero
o Dyp=L,sinB — DycosBaLysinfB — D;cosf~LsB — D, (1.28a)
i HypotJilesis 4 HypotJilesis 9
T Ly=Lycosp + Dysinf & Lycosf+ Disinf & L, + Dy Ly
Fy VAerO

(1.28b)

According to the conventional wing theory (Ashley and Landahl 1965, pag.137,
Eq.7-48), D}, can be approximated as a quadratic function of L, = Lj, ~ L.
Therefore, D}, reaches its maximum as Lj, reaches its maximum and also as
L, reaches its maximum.

. The bending moment at the mast root is closely related to the strength of
the mast, and corresponds to the heeling moment of yachts. If the heeling
moment Mg and the righting moment Mg are not in equilibrium, the boat
will turn over (see Figure 1.9). The righting moment is produced by helms-
men’s weights and by the weight of the boat. Hence the righting moment has
its upper limit. Therefore, either the mast strength or the righting moment
constraints the heeling moment.

47



Roberto Nascimbene Sail Modelling for Maximal Speed Optimum Design

To summarize, our design goal is the maximization of the aerodynamic thrust Fp
(Point 1) under the equality constraint on the lift Ls (Point 2)and the heeling
moment My (Point 3).

Once the goal of our design concept is established we describe this goal as a
requirement of boundary conditions by using the variational principle (Yang and
Botkin 1986; Mr6z 1986) and the conventional wing theory.

The first step is the definition of the aerodynamic forces and heeling moment on
the basis of the lifting line theory, as introduced in Section 1.2.2.4:

L, = pV,2h? /5 1’7(z)dz < Eq. (1.22), (1.29a)
D; = pV2h? /5 A()ai(a)dz « Fas. (1.14) and (1.23), (1.29b)
My = pV,2h? /gl [7(2) cos B + F(2)a;(2) sin B] zdz = (1.29¢)
~ pValh® /6 1 3(2)zdz <« Eq. (1.28b), (1.29d)

where using the same notation previously introduced, we can define:
o L, = sail lift force (see Figure 1.4);
e D; = induced drag (Section 1.2.2.4);
o My = heeling moment (see Figure 1.7);
e V, = apparent wind velocity (Equations (1.7));

e h = mast height (see Figure 1.19);

L'(2)
Vah

= dimensionless circulation (Wood and Tan 1978);

. 4(e) =

¢ 4 = dimensionless gap between the sail foot and the sea surface (see Fig-
ure 1.19);

= dimensionless mast—coordinate axis.

_Z
T
e ; = induced angle of attack (Equation (1.21)).

This angle (a;) represents the reduction of the effective incidence (aer) induced by
the circulation and is given using the lifting line integral Equation (1.21) with a
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mirror image of the vortex system (see Figure 1.19):

)= £ 70 (s + oy ) (1.30)
BV K (—2 (+=z ' '
By using a change of variables:
2 =(1=-8m+8, (1.31)
¢ =01-0u+d, (1.32)
Equation (1.30) becomes the finite Hilbert transformation:
1t
a;(z(n) = —— 7'(¢) < Equation (1.21). (1.33)
4 Jo u—1

Once we invert Equation (1.33) above by using the formula of the finite Hilbert
transformation (Tricomi 1957, pag.175, Eq.12), then through reversion of variables
we have:

dy(z) _ 4 ! T o
- - 2) ]é [\/(C ) = ¢)ai(Q)
<¢1z+$)]dc+ < . (1.34)

/(22 = 82)(1 - 22)

where C' is a constant to be given so that 7(z) satisfies the boundary conditions
5(3) = (1) = 0.

1.3.2.3 The variational problem

Our optimum goal is to seek the maximum Fg with the inequality constraint on
Mpy and the equality constraint on L, accompained by Equation (1.30). Using
Equations (1.29a) and (1.29d), the constraints are written in the form:

1
lmaxz/ Y(z)dz, (1.35a)
5

1
Mo > / 5(2)2dz, (1.35D)
J

where definite integrals correspond to the nondimensional lift L; and moment M.
As a reference, we shall make use of the elliptic sails without gap between the sail

foot and the sea surface (6 = 0), then we have:

_ ™R _ IR
lmax = 4—#2, Mmax = ﬁ’ (136)
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where p is the mast height ratio defined by h/he; 4 is the value of the elliptic
circulation at z = 0 for the elliptically loaded sail (Glauert 1926, pag.143):

Ye(2) = V1 — 22, (1.37a)

1
L,= prvfhg% < Eq. (1.29a), (1.37b)
1
D, = 1—67rpVazh§'ﬁ% < Eq. (1.29b), (1.37¢)
Fre = L8 — D, < Eq. (1.28a), (1.374d)
1
Mg, = ngfhg’yR < Eq. (1.294d), (1.37e)

where quantities with subscript e denote those attributed to the elliptic loading.
The inequality constraint (1.35b) can be written as an equality constraint by intro-
ducing the slack variable £, (Fletcher 1987, pag.146); hence the constraints (1.35)
can be rewritten by:

1
Iax — | 3(2)dz = 0, 1.38
RO (1.382)
1
Mmax — ﬂ F(2)zdz — €2, = 0. (1.38b)
J

Furthermore, the definite integral functional (2)[8 — a;(2)] of z from § to 1,
corresponds to the sail thrust Fg:

Adimensional
Dimensional - A\ ~

—_——t ! '
Fr=L,p—D, = /5 5(z)Bdz — /5 V(z)ei(z)dz = (1.39)

1
= | 5@l - ai)az.
Using Equations (1.30), (1.38) and (1.39) and introducing the Lagrange multipliers

Aa, At and A, the final form of our problem becomes maximization of the extended
functional given by:

/; {7(2)[B — @i(2)] + Aalai(2) — F(7,2)]} dz +
Al (lmax - /51 &(z)dz) + A (mmax - /Sl ¥(2)zdz — §,2n) , (1.40)

where f(%,z) denotes the right-hand side of Equation (1.30). Taking the first
variation of the functional (1.40) with respect to Ay, A1, Am, &m, @; and F(z), we
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obtain six stationary conditions:

1, 1 1
ai(z) = T J; 7'(¢) (CTz + m) dg, (1.41a)
1

lmax - v dz = 0, 1.41b
| 3t (141b)

1
Mmax — / F(2)zdz — €2, =0, (1.41c¢)

§
A =0 = A =0 or &, =0, (1.41d)
Ag = ’N}l(z)a (1416)
a;(z) = 5—)\172—)\7% (1.41f)

Substituting Equation (1.41f) into Equation (1.34) and using conditions 5(8) =
%(1) = 0, we have:

() _ 2 5
dz ﬂ\/(zQ — 51— 22) [(E - z2) (m(B = N) = 2EAm)+
+Am (%2 - 52K> — (2% = 82)(1 = 2?) ][: — z21_ L2u2 \/Wdu] ,

(1.42)

where K, E and k denote the complete elliptic integrals of the first and second
kind and the modulus, respectively:

1
K= / du , (1.43a)
o VI -ud)(1- ka2
1 — k242

- 0
k=1/1-242 (1.43c)

Equation (1.42) yields the nondimensional lift and moment, previously introduced
in Equations (1.35a) and (1.35b), as

1 o - E
/S F(z)dz = 3 (1 +46%— 2—) B—-N) -
K 3E?

_2 2\ E_ 2t ok
3((1+5)E 75 QK)/\m, (1.44)
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[ et = 3 (as ) =25 - 30) (-0 -

I ] 2
_E ((1 +6)E -5 K — E—> A (1.45)
T K

Let us introduce a nondimensional thrust coefficient:
5PV2h2p?

F

2 _ R

= U CFR = m. (146)
Using Equations (1.28a), (1.29a), (1.29b) and (1.41f), we obtain a convenient ex-
pression of Cr,, as:

Crg

Crm = (B+X) /5 3(2)dz + A /5 5(2)zde. (1.47)

Now let us study two possible optimum cases (see Equation (1.41d)):

Case 1 : &, = 0. When the slack variable &, is equal zero, Equation (1.41¢) im-
plies that the moment is equal to the given value. Equating Equations (1.44)
and (1.45) to their maximum values lmax and mmax respectively (Equa-
tions (1.36)), we obtain a system of two simulatneous equations in A; and
Am, from which we obtain:

A

N =8 (= m) (1.48)
3mAY

AL, = —Tgmm(um — 1), (1.49)

where:

9F [(1 +8)E - 2K — %]

A= § ~ i i —, (1.50a)
[(1+8)E - 282K] [(1 + 8B + 2K — 357
8 [(1 +5%)E - 182K — 3%]
Hi = — — ) (150b)
9E [(1 +8)E - 2K — %]
1+62-2E
= + K (1.50c)

= = 2 )
(1+82)E - 162K — 32

and the superscript I denotes Case 1. Between Equations (1.50b) and
(1.50c), the following inequalities hold:

1
pm—mzzzo = where,umZOand,ulzo. (1.51)
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Using Equation (1.47), the thrust coefficient is given by:
Avr
2ut

A
C};‘R = lmax(ﬂ + )\ll) + mmax)\in = % |:2,8 - (

) (W = 2pup + papim)
(1.52)

Equation (1.52) implies that the thrust, in proportion to p2CII;R, globally
becomes larger toward the limiting value ﬂ;ﬂ , as u tends to infinity.

Case 2 : )\, = 0. When the Lagrange multiplier \,, is zero, equating Equa-
tions (1.44) to his maximum value Inax (Equation (1.36)1), we obtain:

AN =8- R : (1.53)
22 (1482 —2E)

where the superscript I denotes Case 2. Because the slack variable is
different from zero, the moment must be smaller than the reference value;
using Equations (1.36)2 and (1.45), this condition is given by:

B < - (1.54)

In this second case, the thrust coeflicient is given by:

CH = fpax (B + A1) = ™R 8- %? . (1.55)
Fg a 1 4412 22 (1+52_2%)

From Equations (1.52) and (1.55) we have the inequality:

3 \p pm
because of Equation (1.54), and A, < 0 (Equation (1.49)). Therefore CT} prevails
over Cf,. for smaller y than fu,,,. However, Equations (1.48)-(1.53) and (1.55),
imply that the maximum thrust u>C. is obtained and equal to 4>CF,, at p = fim,
from Equation (1.52). So Case 1 represents the optimum circulations. As a
consequence further discussion is confined to Case 1 that, obviously, becomes
optimum when g is no less than p,,, so that:

% 2 ) s7)

and from Equations (1.48) and (1.49), respectively:

B—=N2>0, (1.58)
Am > 0. (1.59)

e (11
CL. — };:7—3(———>,\}n§0, (1.56)
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Let us study Equation (1.42) to see the behaviour of circulations; in doing these we
need to take into account that feasible solution (domain) must satisfy the obvious
constraint on the chord:

e(z) = @) _a) S, (1.60)
mla — a;(2)]  Taer

where ¢(z) is the dimensionless chord; a the geometrical angle of attack (see Fig-
ure 1.4) and the difference in brackets, a — ;(2), is the effective angle of attack ¢
(Equation (1.16)). Equation (1.60) has been obtained from the Kutta—Joukowski
condition (1.13) (Thwaites 1960, pag.115, Eq.9).
Let us study the behaviour of circulation; Equation (1.42) can be also written in
a more convenient way as :

d~ 2
1(z) _ = (m(B — M) — 2EXm)g1(2)+
dz
m /2 -2
E?
+An S 0K | —2\ng2(2)|, (1.61)
where:
E
n) =22 (1.62)
~ 1 1 1 — k2u?
@) =E=0-) | J: du. (163)
95(2) h Py i
9s (z)

The function g, (z) is a monotone decreasing function, because:

dgi(2) _ 922 <0.
dz
The function gy(z) is the product of g5(z) and the integral term g5(z). In the

segment z € [0,1], the former term is positive conver with one peak at z =

(14 62)/2 and two zeros at z = 6 and z = 1. The latter integral g5(z) can

be formally rewritten by using Neville’s theta function, to show that this term is
positive and monotone increasing. The product of a positive convex function with
one peak (g5(z)), with a monotone increasing positive function (g4(z)) yields a
positive function with two zeros at z = § and z = 1 and, at most, one peak.
So the very last term on the right hand side of Equation (1.61) is a concave func-
tion with one peak and two zeros at z = 6 and z = 1. The rest of the terms
in the square brackets may become monotone, constant, increasing or decreasing,
depending on the sign of the term 7(8 — A;) — 2E\,,. We have two possibilities:
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1. suppose 7(8 — A;) — 2E\,, to be negative:

Cdi) 2 E_Nigny
i 2 = — 2 [(F-1) - 20 -2mres

E? o, . 1
because of the inequality properties of the elliptic functions. The inequal-
ity (1.64) implies that 4 becomes negative in the vicinity of the mast top!!
Therefore this situation will not produce positive lift and is not feasible;

2. now we find that (8 — \;) — 2E\,,, should be positive; so the condition for
4'(1) is needed and given by:
2

(g — 1) [7(8 = M) — 2EAm] + Am (% — 52K> <0,

or concisely using Equations (1.48), (1.49) and (1.50):

p<pe = [pe>p> pm >l (1.65)
where:
_4_ Q43RE-RO+3R)E - 65— (1.66)
MC_3(1+52)E2—82(1+282)EK+54K2_(2+32)%3' .

When the inequality (1.65) holds, the terms:

(7(B = N) — 2EAn)g1(2) + Am (%2 - 82K> ,

of Equation (1.61) constitutes a monotone decreasing positive function. Sum-
ming this function and the last concave function:

_2/\m92 (Z),

we have a function with one zero for z € [4, 1].

Table 1.3 shows the behaviour of dzgz) when Equation (1.65) holds and
therefore ¥(z) is always positive. If J(z) is positive, the effective angle of
attack aer must also be positive as a consequence of Equation (1.60) and due
to Equation (1.41f) it increases toward the mast top because § — A; and A,

are positive.
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7| 4@ A(2)
5 +00 0

Positive | Increasing

1 0 Maximum

Negative | Decreasing

1| —cor0 0

Table 1.3: Behaviour of circulation %(z) with respect to z.

To summarize, feasible solutions must satisfy the condition (1.65).
The last task of our design is to optimize the mast height and the gap. Using
Equation (1.52), the first derivative of the nondimensional thrust:

- (Ch) =T

- 241 firm L.
ap \Cre) = =5 (7 = Bup + 2pupim), (1.67)

tell us that in the interval [p,, ptc] we have one p, which gives the extremum of
1> Ch,,- Let piop denote this p:
5 E
14+6°—2%
- = o5
(14+0?)E - 6K — %=

4
pops = 3 (1.68)

The nondimensional thrust behaves with respect to p as is shown in Table 1.4.
Hence f1opt maximizes the thrust.

Furthermore Equation (1.68) shows that the optimum mast height decreases as
the gap increases; otherwise the heeling moment will become greater than the
constrained value for larger 6. Due to the properties of the elliptic integral, the
following inequality, coming from Equation (1.68), holds:

(14 6*)E - S 452 —2E (1.69)
K = K

Therefore, popt is not larger than 4/3. The equality in Equation (1.69) holds if
and only if ¢ is zero. When ¢ is zero, piopt coincides with p. at g = 4/3. Therefore,
the gap should be as small as possible.
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po | PWPCL)/dp? | d(WPCL)/dp | p*Ch,
m Negative Positive
4 Negative Positive Increasing
Hopt Negative 0 Maximum
4 Negative Negative Decreasing
He Negative Negative

Table 1.4: Behaviour of nondimensional thrust ,uQC’II;R with respect to u.

Our formulation implies that the maximization of the thrust and the reduction of
the induced drag is achieved by using a high aspect ratio for zero 5, and the rest
of the solutions (& # 0) have patterns of distribution closer to the elliptic loading.
Equation (1.60) implies that the chord is in direct proportion to the circulation and
in inverse proportion to the effective angle of attack. The chord is much greater in
the vicinity of the sail foot, partly because the optimum circulation is greater in
the lower portion, and partly because the effective angle of attack increases toward
the mast top. This result implies that constraint on the heeling moment plays a
decisive role in the sail design. y

Using Equations (1.50) and (1.52) with no gap (6 = 0, uopt = 4/3), we have the
maximum thrust coefficient:

9mYR 819gr
max — _ . 1
Crr 32 (’B 256 ) (1.70)

Using Equations (1.47)—(1.50) and (1.70) with no gap, the optimum circulation

coincides with:
) . (1.71)

1-v1-—22

. 279R 22
= — ]_ — 2 —1 B —
Yopt 39 (\/ 2%+ ) n 1 ——
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Then using Equations (1.41f), (1.48)—(1.50), (1.60) and (1.71), we have the geom-
etry of the ultimately optimum sail with no gap:

— o, 1.2 1—/1—22
B v1—2z + 3% 1n‘1+\/@

o(z) 32 1,1
(27:;; -3t sz)

(1.72)

Figure 1.22 shows the geometry of the optimum sail when § = 0.
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Chapter 2

Wind load

No laws for a wind, an eagle, or a maiden’s heart.
Pushkin.

2.1 Introduction

The development of modern materials and construction techniques has resulted in
the emergence of a new generation of structures that are often remarkably flexible,
low in damping and light in weight (i.e. tall buildings, cable—supported bridges,
suspended—span bridges, membrane roofs, antennas, sails). It is the task of the
engineer to ensure that the performance of structures subjected to the action of
wind will be adequate during their life from the standpoint of both structural safety
and serviceability. To achieve this goal, we need some information regarding the
wind climate in general (Section 2.2); then, in more detail, some concerning about
wind’s direction and strength in the case of a long offshore race as well as during
racing in sheltered waters (Section 2.3); and the relation between that wind and
the forces it induces on the structures (Section 2.4) (for more details see (Ubertini
1994)).

2.2 Wind environment

Some knowledge of meteorology and micrometeorology, is needed for a realistic
prediction of wind load on structures (Simiu and Scanlan 1986). Meteorology
provides a description and explanation of the basic features of atmospheric flows.
Such features may be of considerable significance, because wind arises as a re-
sult of pressure differences in the atmosphere. For the earth, as a whole, there

61



Roberto Nascimbene Sail Modelling for Maximal Speed Optimum Design

106]
10 days Planetary wave
1051 1 day )
L Local wind systems
10 hours
104
§ 1 hour
S 103] Turbulence
o
< E [ 10 min.
) 5] 2
WS North Pole c 10
S L 1 my
@ m Showers
3 10 7
Convection
1 A
Microscale Mesoscale Macroscale
T T T T T T T T T T
‘ Equator 0.010.1 1 10 102103 10% 105 106 107108
Geografical dimensionmeters
(a) (b)

Figure 2.1: Simplified model of atmospheric circulation and qualitatively order of
magnitude in space and time of atmospheric scales.

is equilibrium between the energy received from the sun and the energy which is
radiated from the earth into space. There is a surplus on energy near the equa-
tor and a deficiency near the poles. At the equator, ground-level air is heated,
it expands, rises and flows away, leaving low pressure. Similarly, at the poles,
ground-level air cools and contracts, so at higher levels, air flows in and high
pressure results (see Figure 2.1(a)). Atmospheric motions may be described as
superpositions of interdependent flows characterized by scales ranging from ap-
proximately a few centimeters to thousands of kilometers. For our purpose, it is
convenient to classify them according to a space-time scale (Dyrbye and Hansen
1997). From Figure 2.1(b) three main groups of atmospheric scales are commonly
defined: microscale including motions with characteristic dimensions of less than
20 Km or so in space and time scales of less than one hour; synoptic scale or
macroscale including motions with characteristic dimensions exceeding 500 Km.
or so and time scales of two days or more. The mesoscale is defined by dimensions
and periods between those characteristic of microscale and synoptic scale.

This chapter is devoted to the study of microscale spects of the flow that are of
interest in structural design. The Earth’s surface exerts on the moving air a hori-
zontal drag force, the effect of which is to retard the flow. The effect of this drag
force upon the flow decreases as the height above ground increases and become
neglegible above a height of a region referred to as atmospheric boundary layer.
The depth of the boundary layer normally ranges from a few hundred meters to
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several kilometers, depending upon wind intensity, roughness of terrain and angle
of latitude. Within the boundary layer, the wind speed increases with elevation;
its magnitude at the top of the boundary layer is often referred to as the gradient
speed. Above the boundary layer, inside the free atmosphere, the frictionless wind
balance, is established and the wind flows approximately with the gradient speed.
It is the wind regime within the boundary layer of the atmosphere that is of direct
interest to the designer of structures.

2.2.1 The atmospheric boundary layer

This section is devoted to the study of aspects of atmospheric boundary layer flow:
the theoretical results presented, include descriptions of geostrophic and gradient
wind velocity, mean wind profiles and the relation between wind speeds in different
roughness regimes. The motion of an elementary mass of air is determined by
Newton’s second law (pag.27), the vector expression of which is:

f =ma, (2.1)

where m is the mass of a particle. It is the purpose of this section to briefly de-
scribe the forces and some of their effects on the motion of air; infact wind speed
and direction of the wind itself depends only on the horizontal pressure gradient
P, on the Coriolis force F. and the centrifugal force C, that we are going to define
(see Appendix B).

We consider an infinitesimal volume of air dz dy dz and the pressures acting on
the lower and upper faces to be p and p + %dz, respectively. The net vertical

op

force acting on the volume dz dy dz will be —%dx dy dz or —2F per unit volume.

Similarly the net forces per unit volume acting in the z and y direction will be
denoted —% and —g—;’, respectively. The resultant of these forces is called hori-

zontal pressure gradient and is denoted —g—z where 7 is the normal to the isobars?.

The net force per unit mass exerted by the horizontal pressure gradient, (%) 2p g

on

often referred to as the pressure gradient force (p is the air density in pag.8). The
horizontal pressure gradient is the driving force which initiates the horizontal mo-
tion of air. Air subjected only to the action of pressure gradient forces will move
from regions of high pressure to regions of low pressure. If we define the motion
of an air particle, not subjected to the action of an external force, with respect to
an absolute frame of reference, it will follow a straight line. To an observer on a
rotating frame (the Earth), the path described by the particle will appear curved.
The deviation of the particle motion from a straight line fixed with respect to the
rotating Earth, may be attribuited to an apparent force, the Coriolis force, the

1Lines contained in the same horizontal plane and connecting points of equal pressure.
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vector expression of which is (see Equation (B.1.9)):
F.=2m(v xw), (2.2)

where w is the angular velocity of the Earth and v is the velocity of the particle
relative to a coordinate system rotating with the Earth. Following the right—
handed multiplication rule x, F_ is perpendicular to w and v. As we told before,
the effect on the wind due to friction along the ground become negligible and
the horizontal motion of air relative to the surface of the Earth is determined, in
unaccelerated flow, by the balance among the pressure gradient, the Coriolis and
the centrifugal force.

High pressure

F
Isobar FlI ¢
F, : Vieo
: | Direction : Direction of
steady wind
Y i P P P
Low pressure Il Direction

Figure 2.2: Wind balance in geostrophic flow in the Northern Hemisphere: a air
particle is accelerated towards the low pressure area, due to the pressure gradient
P and its path will be diverted, due to the Coriolis force F..

At first we consider the isobar straight: this means no centrifugal force. In this
case, the pressure gradient towards a low—pressure zone causes a mass of air to
accelerate along a curve, until a state of equilibrium between the pressure gradient
and the Coriolis force per unit of air volume is reached, as depicted in Figure 2.2.
The steady velocity for which this balance occurs is called the geostrophic wind
velocity Vgeo and using Equation (B.1.9) is related to the pressure gradient by the
equation:

. 1dp 1 d
2WVgeoSln(ﬁ: P=-— = Vgeo = ﬁﬁ;

pdn
where P is the magnitude of the pressure gradient force vector P, f is the Coriolis
parameter, w is the angular velocity of the Earth (27 /24 hours = 7.27-107° rad/s)
and ¢ is the latitude?. This wind, parallel to the isobars, is called geostrophic wind.
If the isobars are curved (see Figure 2.3), wind velocity and direction not only

(2.3)

2For example at Greenwich latitude (51°), f = 1.13-107% s~ 1.
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High pressure C High pressure

w

P Ver P

Low pressure (Cyclonic circulation) Low pressure (Anticyclonic circulation)

Figure 2.3: Gradient wind with constant speed but following a curved path: wind
balance in cyclonic and anticyclonic flow in the Northern Hemisphere.

depend on the pressure gradient and the Coriolis force but also on the centrifugal
force of the curved path. The wind in question is called the gradient wind and the
equation of motion is:

V2 1dp
+_8 Voo =P = ——, 2.4
r + Ve pdn (2:4)

where, if the mass of air is in the Northern Hemisphere, the positive or the negative
sign correspond to cyclonic (around a low pressure center) and anticyclonic (around
a high pressure center); r is the radius of curvature of the isobars; V;; is called the
gradient wind velocity and it is equal to Ve, in the case of straight isobars. The
solution of Equation (2.4), in the Northern Hemisphere is:

Vo = _Ir + fr : + rdp for cyclonic winds (2.5)
L) 2 pdn Y ’ ’
2
Vr = +% - (%) - %Z—Z for anticyclonic winds (2.6)

With reference to Figure 2.5(a), close to the ground, in the boundary layer, wind
velocity and direction varies as a function of height. This is because the ground
tends to reduce wind velocity and this effect spreads upwards. The equilibrium of
forces in the boundary layer is illustrated in Figure 2.4. If the point A (Figure 2.4)
is at a higher level than B (Figure 2.4), its speed and its Coriolis force will be larger
than those of point B. The deviation angle ¢ between the wind direction and the
isobars will therefore be smaller for the higher and faster particle. The angle ¢ will
be zero at the gradient level and will reach its maximum value ¢y near the ground.
The wind velocity in the boundary layer may thus be represented by a spiral, as
in Figure 2.5(b).
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Figure 2.4: There is equilibrium between the forces due to the pressure gradient
P, the Coriolis force F. and the friction generated S in the atmospheric boundary
layer.

2.2.2 Equations of mean motion

The motion of a particle in the atmospheric boundary layer is governed by the
fundamental equation of continuum mechanics that include the equation of con-
tinuum (conservation of mass) (Schlichting 1979, pag.47) and the equations of
motion (conservation of momentum or Newton’s second law of motion, Equa-
tion (2.1)) (Schlichting 1979, pag.65). These equations must be supplemented by
the constitutive relations (Schlichting 1979, pag.58), that are empirical relations
able to describe the specific response to external effects of the continuous medium
considered.

If the equation of continuity (2.7d) and the equations of motion (2.7a)—(2.7c) are
evaluated at constant p, for an incompressible and steady fluid flow (hypothesis 1,
pag.45), and if terms that can be shown to be negligible are dropped, the following
Navier—Stokes equations describing the mean motion in the boundary layer of the
atmosphere are obtained (Sherman 1990):

oUu oUu oU 10p 107,
—_ —_ —_—t - = - — = 2.
UtV *War t 2o, IV =35, =0 (2.72)
v oV __dV 10p 107,
- == - = 2.
U *Vay *War * 53, U552 =0 (2.7b)
10p _
;& +g—0, (27(3)
ou oV LW _,, (2.7d)

+ o+

or Oy 0z

where U, V and W are the mean velocity components along the axes z, y and z of
a right-handed cartesian system of coordinates, the z axis of which is vertical; p,
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Figure 2.5: Wind velocity spiral in the atmospheric boundary layer.

p, f and g are the mean pressure, the air density, the Coriolis parameter (Equa-
tion (2.3)) and the acceleration of gravity, respectively; and 7, and 7, are shear
stresses in the x and y directions, respectively. The z and z axes are selected, for
convenience, as shown in Figure 2.5(b). The shear stress at the surface is denoted
by 70.

In a gradient wind condition, with a horizontal density gradient negligible (ba-
rotropic flows), by differentiating Equation (2.7c¢) with respect to x or y, we can
see that the horizontal pressure gradient does not vary with height and thus has,
throughout the boundary layer, the same magnitude as at the top of the boundary
layer:

V2
ap _ plfVe £ -5 < Equation (2.4). (2.8)
dn & r
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In a geostrophic wind condition, it follows from Equation (2.3) that:
10p

;% = nyfgeoa (29&)
10
;6_5 = _fvx—geoa (29b)

where Vi geo and Vy_geo are the components of the geostrophic velocity Vyeo along
the x and y axes.

To solve the equations of mean motion (2.7a)—(2.7d) of mean motion, it is necessary
that constitutive or closure relations be assumed, defining the shear stresses 7,
and 7,. A well consolidated assumption (Prandtl 1952, pag.118) is that an eddy
viscosity A, and a mizing length | may be defined such that:

Tz = pA‘r(mayaz)aa_Za (2.10a)
ov
7= pr(@.2) 2 (2.100)

A, =1*(z,y,2) . (2.11)

AN A

(%) +(%)
The use of Equations (2.10)—(2.11) in conjunction with Equations (2.7a)—(2.7d) is
referred to as the mean velocity field closure.
It may be assumed that, within a horizontal site of uniform roughness over a
sufficiently large extent, a region exists over which the flow is horizontally homo-
geneous. Under this condition, Equations (2.7a)—(2.7b), in which Equations (2.9)
are used, become:

1 9,
Vy-geo =V = ﬁ 9z (2.12a)
1 07y
geo — U = ———>. 2.12
Vx g U pf 62’ ( b)

If in the above model, the shear stresses are represented by Equations (2.10) and
if, in addition, it is assumed that A, is constant, the model obtained is called the
Ekman spirel (Simiu and Scanlan 1986). With the boundary conditionsU =V =0
at z=0and U = Vi geo and V = V;_4¢, at z = 0, the solution of the system (2.12)
is:

1

U= EVgeo [1— e *(cosaz —sinaz)], (2.13a)
1

V= 75%80 [1—e % (cosaz +sinaz)], (2.13b)
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where a = ,/ﬁ. Equations (2.13), which describe the Ekman spiral, are rep-

resented schematically and qualitatively in Figure 2.5(b). More refined theories
are obtained assuming an eddy viscosity that does depend on height (Simiu and
Scanlan 1986).
A different type of approach gives the more classical logarithmic low. In this ap-
proach, two characteristic length scales are applied in the boundary layer. In the
lower part of the boundary layer, the surface layer, the dominant length scale is
the roughness length zo that is a measure of surface roughness. In the upper part
of the boundary layer (outer layer) close to the free regime, the boundary layer
height is an important length scale.
In deriving the logarithmic profile, only surface roughness is taken into account, so
the profile applies close to the ground, up to 50-100 meters above terrain. Close
to the ground, the velocity gradient V. depends upon g, p and the height z from
the ground. Based upon a dimensional analysis (Dyrbye and Hansen 1997), a dif-
ferential equation for the mean wind velocities can be formulated, and if there is
a long, flat terrain upstream, its solution leads to the following expression for the
logarithmic profile:
1 K4

U(z) = U In . (2.14)
where & is the Von Karman’s constant (k ~ 0.4) and wu, the friction or shear
velocity of the flow:

u, = |2 (2.15)

2.3 Wind and water

Every sailor, no matter whether he be racing or cruising, tries to get a forecast of
the wind’s direction and strength before setting the sails. A correct weather oracle
can often influence the crew’s efforts to complete their task. Before a long offshore
race, most attention will be given to getting a synoptic picture of the weather over
a broad area, while for racing in sheltered waters an intimate knowledge of local
wind conditions will be more useful.

2.3.1 Weather conditions: global wind and offshore sailing

Weather conditions, and therefore global winds, over large areas come under the
influence of lows (depressions or cyclones®), and highs (anticyclones?), moving

3Circulation around a center of low pressure.
4Circulation around a center of high pressure.
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generally from west to east (see Figure 2.6 from (Marchaj 1964, pag.364)). The
mean speed of the depression centre is about 20 knots or even more, whereas the
winds within a depression, moving inward in a spiral, may reach speeds of 135
knots (250 km/h). In the northern hemisphere, winds rotate anticlockwise round
the lows (Figure 2.6). As Figure 2.7 shows, the winds in a cyclone may aid or
hinder the progress of a sailing craft, depending on the position of the yacht in a
particular quadrant. For example, if a yacht follows the course AB (Figure 2.7)
which cuts through the depression system, then in position 1 she will be reaching
on the port tack. In position 2 she is forced to sail close-hauled, still on the port
tack. When the yacht passes to quadrant I, however, she is forced to go on to a
starboard tack.

Clearly, therefore, the art of offshore sailing involves not only a skilfull use of the

:500

30°

Figure 2.6: Typical pressure and wind distribution in the North Atlantic; wind
changes within a depression (low) in the northern hemisphere.

possibilities offered by the yacht’s aerodynamic and hydrodynamic efficiency, but
also a knowledge of how to take advantage of the meteorological conditions met
with. This is most striking in the somewhat longer offshore races.

As an example, let us consider the transatlantic race, which is run along the north-
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Figure 2.7: According to the so—called Buys Ballot’s Law: ”If you stand with your
back to the wind in the northern hemisphere, the low centre is on your left.”

ern route (Figure 2.8) in the region of the track followed by lows. The results of
these races, as a rule, are decided by eastward moving depressions.

It was shown earlier in Section 1.1 that heavy displacement yachts, in the most
favourable weather conditions, can attain a maximum relative speed V"®* =
1.4v/LWL. Clearly, then, a yacht with a longer waterline length LWL, and so
with a higher relative speed V;, will have a better chance of keeping in contact
with a low for a longer time. Thus, in the same weather conditions, a 40 feets
yacht could sail V"®* ~ 1.4y/40 = 8.8 knots, while a 30 feets yacht could only
reach V™8 x5 1.44/30 = 7.7 knots. Naturally, a more efficient crew, better navi-
gation, sailing a yacht to her best advantage, and so on, may give the victory to
a yacht of shorter waterline length. To explain what we mean, we consider the
example presented in Figure 2.8. In the previous example in Figure 2.6, the de-
pression was moving in approximately the same direction as the race; Figure 2.8,
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on the contrary, shows what happens when the center of a depression moves at an
angle across the course. The track of the low is shown by the broad arrow, and
the course of the race is across the Baltic from Hel (point A) to Hoborg (point
B). Now, if the actual wind blowing near Hel at the beginning of race were all

Figure 2.8: An optimum route should be based on the weather forecast. The
choice of course from departure point A to the destination B depends upon the
expected track of dominating depressions.

that could be known, the shortest course, AB, would be assumed to be the most
advantageous. But as the depression will be moving eastwards, somewhere near
point O, a boat would find herself compelled to tack close-hauled against a rising
wind and rougher sea. Infact, during the race, what started as a south wind will
change to a westerly, then to a northwesterly, and finally to a northerly wind.
More advantageous plan, therefore, would be to anticipate these changes and fol-
low the course ACB. This will ensure a favorable wind for the whole race, and
higher speeds will be reached.

As distinct from cyclones, anticyclones (area of high pressure), generally move
slowly, and winds rotate around them in a clockwise direction, the opposite way
to the cyclonic winds. Because the air mobility of anticyclones is much slighter,
the possibility of utilizing, in a race, the associated winds are much less than with
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cyclones.

To take full advantage of variable weather, the synoptic weather chart of the area
must be studied before and during a longer race.

Above all, one needs to have the plot of isobars on a map of the region involved;
then during the race, by noting variations in pressure and wind direction, it is
possible to deduce in which quadrant of the depression (or anticyclones) the boat
is sailing. This makes it possible to determine the direction in which the weather
formation is moving, its speed, and then to sail the yacht as best as possible..
The conclusions reached by observing changes in wind direction and barometric
pressure can be tested by watching for such other signs of approaching changes in
the weather as Mother Nature offers. The color of the sky at sunrise and sunset;
the concentration, shape and movement of the clouds; different light phenomena
in the atmosphere; the behaviour of birds, and so on, can greatly assist in the
correct assessment of the weather situation and in forecasting changes.

2.3.2 True wind structure: local wind and sailing in shel-
tered waters

The surface wind, the actual wind from 0 to 100 feet, differs considerably from the
wind aloft, whose direction and speed can be observed from the movements of the
clouds. The factors which determine the quality of the surface wind, which acts
on a sail, are:

1. the atmospheric pressure gradient introduced in Section 2.2.1 at pag.63;
2. the sun’s heat input;
the height above water level;

the sea surface over which the wind is blowing;

A

the thermal differentiation of the regatta area;
6. wind barriers or obstructions.

Factors 2 to 6 modify the basic wind structure and are the main causes behind lo-
cal winds. Because of them, the apparent wind, which actually interests the sailor
is never constant in direction or strength (see Figure 2.9).

During the discussions in Section 2.2.1, it was mentioned in pag.65 (gradient wind)
and in pag.69 (logarithmic law) that there is a definite wind velocity gradient
produced by air friction against the water (or terrain) surface. The gradient is
definable as the rate at which the wind gradually increases with height above the
water level. This affects the direction of the apparent wind, and therefore the
efficiency of the sail. Thus, as depicted in Figure 2.9, the apparent wind V, felt by
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Vs = Boat speed

\ Va= Apparent wind
/ Vi=True wind

APPARENT-WIND DIRECTION
CHANGES WITH ALTITUDE.

(a) (b)

Figure 2.9: Bird’s eye view of shift in apparent wind angle with height from the
deck.

sails varies in strength and direction over the mast height, even if the true wind
is steady.

Meteorological investigations (Marchaj 1964) have revealed that this velocity gra-
dient varies according to the extent the sky is covered by clouds, the wind speed
and turbulence. From Figure 2.10 it can be seen that in a light wind (see Beaufort
scale in Appendix C), a smooth sea, and an overcast sky, the wind velocity changes
are relatively great. In such conditions, therefore the permissible twist in the sail
from the boom to the top of the mast can be greater because of the twist in the
apparent wind (Figure 2.9(b)). Again from Figure 2.10, in gusty® turbulent winds,
the velocity gradient is much smaller, and so it is desirable to reduce the twist in
the sail as much as possible.

Futhermore, the presence of the yacht’s hull between the water surface and the
sail reduces the velocity gradient comparatively to that shown in Figure 2.10. The
presence of the hull induces a contraction of the air flow above the deck, and this
accelerates the wind speed here, reducing the effect of true wind vertical gradient
on the apparent wind speed (Hypothesis 8 in pag.45).

5Gust is a period when the wind speed is increased substantially above the mean speed
(Section 2.2.2).
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Figure 2.11: Shifts in the surface wind direction over the shoreline.

Tt is well known from practical experience and measurements (Marchaj 1964) that
winds blowing across a coastline undergo changes in horizontal direction, due to
the different thermal properties of the land and sea surface and to the different
roughness characteristics of the surface over which the wind is blowing. No matter
whether the wind is blowing onshore or offshore, its direction changes so that it
crosses the line of the coast at an angle of approximately 90° (Figure 2.11). This
shift in the wind can be used to advantage during a race if the course lies near
the shore. Figure 2.12 demonstrates how one can take advantage of a directional
change of wind.

Assuming that yachts A and B crossed the starting line at the same time, one
may rightly expect that the helmsman of A, having chosen the course closer to the
shore, would round buoy number I before yacht B. When yacht B reaches point
X and tacks toward buoy number I, one may wrongly conclude, from the direction
of the wind at that point that by sailing along the course X-Y the buoy will be
reached on the starboard tack. However, as the boat approaches the coast, the
wind may change its direction enough to force her to bear away along the course
X-Z and consequently to incur a loss of time.

Furthermore, differences in temperature between land and sea, together with the
change in the surface roughness, in addition to direction, also influence the wind
speed over the sea. The wind over the sea is always stronger than the wind actually
blowing over the land; the ratio of wind speed over the sea to that over the land
is greater than one and tends to increase quite rapidly when the temperature of
the sea increases.
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Figure 2.12: In coastal waters the surface wind is much influenced by the contours
and nature of the adjacent land.

The influence of the surface over which the air is moving is also responsible for
the wind’s turbulent character. Air, like water, only maintains a steady laminar
flow at low speeds and over a smooth surface. Unevenness in the ground, and
the vertical air movements caused by thermal differences, create wind turbulence,
which manifests itself in fluctuations in speed and direction.

Overall, the temperature of the surface has a marked effect on wind turbulence
and gusts. If the surface is cooler than the moving air masses, it tends to stabilize
the wind and slow it down. A warm surface, on the other hand, causes a rapid
increase in speed in cool, fresh air masses. For example, it is the cooling of the land
in the evening which is the main reason why winds tend to drop later in the day.
Sailors are also aware that in the spring, while the sea’s temperature is still low,
the wind is usually steady and not gusty. In spite of strong winds the sea’s surface
will remain relatively smooth, for the character of the wave formation depends on
the character of the wind. A squally wind will induce very much greater waves
than a steady wind. Far offshore, a wind of 6 (Beaufort scale in Appendix C)
produces waves similar to those which may develop close to land in winds of 4. As
a rule, the further from shore the steadier the wind.

However, even supposedly steady winds are never really steady from the viewpoint
of racing sailors, but are more or less disturbed by variation in direction and
velocity. These may throw a racing crew into confusion, with particularly acute
consequence on the windward leg. Indeed, as the sailing—writer John Masefield
says:
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A very queer thing is the wind

I don’t know how it beginned

and nobody knows where it goes.

It is wind, it beginned and it blows.

Wind is an invisible, capricious motive power, and this fact alone makes it difficult
to time one’s tack correctly. There are many helmsmen who are able to do their
windward work consistently well in a steady breeze; but there are few who can
fully exploit the opportunities offered by unsteady winds: this can often be the
deciding factor which wins a race.

Let us explaine, using two examples, in which way a skillfull helmsman can use a
change in wind direction and velocity.

If a boat is sailing close-hauled (Hypothesis 9 in pag.45), as in Figure 2.13, then
in position I the mainsail is trimmed to suit the apparent wind V, (segment OB)
at an angle a (see Figure 1.4). The vector AB gives the speed of the yacht Vj,
and OA the speed of the true wind V;. If at position II the speed of the true
wind increases to a value O1A, the yacht due to her inertia will not change her
speed immediately. However, the direction and magnitude of the apparent wind
will change from OB to O; B, thus increasing the angle of the sail a by Aa. If the
sail had previously been trimmed to the optimum angle a, the angle at which the
most advantageous aerodynamic force was developed, then to mantain the same
angle (or even to reduce it for the sake of stability) either:

1. the sheets must be eased, as in position II, or
2. the boat must luff, as in position II,.

During this gust, the yacht will accelerate as in position III, and this will cause
another shift in the direction of the apparent wind from O;B to O;B;. To prevent
the sails fluttering, the sheets must now be hauled in to preserve the desirable
trim angle a. Those who luffed to position II, will not get further benefit from
tightening the sheets, and will have to bear away onto their original course. A
squall lasting one or two minutes, then, can help a yacht in two ways. The yacht
can either continue on her original course and increase her speed or, by luffing,
work up a little to windward, nearer the next marker buoy by distance I. The
actual situation in a given race will determine which is the more profitable move,
and the strength of the gust and the type of yacht have to be borne in mind as
well.

Besides these fluctuations in speed, there are also variations in the direction of the
true wind.

Skillfull exploitation of changes in the wind’s direction is very important, especially
when sailing to windward. Figure 2.14 shows two yachts which have turned at the
marker buoy I and are now beating towards buoy II. The watchfull helmsman of
yacht B, sailing on the port tack, notices the wind shift when it occurs, and quickly
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Figure 2.13: The sequence of course changes when sailing on the starboard tack
in a lifting gust. Note that the true wind V; did not change its direction but its
speed only.
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Figure 2.14: The cost of making the tack may be relatively low in terms of loss of
time and distance, as compared to the cost of being on the wrong tack.

tacks onto starboard. These tactics allow him to lay buoy II without further
tacking. The less observant helmsman of yacht A, choosing his tack without any
proper consideration of possible wind shifts, finds himself behind his opponent.

When beating to windward, at an angle of 45° to the true wind, the distance
covered will be 141 % of the distance in a straight line between buoys I and II in
Figure 2.15. The geometrical constructions of this Figure show that, by making
skilful use of winds shifts of no more than 5°, the distance to be covered by tacking
will be reduced to 130 % of the shortest distance. If the wind shifts are as much as
10° +15°, the distance gained by exploiting them will give an observant helmsman
a big margin over one too careless to pay attention to variations in the wind. If
the distance between the buoys I and II is one nautical mile, the helmsman who
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makes use of wind shifts £5°, may theoretically gain about 120 yards made good
to windward over his rival who ignore the shifts and sails an average course 45°
off the wind. If the wind shifts are in the order of +10°, the possible gain might
be about 225 yards per every nautical mile sailed.

2.4 Aerodynamic wind forces and their effects on
structures

Common sense, do what it will, cannot avoid being surprised occasionally. The object of
science is to spare it this emotion and create mental habits which shall be in such close
accord with the habits of the world as to secure that nothing shall be unezpected.

Bertrand Russell, The Analysys of Matter

Common sense is not so common.
Voltaire, Dictionnaire Philosophique

In many cases wind effects on structures are in agreement with common sense,
easy to understand and forecast. Neverthless, there are times when our intuition
may deceive us. For an example, let us look at Figure 2.16(a), illustrating a wind
blowing over two types of roof, and try to determine which type is more likely to
be blown off. Common sense would say that the steep, high roof is the more likely
to be damaged, but in reality, it is usually the low pitched roof which gets lifted
off by the wind.
A second example can be seen in Figure 2.16(b): here the wind blows over two
sails of the same camber and curvature, but , one is set at an angle of incidence «
of 20° to the wind, the other at 90°. The question is: which sail will develop the
stronger force? Contrary to expectation, it will not be the latter which does so !!
A third example, which can have unpleasant consequence for an inexperienced
helmsman, is shown in Figure 2.16(c). Two boats are moored in a strong current.
A new question is: what would happen if the two boats were moored near one
another? Many would answer that the water flowing between them would push
them apart, and that, the smaller the gap between them, the greater would be the
repelling force. Infact the opposite is true: the two boats will tend to move closer
to each other, and this tendency will increase as the gap between them becomes
smaller.
The reasons and explanations for the phenomena illustrated in Figures 2.16(a)—
2.16(c) will be discussed in the next section.
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Figure 2.16: The effects of high—speed winds on buildings, roofs in particular, are
not easy to predict.
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2.4.1 Static and dynamic pressure: the right way to explain
sail forces

A sailing yacht moves on the boundary between air and water, being partly im-
mersed in each. The flow of air over the sail creates the driving force Fr (see Fig-
ure 1.4) necessary to overcome the hydrodynamic resistance Dy (see Figure 1.4)
generated by the hull traveling through the water. For both fluids, air and water,
one important characteristic is their weight density or weight per unit volume -,
which for water is about Yyater = 9810 N/m?; the corresponding value for air is
Yair = 11.76 N/m3.

The wind is only a special case of air in motion, and when considering its ef-
fects in terms of forces one must, according to the laws of Newton, know the
mass per unit volume or mass density, p. The product gp, where g is the ac-
celeration due to gravity (9.81 m/sec?), is the weight per unit volume 7. So
the air density is pa;y = 1.20kg/m® = 1.20Nsec?/m* and the water density is
Pwater = 1000kg/m? = 1000Nsec?/m*. The wind, having both mass and velocity
possesses kinetic energy, the energy due to motion. This energy is usually called
the dynamic pressure q (force per unit area) and is given by the formula:

1 . N
q= §Pairvgvind =0.6vi0q in [@] ) (2.16)

where vying is the velocity of the wind of known magnitude and direction in m/sec.
The aerodynamic forces which appear on a sail depend almost entirely on the pre-
vailing pressures on the windward and leeward sides: strictly speaking, on the
prevailing static and dynamic pressures. There is no better way to learn about
aerodynamic and hydrodynamic forces operating on a sailing boat than to know
more about those pressures: how they come into existence and how they can be
measured.

Let us consider, as a first example, that a glass tube of the shape shown in Fig-
ure 2.17 is filled with water to the level L-L and then placed in an air stream.
Inlet 1 of the tube is placed perpendicular to the wind direction, and inlet 2 is
parallel to the wind direction. We would find that the difference in water level in
the two tubes will be greater for the higher wind speed vywina. So long as there is
no wind acting on this primitive manometer, the levels are the same, since through
both open tubes there is the same static pressure pg; acting, that of atmospheric
pressure pagm- At sea level, which is the bottom of our atmosphere, this pressure
on average is assumed to be 101325 N/m?, and is balanced in a barometer by a
column of mercury 760 mm in height and by a column of water 10.33 m in height.
However, tube 1, pointing into the flow, would receive, in addition to the static
pressure pgg, the dynamic pressure g of the wind. The sum of static pressure pgg,
plus the dynamic pressure g, is called the total head pressure or the stagnation
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Figure 2.17: A method of measuring directly the dynamic pressure g, and indirectly
the flow velocity vwing by means of U-tube manometer.

pressure:

Ptot = Pst + ¢- (2.17)

If the wind velocity vwinga = 20m/sec, then the dynamic pressure ¢ would, accord-
ing to equation 2.16, be ¢ = 240N/m? and this value would be indicated on our
manometer by a difference in water levels of h = 2.4cm. The height of the water
column in the manometer can therefore be used to measure the dynamic pressure
of the wind:

4 = Ap = Prot — Pst (2.18)

where Ap means the difference in pressure between the two inlets of the same
manometer.

Let us carry a second example. Between and around the two plates, one straight
and another convex, shown in Figure 2.18, flows an air stream passing the stations
S1, S2, S3 and S4. At these four points are attached U-tube manometers filled
with water to the common level L-L, and having their inlets in, and parallel to, the
air stream between the plates. So long as there is no air flowing through the virtual
channel, all manometers will indicate the same level. When, however, air flows
through, we would see that the water levels in manometers B and C alter, thus
clearly indicating reduced pressure (suction) at points 2 and 3 respectively. The
greatest change in level occurs at station Sz, where the cross section is minimum.
Let us try to answer the following questions: what is the reason for different levels
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Figure 2.18: Simplified picture of the flow through a duct like sail.

on the manometers? Why did the pressure fall at the stations 2 and 3, relative
to the surrounding static pressure psy = Patm? Evidently, these changes must be
caused by the varying velocity of the air as it flows through sections Sy, Sa2, S3
and S;. Manometers A and D will not indicate any difference in levels, because
each has both ends placed tangentially to the wind direction, measuring pg;. This
follows because sections S; and Sy does not disturb the flow of velocity v;. The
air must flow faster through the smaller sections Sy and Ss3, than through S; and
Sy, in order that the quantity of air passing the sections in a given time interval
is to be the same. This quantity of airflow is given by the product of the relevant
section area and the flow velocity:

Sl'U1:S3'U3 or g_;:?’lj_j (219)
Thus, if at section S, the speed of the wind is, say, v1 = 20 m/sec, and the
sectional area Sz is half that of S;, then the flow speed at S; will be v3 = 40
m/sec. Consequently, the dynamic pressure at S; and S3 will, according to Equa-
tion (2.16), be:

q1 = 0.6 - (20)? = 240 N/m?,
g3 = 0.6 - (40)? = 960 N/m?.
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This means that the kinetic energy of the wind at Ss has increased over that at
S1 by four times, which is the square of the ratio of the speeds. As shown in
Figure 2.18, this increase in dynamic pressure g3, at section S3 was followed by
a decrease in local static pressure, pst, there. Evidently, some kind of interplay
between these two forms of pressure takes place. In 1738, Daniel Bernoulli pub-
lished his Hydrodynamica where he established a simple relationship between the
dynamic and static pressures in the same air stream:

1
Pst +q = Dst + 5 pv? = constant along a stream line. (2.20)

In other words, as the speed increases, the local static pressure decreases, and
viceversa. This is essentially what occurs with a sail in a close-hauled position
or with a lifting aeroplane or with a keel operating at certain leeway angle. In
honour of its discoverer, the relation (2.20) is known as the Bernoulli equation.
We are now able to calculate the static pressures at the various stations taking
Pst = Patm — 101325N/m2

Prot = Pst + q1 = 101565 N/mz.

In order to satisfy Equation (2.20), the total pressure at station S3 must be the
same, and we already know g¢s:

Pst3 = 101565 — 960 = 100605 N/m2.
Thus, the difference between pg3 and atmospheric pressure will be:
Ap = Patm — Pstz = 720 N/m27

and this difference will be indicated in manometer C by the column of water equal
to 7.2 cm. Manometer B will indicate a value between A and C, since the section
area and thus, the velocity vs are intermediate.

We are now in a position to explain the examples quoted earlier at pag. 82.

The low pitched roof of Figure 2.16(a) is somewhat similar to the previous example
of a channel. The wind, as it passes over the ridge, will create suction forces tending
to lift the roof, the pressure inside the building being equal to the atmospheric
pressure. In the case of the steeply pitched roof of Figure 2.16(b), the flow over
the leeside is turbulent. A consequence of this is that large suction forces are not
developed over the rear half of the roof, and thus the total drag force is much less
than that for the low pitched roof. Exactly the same explanation for the two sails
of Figure 2.16(c).
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Chapter 3

Characteristics of sailcloth

Be as clear as you can about the various theories
you hold, and be aware that we all hold theories
unconsciously, or take them for granted, although
most of them are almost certain to be false.

Karl Popper, Objective knowledge

3.1 Properties of Sailcloth

Sailmakers have an interesting problem: rather than relying on rigid frames and
solid materials for shape control, they must shape their foils by balancing the
forces of the wind with the tension in the sail. This is a difficult and ever—changing
problem. The force or pressure distribution of the wind changes constantly and
is affected by the shape of the sail, while the shape of the sail, through cloth
stretch and flexing, is affected by the pressure distribution of the wind. It is easy
to understand that the properties of the cloth such as stretch resistance, strength,
flex, and weight, play an important role in balancing these forces and shaping the
sail. Below is a list of the properties that must be addressed or controlled in the
design and manufacturing of most sailcloth (Whidden and Levitt 1993):

- cloth geometry: warp, fill and bias;
- stretch resistance;

- strength;

- cloth weight;

- flexibility;
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Figure 3.1: Cloth directions and comparison of stretch under load for different
cloth directions.

tear strength;

porosity;

water absorption;

ultraviolet stability.

Cloth geometry: warp, fill and bias: directions in woven fabrics for sails are
usually defined using traditional textile terms related to the weaving process
(see Figure 3.1(a)). The warp is the longest direction in a roll of fabric; the
fill direction is parallel to the filling yarns, known as weft yarns. During
weaving, the fill yarns are passed back and forth through the warp yarns
and are perpendicular to them. The bias direction bisects the other two at
a 45 degree angle to each. In sailmaking, the textile terms of warp, fill and
bias are gradually being replaced by the more modern angular conventions
used in fiber—composite industry. In this system, the O—degree direction is
parallel to the warp, the 90—degree direction is parallel to the fill, and the
45—degree direction is the same as the bias.

Stretch resistance: the primary aspect to note about stretch resistance is that it
can have different values in different directions. For instance, a woven fabric
may have much lower stretch along one thread line than the other and, as
shown qualitatively in Figure 3.1(b), will probably have much higher stretch
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still when measured off the thread lines, on the bias, for example. It is easy
to see that a detailed knowledge of the stretch resistance in the warp, fill
and bias direction of a fabric is very important to a sailmaker when planning
the panel layout and fabric orientation of a sail. This must complement a
sailmaker’s knowledge of the load distribution, that is where, how much and
in what direction the wind pressure impacts the sails. Complicating this fur-
ther is that the pressure distribution is different in each of the three groups
of sails: headsails, mainsails and off-the—wind sails.

Stretch resistance can also be dependent on time. Some materials, when
initially loaded, will stretch little, but if the load is maintained over a long
period of time, they will gradually elongate. When the load is removed,
some of these material will recover, or return to their original dimensions.
In fact, this tendency in sailcloth is known as recovery. On the other hand,
some materials when loaded will gradually elongate over time and will never
recover their initial dimensions. C'reep is the correct term that describes the
nonrecoverable stretch.

Some sources of stretch are geometric, inherent in the geometry of the weave
or in the construction of the sailcloth. One of the most important sources
of geometric stretch is crimp. Crimp refers simply to the serpentine path
that yarns must take in crossing over and under other yarns in a weave or
a knitted construction. From the standpoint of stretch, crimp is a necessary
evil in forming fabrics for sailcloth, but it can be controlled. For example,
manufactures can put most of the crimp in a given weave in either the warp
or the fill, leaving the other direction nearly crimp—free and therefore much
less susceptible to stretch. Another type of geometric stretch is bias stretch.
In woven fabrics, this is simply the deformation of the weave that cause the
warp and filling to cross at other than right angles. One of the primary
advantages of laminated sailcloth is the elimination or reduction of the two
geometric stretch problems: crimp and bias stretch.

Stretch due to elongation of the very materials forming sailcloth is deter-
mined primarly by the choice of materials. Elongation takes place on a
molecular level. This explains why cotton replaced flax as the material of
choice for yacht sails. Polyester, which stretches less than nylon, is used in
mainsails and jibs; nylon, which absorbs shock loads through high stretch,
is used in spinnaker; Mylar film, which stretches less than most other films,
is used for laminates; and Keuvlar, the ultimate in low—stretch fibers, is im-
portant in modern racing sails. Stretch characteristics are very important
in determining where a cloth can best be used. They determine how the de-
signed shape of a sail will change with the wind, sheet, and halyard loadings,
and whether it will change permanently with use.

Strength: there are two kinds of strength with which we are concerned:
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Figure 3.2: The 8.8 oz! polyester—Dacron mainsail cloth at 30x magnification.
Note low—crimp fill yarns running from lower right to upper left encased by highly
crimped warp yarns. This is a fill-oriented cloth.

- breaking strength,
- yield strength.

In off-the—wind sails (i.e. spynnaker), breaking strength is the primary con-
sideration. Just as flax was chosen over cotton for square—rigged sails because
weight for weight it did not break as easily as cotton, today nylon rather than
Dacron is used for downwind sails. Yield strength is the dividing line be-
tween recoverable, or elastic, elongation and nonrecoverable, or permanent,
elongation. It became obvious that there is a load above which the mate-
rial will no longer return to its original length after the load is removed.
This load value establishes the maximum load capacity of the cloth. This is
called yield strength. Combining the yield strength value with the predicted
sail load value allows the sailmaker to determine the maximum wind speed
capability of a given sail.

Cloth weight: it would be easy to make sailcloth with very high strength and
very low stretch if weight were not a consideration, but weight can be a very
important factor. One reason is sail-handling: it is obviously easier to set,
stow and handle a lighter sail than a heavier one. Another consideration
is weight aloft: minimizing weight aloft decreases the heeling moment and
alleviates the pitching of the boat. By far the most important consideration

11 oz. (ounce) = 28.35 g.
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of weight is, once again, shape. In light air, the shape of a sail can suffer
simply because the sail is sagging under its own weight. Probably the most
useful way to think about weight is to consider it as a ratio of weight to yield
strength. From this ratio, the effective wind range of a sail can be computed.
The lower limit of a sail’s wind range is determined by the minimum wind
required to fill a sail of a certain weight to its optimum shape; the upper
limit is determined by the yield strength of the sail or the load at which
the sail must be taken down to avoid permanent distortion. The remaining
properties of sailcloth are usually of secondary importance because they are
achieved in the course of addressing stretch resistance, strength and weight.

Flexibility: cloth flexibility is determined by a combination of factors, including
the stretch of the fibers used, the thickness and weight of the material. This
propertiy differs in racing and cruising sails: in racing sails, flexibility is
often sacrificed to achieve lower stretch; in cruising sails, stretch resistance
is often sacrificed to achieve ease of handling.

Tear strength: tear strength is, of course, important in saving a sail from an
untimely death. Tear strength is sometimes a limit to the minimum weight
of lightweight woven materials, such as lightweight Dacron and nylon, and
is certainly a serious consideration in the lightest—weight spinnaker fabrics.
Tear strength is adversely affected by resin finishes, such as melamine or
urethane, which are applied to the fabric. Tear strength is often closely
associated with seam strength: this is because many factors, including the
size of the yarns, their placement, and the level of the finish, contribute to
higher tear strength as well as higher seam strength. In practice dacron
sails are the most resistant to tearing; polyester/Mylar sails also show good
resistance to tearing; Kevlar/Mylar sails, however, are the most susceptible
to tearing.

Porosity: porosity is only a seldom consideration in sailcloth. The processes of
tight weaving, resin impregnation and lamination (used to control strength
and stretch) almost always produce zero porosity as a side effect. Zero
porosity makes it impossible for air to leak through the fabric. The exception
to this is very lightweight nylon spinnaker cloths. Before addressing this
exception, however, we should explain how sailcloth is weighed. Sailcloth
weights are expressed in units of ounces per sailmaker’s yard (SMY). This
is the weight of a piece of cloth 28.5 inches wide by 36 inches long?. Nylon
spinnaker cloths, weighting less than 1 SMY, are so light and thin that it is

2The British use ounces per square yard (oz/yd?), and Continental Europe uses grams per
square meter (g/m?). Thus 1 SMY equals 1.26 oz/yd? British and 42.8 g/m? Europe.
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difficult to achieve zero porosity. Some spinnaker cloth has a resin coating
smeared over the surface to achieve this.

‘Water absorption: water pickup is certainly a problem for some sailcloth. An
obvious example is cloth used in sailboard sails, which are repeatedly im-
mersed in the water when the sailor falls. If the sail absorbs water, it becomes
harder to uphaul, waterstart, and, indeed, hold up. Occasionally resins and
fillers are applied to the cloth to fill in the voids between the filaments and
the fibers in order to diminish water absorption.

Ultraviolet stability: ultraviolet radiation from the sun can break the molecular
chains and weaken the materials in sailcloth. Nevertheless, the ultraviolet
stability of sailcloth is only sometimes a consideration. Then, Dacron, the
most common material used in sailcloth, has a self-screening property.

3.2 New materials, better sails!

Now that we know the desirable and undesirable characteristics of sailcloth, let’s
examine the most commonly used materials to see how they measure up and how
they came to be that way.

In the beginning of the XX century the most common sailcloth’s were made
with cotton or flax. Flax is actually stronger than equivalent cotton, but cot-
ton stretches less. Sailing to windward requires relatively flat well-shaped sails
to form an effective airfoil, and although strength is still an important consid-
eration, maintaining this airfoil shape without stretching is more critical. As a
consequence, during the XIX century, cotton replaced flax. Cotton, being a natu-
ral fibre, has poor resistance to rot, ultraviolet light and water absorption. These
qualities made it unsuitable cloth sailcloth. In spite of these undesirable proper-
ties, cotton was used almost exclusively in sailcloth design until after World War
II, when synthetic fibers, with their wide array of desirable properties, including
lower stretch and lighter weight, gradually became available. Nylon, named for
New—York and London where research on the fiber was conducted, was the first
man-made fibres to be used for sailcloth. The chemical formulation and general
properties of nylon have changed little over the intervening years. It is a cheap,
durable and relatively resistant to ultraviolet light, good flex-fatigue resistance
and shows middle of the road strength properties. However Nylon is mostly re-
stricted to use in off-the-wind sails like spinnakers and the cruising equivalents
due to its poor stretch resistance. Even for spinnakers it is not the ideal material
as it can absorb as much as 3in water. A group of British scientists, J. R. Whin-
field, J. T. Dickson, W. K. Birtwhistle and C. G. Ritchie, in 1941 created the first
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polyester? fiber called Terylene. In 1946 DuPont bought all legal rights and came
up with another polyester fiber which they named Dacron™. Until the 1980’s
the only widely used sailcloth was woven polyester (or Dacron™, Dupont’s trade
name for their polyester yarn). Dacron is a very durable sailcloth and is resistant
to mould and water absorption. Dacron is also very durable making it an excellent
sailcloth. Woven sail cloths can be divided into two main categories:

(a) Nylon (b) Polyester Laminates

(c) Kevlar® & Spectra Laminates

Figure 3.3: Fibre to fabric: a closer look.

3Long-chain polymers chemically composed of at least 85 percent by weight of an ester and
a di-hydric alcohol and a terephthalic acid. The name polyester refers to the linkage of several
monomers (esters) within the fiber. Esters are formed when alcohol reacts with a carboxylic

acid.
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e woven polyester, more commonly known as Dacron™ (see Figure 3.2).

Polyester is widely used for its combination of reasonably low stretch, good
strength, low cost and durability;

e woven nylon (see Figure 3.3(a)). Developed in 1938, nylon is a very strong
fiber, but typically has somewhat higher stretch than polyester fiber. Like
flax, nylon is strong and affordable, but somewhat stretchy, and is best used
in off-the—wind sails, such as spinnaker and cruising equivalents. In these
sails, light weight and strength are more important than stretch resistance.

Woven sail cloths have an inherent problem with its stretch resistance. Some yarns
pass over and under one another. Over time as load is applied these yarns attempt
to straighten out, this results in the fabric stretching. This is commonly referred
to as crimp. This lead to the development of laminated cloths where the fibres are
laid is straight as possible. Of these, the most important are:

e laminates made of polyester and Mylar film, more commonly known as
polyester /Mylar (see Figure 3.3(b)). Mylar (a Dupont trademark) is a film
formed by melting polyester resin, which is then extruded. When the poly-
mer is melted and extruded, the long molecules of the polymer are oriented
randomly, both in the plane of the film and perpendicular to the plane of
the film. Next the material is mechanically drawn, or stretched, in both
the warp and fill directions. This has the effect of stretching the molecules
and changing them from a random orientation to a bidirectional orienta-
tion. The molecules line up primarly in the two directions in which they
were pulled. In these two directions, the molecules are more solidly linked
and have more resistance to stretch; the result is a very low—stretch polymer
film. Simply applying resins to sailcloth, as occurs with impregnated Dacron,
could not achieve the same low—stretch characteristics because the molecu-
lar orientation in these simple resins is random. In fact, it is impossible to
apply oriented polymers to fabrics because the orientation must be done in
a separate process. By marrying the unidirectional polyester fiber and the
bidirectional Mylar, we realize a laminate with the most desirable properties
of each. The polyester fiber shows good resistance to stretch on the thread
line; the more balanced Mylar film shows good resistance to stretch off the
thread line. The ratio of fiber to film, polyester to Mylar, in a laminate is
an important consideration to the sailmaker in determining the stretch ratio
of the material. In high aspect ratio sails, like mainsails, where through
finite—element—generated stress maps, the loading is well documented, it is
possible to use less film and simply orient the fibers in the load direction.

e laminates of Kevlar (a Dupont trademark) fiber and Mylar film, commonly
known as Kevlar/Mylar (see Figure 3.3(c)). Kevlar fiber is about eight
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times less stretchy than polyester yarn. Such miracles, however, come at a
price: it is also ten times as expensive as polyester yarn. Kevlar is expensive
for a very good reason: the filaments are formed in a very complicated
process, wherein the polymer is liquefied in sulfuric acid (it cannot be melted)
and extruded into filaments. The solvent must then be removed from the
polymer, purified and recycled. All of the machinery must handle extremely
corrosive low—pH sulfuric acid solutions. Running Kevlar in one direction,
either the warp or the fill, and polyester in the other and then marrying
the resultant fabric to Mylar opened the door to the use of Kevlar/Mylar
in sailmaking. The sailmaker thus plans the panel orientation of sails to
orient the Kevlar in the direction of the primary loads. In addition to being
low stretch, Kevlar/Mylar is also about five times stronger than Dacron of
equivalent weight and essentially has no yield point. The elongation of the
yarn itself is perfectly elastic and recoverable up to the breaking point that
occurs at a very low elongation (about 3%). For this reason, Kevlar/Mylar
is susceptible to breaking in shock-loading condition. The primary problem
with Kevlar/Mylar sailcloth is the degredation of the yarn through sharp
flesing and creasing.

e laminates of Spectra fiber and Mylar film, commonly known as Spectra/Mylar
(see Figure 3.3(c)). Spectra is a most highly oriented polyethylene polymer,
characterized by very low stretch, similar to Kevlar, but much lighter. Kevlar
is 1.41 times dense as water, whereas Spectra is 0.98 the density of water.
In fact, Spectra will actually float. The stretch—to—weight ratio of Spec-
tra is therefore much better than that of Kevlar. Spectra/Mylar also has
the advantages of not degrading when flexed sharply, like Kevlar. However,
Spectra/Mylar has its Achille’s heel: when Spectra/Mylar is loaded to 30%
or more of its breaking strength, it will creep, stretch permanently, over time.

3.3 Introduction to composite materials

Now that we know the most commonly used materials in sailmaking, let us examine
the most classical theory used to model these composite materials.

A structural composite is a material system consisting of two or more phases on a
macroscopic scale, whose mechanical performance and properties are designed to
be superior to those of the constituent materials acting indipendently (Daniel and
Ishai 1994). One of the phases is usually discontinuous, stiffer and stronger and
is called reinforcement, whereas the less stiff and weaker phase is continuous and
is called matriz. Sometimes, because of chemical interactions or other processing
effects, an additional phase, called interphase, exists between the reinforcement
and the matrix. The properties of a composite material depend on the properties
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of the constituents, geometry and distribution of the phases.
There are three commonly accepted types of composite materials (Jones 1975):

1. fibrous composites are reinforced either by short discontinuous fibers or wiskers
which can be oriented along one direction or randomly oriented or by long
continuous fibers. These continuous fibers can be all parallel (unidirec-
tional continuous fiber composite), can be oriented at right angles to each
other (crossply or woven fabric continuous fiber composite), or can be ori-
ented along several directions (multidirectional continuous fiber compos-
ite) (Mallick 1988);

2. laminated composites which consist of thin layers of different material bonded
together;

3. particulate composites which consist of particles of various sizes and shapes
randomly dispersed within the matrix. Particulate composistes may con-
sist of nonmetallic particles in a nonmetallic matrix (concrete, glass rein-
forced with mica flakes, brittle polymers reinforced with rubber like par-
ticles); metallic particles in nonmetallic matrices (aluminium particles in
polyurethane rubber used in rocket propellants); metallic particles in metal-
lic matrices (lead particles in copper alloys to improve machinability); and
nonmetallic particles in metallic matrices (silicon carbide particles in alu-
minium) (Daniel and Ishai 1994).

For the remainder of this section, emphasis will be placed on laminated composites
(Point 2) and, to be more precise, taking into account the sailcloth introduced in
Section 3.2, we will focus our attention on fiber—reinforced composite laminates.
A lamina, or ply, is a plane or curved layer of unidirectional fibers or woven fabric
in a matrix. In the case of unidirectional fibers, it is also referred to as unidi-
rectional lamina. The lamina, the principal reinforcing or load—carrying agent, is
an orthotropic material with principle material axes in the direction of the fibers
(longitudinal), normal to the fibers in the plane of the lamina (in—plane transverse)
and normal to the plane of the lamina, as drawn in Figure 3.3. In the case of a
woven fabric composite, the warp and the fill directions are the in—plane principal
directions (see Figure 3.3). A laminate is made up of two or more unidirectional
laminae or plies stacked together at various orientations. The laminae or plies or
layers can be of various thicknesses and consist of different materials. The layers
of a laminate are usually bound together by the same matrix material that is used
in the laminae. Furthermore, the function of a matrix is to support and protect
the fibers and to provide a means of distributing load among and trasmitting load
between the fibers.

A laminated fiber—reinforced composites are a hybrid class of composites involving
both fibrous composites and lamination techniques. Here layers of fiber—reinforced
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UNIDIRECTIONAL FIBERS WOVEN FIBERS

Figure 3.4: Unidirectional lamina and lamina with woven fibers.

material are built up with the fiber directions of each layer typically oriented in
different directions to give different strengths and stiffnesses in the various direc-
tions. Before going inside the macromechanical behaviour of a lamina, we need to
introduce some characteristics of composite materials that are different from more
common engineering materials which are usually:

- homogeneous body: the properties are not a function of position in the body;

- isotropic body: the properties are not a function of orientation at a point in
the body.

In contrast, composite materials are often:

- inhomogeneous or heterogeneous body: the properties are a function of posi-
tion in the body;

- orthotropic body: the material properties are different in three mutually per-
pendicular directions at a point in the body. There are three mutually per-
pendicular planes of material symmetry;

- anisotropic body: the material properties are different in all directions at a
point in the body. There are no planes of material property symmetry.

Usually, because of the heterogeneous nature of composite materials, they are
studied from two points of view: micromechanics and macromechanics:

- micromechanics is the study of composite material behaviour wherein the
interaction of the constituent materials is examined on a microscopic scale;
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- macromechanics is the study of composite material behaviour wherein the
material is presumed homogeneous and the effects of the constituent mate-
rials are detected only as averaged apparent properties of the composite.

In the remainder, we will focus on the macromechanical behaviour of a lamina.
If we consider a general anisotropic material, the state of stress at a point in a
general continuum can be represented by nine stress components o5, (i,j = 1,2, 3).
Similarly, the state of deformation is represented by nine strain components &;;,
(1,7 = 1,2,3). The generalized Hooke’s law relating stresses to strains can be
written as:

o11 C1111 Crizz2 Crizz Crizz Cuiznr Ciniz Cirizsz Ciniz Crum €11
022 Ca211 Ca2222  Ca23z  Cazzz3  Caz31 Caziz Cazzz Caziz Cazm €22
o33 Cs311 Csz22  Csszzs  Cszzez Cszzz1i Csziz Cszzz Cssiz Css2r €33
023 Ca2311 Cazaz  Cazzz  Cazaz  Ca3zr Caziz Ca2szz C2313  Caoszn £23
031 p = [Cs111 Csz122 Csz133  Csz123 Csz131 Cs11z2 Csizz Cs1iz Csi21 €31
12 C1211 Ci222 Ciasz  Ci223  Ci2z1 Ci212 Ci2zz Ciz13 Ci221 €12
032 Cs211 Cs222  Cs23z3  Cs223  Csz231 Cs212 Cs2z2 Cs213 Csz221 €32
013 Ci311 Ciz22 Cizzs  Cizas  Cizs1 Cizi2 Cizzz Ciziz Cizzn £13
021 Co111 Ca2122 Ca1z3  Ca2123  C2131 C2112 C2132 C2113  Coizn €21
(3.1)

or in indicial* and tensorial notation:

0ij5 = Cijklgkl i7j7k7l = 17273 (32)
oc=C:¢g, (3.3)

where C is the material stiffness matrix of components Cjj; and “: ” is the double
product or double contraction of two tensors. It is customary in mechanics of
composites to use a contracted notation for the stress, strain and material stiffness
tensors as shown in Table 3.1 (Jones 1975; Hull 1981). In general, moving from
Equation (3.1), it requires 81 elastic constants to characterize a material fully.
However, the symmetry of the stress and strain tensors (o;; = 0;; and €;; = €;;)
reduces the number of indipendent elastic constant to 36. So, we can rewrite
Equation (3.1) as follows:

o1 Cii Cia Ciz Cis Cis Cig| (e

o2 Cyi Crp Chs Cu Cr O | 2

o3 | _ |Cs1 Cs2 (33 Csq O35 Csg €3 (3.4)
To3 Cy Cyp Cuz Cuy Cuss Cug| |23 '
T31 Cs1 Csa Csz3 Csa Css Cse| |71

T12 Cs1 Ce2 Cgz Ces Cos Cee| |72

4Obviously, repeated index or dummy index implies summation for all values of that subscript.
5Note that «y;; (i # j) represents engineering shear strain whereas £;; (i # j) represents tensor
shear strain (infinitesimal strains).
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Stresses Strains
Tensor Contracted Tensor Contracted
notation notation notation notation
011 g1 €11 €1
022 g2 €22 £9
033 o3 €33 €3
_ _ 5
T23 = 023 04 Y23 = 2€23 €4
T31 = 031 o3 Y31 = 2€31 €5
T2 = 012 06 Y12 = 2€12 €6

Table 3.1: Tensor and contracted notation for stresses and strains.

or in indicial form:

g; = C,’j{:‘j ’i,j = 1, . ,6. (3.5)

The stiffness matrix C in Equation (3.4), has 36 constants. However, less than 36 of
the constants are needed for elastic materials because strain energy considerations
require additional symmetries. Elastic materials, for which an elastic potential of

strain energy density function exists, have incremental work per unit volume of:
dW=U,'dE,' =0 ZdE, (36)

where o and e are work conjugate (Bonet and Wood 1997). Because of the rela-
tion (3.5), the incremental work (3.6) becomes:

dW:Cz']'é‘jdEi:E:CZdE, (37)
and upon integration, the work per unit volume is expressed as:
1 1
W = —CijEiEj =—-e:C:e. (3.8)
2 2
Hooke’s law, Equation (3.5), can be derived from Equation (3.8):
ow
5, — Gt (3.9)
whereupon:
o*wW *wW
=Cjyj d —F—=0Cj. 3.10
361'861' k an 86j65i 7 ( )
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Because the order of differentiation of W is immaterial, Equations (3.10); and
(3.10)2, read:

Cz'j = Cji and CT = C. (3.11)
Thus the material stiffness matrix C is symmetric and just 21 of the constants are

indipendent. So, the stress—strain relation (3.4), can be written as:

o1 Cii Ciz2 Ciz Cis Cis Cig| (e
© o2 Cia Crp Ca Cau Cr Ca| | &2
= o3 | _ |Cis Cos (33 (34 Css5 Cie €3 (3.12)
2 To3 Cias Ca C34 Cy Cys Cug| | 723 '
= T31 Cis Oz C35 C45 Css5 Cse| |31
T12 Ci6 C% C36 Cis Cs6 Cos| (712

Equation (3.12) is the most general expression within the framework of linear
elasticity and is usually referred to characterize anisotropic or triclinic material. If
there is one plane of material property symmetry (i.e. 3 = 0), the Equation (3.12)
reduces to:

o o1 Ciu Ci2 Ci3 0 0 Cif| (&1
k= o2 Ciz2 Cxp C 0 0 Cs €2
S o3 | _ |Cis Coz Cs3 0 0 Cs6 €3 (3.13)
2 To3 0 0 0 Cu Csis O Y23 '
§ T31 0 0 0 Cs Cs5 0 Y31
T12 Cie Cyp C36 O 0 Cee| (M2

that corresponds to a monoclinic material. In Equation (3.13) there are 13 in-
dipendent elastic constants. In the case of an orthotropic material which has three
mutually perpendicular planes of material symmetry, the stress—strain relation in
general has the form:

o o1 Cn Ci2 Ciz O 0 0 €1

'g- o2 Cia Cy Cyz 0 0 0 €2

5 o3| _ |Cis Cas Cs3 0 0 0 €3 (3.14)
_8 723 - 0 0 0 044 0 0 Y23 ’

o 31 0 0 0 0 Cs5 O Y31

© Ti2 0 0 0 0 0 Ce |m2

The number of indipendent elastic constants is reduced to 9. Note that there is no
interaction between normal stress o7, 02, 03 and shearing strains .3, 31 and 7y12;
similarly there is no interaction between shearing stresses and normal strains. If
at every point of a material there is one plane in which the mechanical properties
are equal in all directions, then the material is termed transversely isotropic with
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5 indipendent constants. If, for example, the z; — 25 plane is the special plane of
isotropy, then we have:

> o1 Cu Ci2 Ciz3 O 0 0 €1

I~ 02 Ci2 Cnn Ciz O 0 0 €9

-

g o Joz| _|Cizs Ciz C33 O 0 0 £3

Z "g 723 B 0 0 0 C44 0 0 ,),23 (3]‘5)
o 9 T31 0 0 0 0 Cys 0 31

= T2 0 0 0 0 0 ©ufa |y,

If there are an infinite number of planes of material property symmetry, then
Equation (3.15) simplifies to the isotropic material case with only 2 indipendent
constants:

o1 [C11 Ci2 Cha 0 0 0 €
> o9 Ciz Cun Cr2 0 0 0 £y
S o3 Ciz Ciz Cn 0 0 0 £s
s Yms( |0 o0 o %) 0 0 o3
< 31 0o 0 0 0 (Cu—Cua) 0 31
71> 0 0 0 0 0 (QuCia) | {72

(3.16)

3.3.1 Classification of structural theories

Whereas in the past, the use of composite materials has been mainly restricted to
secondary, noncritical structural components, nowadays, the dramatic increase in
the use of composite materials in all types of engineering structures (i.e. aerospace,
automotive, underwater structures, medical devices, electronic circuit boards and
sports equipment) attests to the fact that there has been a major effort to develop
composite material systems, and analyze and design structural components made
from composite materials.

The method used so far for the structural analysis of fabrics may be considered as
belonging to five groups:

- analytical methods;

- smeared approach;

- numerical methods;

- probabilistic approaches;

- homogeneization methods.
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Analytical methods: the correct laminar theory (Norman et al. 1996; Whit-
comb et al. 1999) consider that the textiles consist of the union of unidirec-
tional layers whose directions respect the typical axes of real material (Naik
and Kuchibhotla 2002). Under these conditions, it is possible to apply
the classical lamination theory (CLT) (Jones 1975, pag.147) and (Mallick
1988, pag.133), which, however, has been corrected with average value of
the in/out—of-plane angle of the braid tows (Whitcomb et al. 1999) exper-
imentally determined by using micro—photographs taken on various fabric
sections (Norman et al. 1993; Norman et al. 1996).

The fabric geometry model (FGM) (Pastore and Gowayed 1994) is widely
used to predict composite fabric characteristics. The basic idea behind the
FGM is to treat the fibers and matrix as a set of composite rods (yarns)
having various spatial orientations. The local stiffness tensor for each of
these bars is calculated and rotated in space to fit the global composite axes.
Once the whole group of rods has been locally characterized, the compos-
ite global stiffness matrix is obtained by superimposing the contributions of
single bars that should demonstrate transverse isotropy (see pag. 103) in the
plane normal to the fiber axis. Gowayed and Hwang in 1995 adapted this
approach to predict the thermal conductivity of textile composites.

The weighted average model (WAM) (Kalidindi and Abusafieh 1996) uses
a weighted average of the results obtained with the FGM method (Bog-
danovich and Deepak 1997). After the groups of bars has been characterized
accordingly to the FGM method, the composite stiffness tensor is obtained as
a weighted average of the single rod contributions to global stiffness, where
the weights used are the volume fractions® of every beam (Kalidindi and
Franco 1997).

Smeared approach: in such methods, the main emphasis of an analysis is to
determine the overall global response of the laminated component, for ex-
ample, gross deflections, critical buckling loads, fundamental frequencies and
associated mode shapes (Hashin 1983). Such global behaviour can often be
accurately determined using one of the following approaches (Reddy 1997):

1. Equivalent single-layer theories (ESL).
The simplest ESL laminate theory is the classical laminated plate theory
(CLPT) which is an extension of the Kirchhoff plate theory to laminated
composite plates (Reddy and Robbins 1994).
The next theory in the hierarchy of ESL laminate theories is the first
order shear deformation theory (FSDT) which extends the kinematic
of the CLPT by including a gross transverse shear deformation in its
kinematic assumptions (Reddy 1984a).

6Ratio between the volume of fibers and the total volume of composite.
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The third order laminate theory of Reddy (1984b), (1990) (TSDT or
generally HSDT?) provides a slight increase in accuracy relative to the
FSDT solution, at the expense of a significant increase in computational
effort.

2. Three—dimensional elasticity theory.

As laminated composite materials undergo the transition from sec-
ondary structural components to primary critical structural compo-
nents, the goals of analysis must be broadened to include a highly ac-
curate assessment of localized regions where damage initiation is likely.
The simple ESL laminate theories that often prove adequate for model-
ing secondary structures, are of limite value in modeling primary struc-
tures. Thus the analysis of primary composite structural components
may require the use of 3D elasticity theory (Sun et al. 1968; Chao
and Reddy 1984; Brank and Carrera 2000) or layerwise laminate model
(LWM) (Reddy 1989) that contains full 3D kinematics and constitutive
relations.

Numerical methods: the numerical methods are mainly of the finite element
family (Haan, Charalambides, and Suri 2001). The analysis of braids is
usually based on the use of either a simple diagonal brick model or a more
complex inhomogeneous finite element model (Hu and Teng 1996). The first
most common approach to modeling the macroscopic properties of textile
composites has been to create a representative volume element (RVE) or a
unit cell that captured the major features of the underlying microstructure
and composition in the material (Masters et al. 1993). Through this method,
volumes having different properties (fiber and matrix) are transformed into
an element with homogeneous properties by using an analytical method, such
as FGM. The solution of the global structure can be obtained through a finite
element analysis of the mechanical model based on the previous concept of
a simplified unit cell representation of the composite-reinforcing microstruc-
ture (Gowayed et al. 1996; Gowayed 1997). Gowayed, Hwang, and Chapman
in 1995 constructed an extended model of the previous method able to pre-
dict the thermal conductivity of textile composite materials under steady
state heat transfer conditions. One concern about unit cell modelling is that
the unit cell does not correctly characterize the general textile reinforced
material, which may not have true repeating volume.

The second approach (Bogdanovich 1993) divides the structure into meso—
volumes (Masters, Foye, Pastore, and Gowayed 1993; Bogdanovich and Pas-
tore 1996), and each one of these volumes (unit cell) contains several single

"High Order Shear Deformation Theory
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cells (subcell®), the material properties of which are calculated through the
FGM method (Pastore et al. 1993). This hierarchical method gives a more
general tool for the analysis of structures than the previous approach with
single unit cells. Here, hierarchical means that:

1. for the case when only displacements are of interest, the analysis of a
fully homogenized textile structure may be adopted. Thus, the whole
structure can be identified as a single meso—volume (Masters, Foye,
Pastore, and Gowayed 1993);

2. if information on all six stress components in the structural part is
needed, the internal interfaces gain importance and, correspondingly,
the next hierarchical level has to be considered. At this level, the whole
structure can be treated as an assemblage of several distinct, anisotropic
structurally homogeneous small meso—volumes (Bogdanovich 1993);

3. in the case when local failure effects are of interest, one has to start
at the next hierarchical level, namely, the level of a single yarn sur-
rounded by matrix material. The same concept of a meso—volume can
be applied to this analysis supposing that a structurally homogeneous
yarn element and matrix element represent two distinct types of meso—
volumes (Bogdanovich and Pastore 1996).

A new approach, in contrast with the usual choices, previously defined, of
either adding more elements to account for microstructure or using aver-
aged material properties within each element, has been introduced in 1994
by Whitcomb et al. These new elements, called macro—elements (Whitcomb
and Woo 1994), are based on the use of finite element, the formulation of
which implicitly takes the composite micro—geometry and, therefore, fiber
and matrix mechanical properties, into account (Woo and Whitcomb 1994).
This method gives good results in the prediction of fabric global movements
and deformation, whereas it is not effective in calculating deformations and
tensions inside the elements.

Global/local methodology or multiple model methods (Reddy 1997), combined
with special macro—elements is proposed in (Woo and Whitcomb 1994; Whit-
comb et al. 1995) as a practical alternative to conventional finite element
analysis of textile composite structures. Global/local finite element analysis
is often used to study the stress distribution in a small portion of struc-
tures in great detail (Jara-Almonte and Knight 1988; Whitcomb 1991; Fish
and Markolefas 1992). It makes a distinction between three microstructural
scales (Chapman and Whitcomb 1995):

80ne unit cell divided into nine subcells, three elements per side (Bogdanovich 1993)
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1. the basic repeating microstructural element labeled coarse microstruc-
ture. At this level, the very distinctive phases of textile composites are
observed;

2. asecond level where a very large number of unit cells are considered and
the characteristic dimensions are of the order of the structural elements,
is called fine microstructure;

3. between these two levels lies another level of microstructure, called, the
transitional level.

In analyzing a textile composite structure by the global/local method, a rel-
atively crude global mesh with homogenized material properties can be used
at the fine microstructural level (Whitcomb et al. 1995). In the local meshes,
the details of the coarse microstructure of textile composites (i.e. individ-
ual tows and matrix pockets) are modelled discretely (Woo and Whitcomb
1996). However, in the transitional range of microstructure, discrete mod-
elling is not practical (i.e. cpu requirements) and special finite element are
needed which account for microstructure within a single element (Whitcomb
and Srirengan 1996; Whitcomb et al. 1999; D’Amato 2001).

The last FEM approach is called semi—microscopic approach (Fujita et al.
1992). It adopts discretization of fibers with beam (Fujita et al. 1993) or
truss (Sidhu et al. 2001) elements, which correspond to the real geometry of
tows, and simulation of the typical cohesive effect of matrix with other beam
elements are adequately arranged (Fujita et al. 1993) or, more precisely,
using shell elements (Sidhu et al. 2001). This kind of approach is used to
analyze the evolution of cracks inside the material and calculate the ultimate
strength.

Probabilistic approaches: in the implementation of all the above finite element
methods, it is difficult to throughly describe the mechanical and geometrical
characteristic. In fabrics manufacturing, there are several factors that impose
a probabilistic approach (Yushanov and Bogdanovich 1998a) in the definition
of the typical parameters of the model (Yushanov and Bogdanovich 1998b).

Homogeneization methods: we can consider a composite as a structure assem-
bled from a very large number of fragments of given materials mixed in a
prescribed way (Carvelli and Poggi 2001). Each fragment is assumed to be
much smaller than the rate of varying of acting fields and than the size of
a considered domain. At the same time, these domains are large enough
to assume that the governing equations are valid in each fragment of ma-
terial, which means that fragments are much larger than molecular size. It
is hopelessly difficult and often useless to describe fields at each point of
the composite. For most purpose we do not need to know all the details.
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Instead, we simplify the problem by introducing an averaged description of
a composite. The procedure that replaces the original problem by a simpler
averaged problem is called homogenization.

The physical ideas of homogenization, averaging heterogeneous media in or-
der to derive effective properties, have a very long history going back at
least to Poisson (1822), Maxwell (1881) and Rayleigh (1892). There is a
huge literature in physics and mechanics concerning averaging and effec-
tive properties (Jones 1975; Hull 1981; Mallick 1988; Daniel and Ishai 1994;
Giirdal, Haftka, and Hajela 1999). However, the mathematical theory of
homogenization is much younger and it is interesting to note that it started
in at least three main direction.

The first direction, the oldest one, is concerned with a general theory for the
convergence of operators (namely H—convergence or G—convergence). The
first contributions are probabily those of Spagnolo (1968), DeGiorgi and
Spagnolo (1973), Murat and Tartar (1985) and Tartar (1986).

The second direction is the asymptotic study of perforated domains contain-
ing many small holes (Rauch and Taylor 1975).

The third direction is a systematic study of periodic structures by means of
an asymptotic analysis: we call such problems periodic homogenization prob-
lems. Pioneering works in this direction have been done by Babuska (1974),
Bakhvalov and Panasenko (1990) and Bensoussan, Lions, and Papanicolaou
(1978).

Eventually, let us mention that there is also a stochastic theory of homoge-
nization (Kozlov 1980; DalMaso and Modica 1986) and a variational theory
of homogenization: the I'—convergence of DeGiorgi (DeGiorgi 1975; DeGiorgi
1983).

After having introduced all the possible analytical and numerical methods clas-
sically used for the structural analysis of fabrics, it is important to say that our
model (presented in Section 3.6.3 using the finite elements introduced in Sec-
tions 5.2 and 5.3), is completely different from the previous ones.

To resume: we are going to consider the macromechanical behaviour of a fiber—
reinforced composite laminates (the sails!) using a new membrane element (Sec-
tion 5.2 and (Gobetti and Nascimbene 2002)) to model the material matrix, in
conjunction with a new fiber—element (Section 5.3 and (Gobetti and Nascimbene
2001)) to model the yarns distribution. Using this approach we are able to work
at the level of a single yarn surrounded by matrix material with a very moderate
CPU requirements. This last condition is absolutely important from an optimiza-
tion point of view, that is the scope of the next sections: to introduce an algorithm
able to obtain the best possible yarn distribution in order to minimize the total
volume of the fibers with some displacement constraints (mast and boom).
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3.4 Topology optimization and something more
a review!

Two scientists established not only the classical theory of elasticity, but they also
laid the foundation for the increasingly important field of structural optimization.
The first concepts of seeking the optimal shapes of structural elements are con-
tained in the book of Galileo Galilei (1564-1642), Discorsi. He was the first to
perform systematic investigations into the fracture process of brittle bodies. In
this context, he described the influence of the shape of a body (hollow bodies,
bones, blades of glass) on its strength.

On the other hand, Robert Hooke (1653-1703) formulated the fundamental law of
linear theory of elasticity: strain (change of length) and stress (load) are propor-
tional to each other. Based on these considerations one could assume the theory
of elasticity and to a wider extent, continuum mechanics, to be a field of sciences
whose problems might be considered as being solved to a large extent. This, how-
ever, would be a fundamental error!!

The previous years have witnessed increasing challenges in terms of the design of
ever more complex mechanical systems and components as well as of extremely
lightweigth (sails!) constructions, a fact that has led, among others, to the devel-
opment, of advanced materials and hence to the demand for increasingly precise
calculation methods. The substantial and still undiminished importance of struc-
tural mechanics is due to the fact that questions toward finding an optimal design
in terms of load bearing capacity, reliability, accuracy and costs, have to be an-
swered already in an early stage of the design process. In this respect, a new
area in the scope of computer aided engineering has emerged, namely the opti-
mization of structures, commonly called Structural Optimization. Tt offers to the
engineers a tool which, by means of mathematical algorithms, allows to determine
better, possibly optimal, designs in terms of admissible structural responses (de-
formations, stresses, eigenfrequencies), manufacturing and the interaction of all
structural components.

The foundations of structural optimization, date back to one of the last universal
scholars of modern times, Gottfried Wilhelm Leibniz (1646-1716), whose works in
the fields of mathematics and natural sciences can be seen as the basis of any an-
alytical procedure and highlight the tremendous importance of coherent scientific
thinking. He laid the foundation of differential calculus; without these achieve-
ments, modern optimization calculations would not be possible to a larger extent.
In this respect, it is of utmost importance to mention Leonard Euler (1707-1783)
who achieved a lot of results in the theory of extremals which provide the basis for
the development of the calculus of variations. With this method, Jakob Bernoulli
(1655-1705) determined the curve of the shortest falling time (brachistochrone)
and Sir Isaac Newton (1643-1727) the body of revolution with the smallest resis-
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tance. By formulation the Principle of the smallest effect, and by developing an
integral principle, Lagrange (1736-1813) and Hamilton (1805-1865) contributed
toward the completion of variational calculus as one of the fundamentals for sev-
eral types of optimization problems.

On the bases of the previous works, in recent years, substantial efforts have been
made in the development of topology optimization procedures, and there are sev-
eral different strategies whose use is in most cases highly problem dependent (Es-
chenauer and Olhoff 2001). Topology optimization is often referred to as lay-
out optimization or generalized shape optimization in the literature (Kirsch 1990;
Bendsge, Diaz, and Kikuchi 1993; Rozvany, Bendsge, and Kirsch 1995). The
importance of this type of optimization lies in the fact that the choice of the ap-
propriate topology of a structure in the conceptual phase is generally the most
decisive factor for the efficiency of a novel product.

Two types of topology optimization exist, discrete or continuous, depending on the
type of a structure. For inherently discrete structures, the optimum topology or
layout design problem consists in determining the optimum number, positions, and
mutual connectivity of the structural members (Topping and Papadrakis 1994).
The following sections are dedicated to introduce our method in the field of topol-
ogy optimization of continuum structures, due to the fact that a sail is a continuous
membrane. Furthermore, after having defined in Section 1.3.2.3 and Figure 1.22
the based—aero/hydrodynamic optimal shape, in the next sections we are going to
achieve the optimum in terms of thickness and yarn distributions. Very roughly,
one can distinguish two classes of topology continuum design processes:

the material or microstructure technique: the goal is to find that structural
topology which renders a given design objective an optimum value subject
to a prescribed amount of structural material (Olhoff, Lurie, Cherkaev, and
Fedorov 1981; Kohn and Strang 1986). The optimization consists in deter-
mining whether each element in the continuum should contain material or
not;

the geometrical or macrostructure technique: in this class, continuous ma-
terials are considered as opposed to porous, microstructured ones, and as the
topology optimization is performed in conjunction with a shape optimiza-
tion, the finite element mesh cannot be a fixed one, but must change with the
changes of the boundaries of the design. In each iteration, the thickness, the
yarn layouts and the sail shape’s of the continuous body are simultaneously
subjected to a optimization procedure.

It is object of this chapter to present our continuum macrostructure topology opti-
mization applied to the design of a mainsail that will be computationally analysed
in Sections 3.6.3 (from an optimization point of view) and in Section 6.1 (from a
structural point of view).
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3.5 Optimization of sail properties: thickness and

yarn layout

In spite of the growing importance of textile composite materials (Tan, Tong,
and Steven 1997; Lomov, Huysmans, Luo, Parnas, Prodromou, Verpoest, and
Phelan 2001), there is no systematic tool that can help to optimize its design while
satisfying a set of target properties. The designer of a textile composite material
seeks to identify the best fiber and matrix thickness, the most appropriate fiber
preform structure and different yarn volume fractions (Mcllhagger, Hill, Brown,
and Limmer 1995). Optimum design of textile composites, or even its estimation
thereof, is important for the following reasons:

1.
2.

3.
4.

to reduce expenses envolved in trial and error procedures;

to open grounds for possible new fabric designs able to deliver a set of unique
target properties;

to obtain the best performance of a material in an application;

to identify a cost—effective design.

Previous efforts to optimize the properties fiber—textile composite materials have
been restricted to laminated composites (Giirdal, Haftka, and Hajela 1999), using
different algorithmic treatments:

after the pioneering works of Schmit and Farshi (1977), Banichuk (1981)
and Kartevelishvili and Kobelev (1984), mention should also be made of the
more recent results obtained by Ding (1987), Vanderplaats and Weisshaar
(1989), Fukunaga and Vanderplaats (1991), Rovati, Taliercio, and Cinquini
(1991) and Vaidyanathan and Gowayed (1996). These results have been
also extended to the three—dimensional elastic case by Rovati and Taliercio
(1990) and to the plastic case by SacchiLandriani and Rovati (1989).

Watkins and Morris (1987), Borri and Speranzini (1993) and Kere and Koski
(2001) proposed a multilevel structural optimization scheme to identify the
optimum layer/yarn thickness and ply angles to minimize the overall weight
of the laminate.

some authors, Nagendra, Haftka, and Giirdal (1993) and Muc and Gurba
(2001), demonstrated the application of genetic algorithm to the design of
composite structures.

some papers presented the simulated annealing method (Correia, Gomes,
Suleman, Soares, and Soares 2000; Correia, Soares, and Soares 2001) and the

111



Roberto Nascimbene Sail Modelling for Maximal Speed Optimum Design

evolutionary technique (Steven, Li, and Xie 2000) for structural topology as
an alternative to the classical gradient—based procedure.

Aim of our formulation is to integrate the FEM computational code (Chapter 5)
with Mathematical Programming methods (MP) (Sections 3.5.1-3.5.4). In this
approach FEM is used as an analysis tool to evaluate structural responses (i.e.,
displacements and stresses) and their sensitivities with respect to design variables
under the given loading conditions; MP is an iterative optimization algorithm
aimed to find improved feasible designs with the knowledge of structural responses
and sensitivity information. Due to the implicit relationship between structural
responses and design variables, the strategy herein called Sequential Convex Pro-
gramming (SCP) is used to replace approximately the original problem by solving
a sequence of explicit and convex sub—problems.

3.5.1 Mathematical background: the mixed variables method

Two notions are used to characterize the following formulation in the step of
constructing explicit sub—problems: convezxity and conservativeness.

Let us consider a continous and differentiable function g(X), with g: R* — R,
and a design point X* € R". The approximation process of direct linearization of
g(X) at X*, denoted by gp (X;X*), consists of replacing it with the first-order
Taylor series expansion (Fleury and Braibant 1986; Nguyen, Strodiot, and Fleury
1987):

) )
ip (X;XF) =g (x4) + 3 22
i=1

(z; —z¥), (3.17)
Xk

where z; are the design variables (direct variables), and XF is, as said before, the
current design point in a step k of an optimization problem. By this technique the
function g(X) is approximated as a linear function of the direct design variables
x;. In structural optimization another form of approximation that is often used
is a linear function of the reciprocals of the design variables 1/z;, which can be
named reciprocal linearization:

~ k k = dg $f k
gr (X;XF) =g (XF) +) Fyl Wi (zi — 7). (3.18)
i=1 vIXE T

Let us now assume that, for the linearization purpose, the variables are arbitrarily
split into two groups:

e Group (A4), which contains the original direct design variables x;;

e Group (B), which is concerned with intermediate reciprocal variables 1/z;.
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Performing then a first-order Taylor series expansion of the function g(X), the
following mixzed linearization is obtained:

W (GX) =g () + 58| (o -at) + 352

() (m) OPilx “7’

’?

T — xf) , (3.19)

where Z( A) and Z( p) mean “summation over the variables belonging to group
(A) and (B) respectively”. It is important to recognize that reciprocal lineariza-
tion represented in Equation (3.18) yields a convex approximation only if all the
first derivatives (0g/0;) |xk are non-negative. This feature cannot be controlled:
it is an entry in the linearization process. On the other hand, mixed lineariza-
tion is always capable of generating a convex approximation provided that group
(A) and (B) are appropriately chosen. Hence the idea of convez linearization,
which is achieved when group (A) is selected as containing the variables for which
(0g/0x;) |xk is positive, and group (B) contains the remaining variables:

3 0 9 k
e (XX =g (X + 3 S| (@m-ab)+ Y SE| T (mi-ad),
iert(g) X ier-(g) XM
(3.20)
where:
I,j:{ie{l,...,n} 5.t gf. >0},
LxE (3.21)

Ikz{ie{l,...,n} st 2

0
oe| <o},

(3

Note that this apparently tricky linearization scheme takes advantage of the trivial
fact that:

Jg = g2 69

TONNE
Zi

Remember that a function is said to be convex when its Hessian matriz H defined
by second order derivatives is positive definite. Generally, the convexity can be
regarded as a curvature measure. Zhang and Fleury suggested to quantify the con-
vexity of a function by averaging arithmetically the diagonal terms of second order
derivatives. For optimization problems without equality constraints, the convexity
means that the Hessian matrices of the objective function and constraints are all
positive definite. Theoretically, this pleasant property ensures the uniqueness of
the optimum solution of the considered problem.

(3.22)
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An attractive property of convex linearization is that it also yields the most con-
servative approximation among all the possible combinations of direct/reciprocal
variables (i.e. selection of group (A) and group (B)). Conservativeness is a relative
measure concerned with inequality constraints. Given two approximate constraint
functions ¢1(X) < 0 and ¢2(X) < 0 which might be differently constructed from
the original g(X) < 0. The latter is said to be more conservative that the former
if the relation g;(X) < g¢2(X) is held. As illustrated in Figure 3.5, the design
space formed by ¢1(X) < 0 is a reduced one of that by g(X) < 0 and any feasible
design with respect to g1 (X) < 0 is absolutely feasible with respect to g(X) < 0.
This remarkable property is easy to prove by substracting Equation (3.19) from

original design space
g(x)<0

convex approximations
9(x) <0

> X,

Figure 3.5: Approximation concepts.
Equation (3.20) to get:
go (X;XF) — g (X5 X*) =

> X leay yw 2
(B)i€T; (g) X (A)ieI; (g)

1
Xk L

By requiring that the z;’s are non—negative variables, a simple translation can do
it, the first summation in Equation (3.23) will contain only positive terms from
group (B), and the second, negative terms from group (A). Therefore it can
be concluded that jo(X;X*) is always greater than §as(X; X*). In other words,
convet linearization is the most conservative approzimation of any mized lineariza-
tion, including the two extreme cases: direct linearization (Equation (3.17)) and
reciprocal linearization (Equation (3.18)).

Finally, it should be pointed out that when the comparison is made between con-
vex approximations, the convexity and the conservativeness will have equivalent
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effects. The more convex the constraint function, the more conservative it is.
In summary then, when one wants a function g(X) to be approximated in a con-
servative way by using mixed direct/reciprocal variables, the only possible scheme
is to employ convex linearization. The word “only” is important, because it is the
basis for the generality of the method proposed in the sequel. Indeed, this method
intrinsecally contains a rational scheme to select by itself the mixed variables.

3.5.2 Solution procedure: the convex linearization method

Considering a general mathematical programming problem, (Fleury and Braibant
1986; Nguyen, Strodiot, and Fleury 1987; Kuritz and Fleury 1989):

minimize F(X) X ={z1,22,... ,Zn}
subject to hj (X) >0 ji=1,...,m (3.24)
T; 2% 2 ; i=1,...,n

the approach herein presented, proceeds by transforming the previously defined
problem into a sequence of linearized sub—problems having a simple explicit al-
gebraic structure. Because the method employs the convex linearization scheme
described in Section 3.5.1, it is very general and easy to use: the algorithm inher-
ently chooses itself the intermediate linearization variables. Therefore, the only
input data are the initial values of the objective and constraint functions:

ff=5(X*) and h}=n; (X", (3.25)
as well as their first derivatives with respect to the design variables z;%:

_9of

61:1' Xk

_ Ohy

— 4. )
61'1' Xk

fi

where X* denotes the current point, i.e. the design point where the problem is
linearized. Conventional linearization methods also benefit from this attractive
properties of generality and simplicity, and it is probably the reason why they
have met with considerable success in engineering design. However, because such
a technique replaces the primary problem with a sequence of linear programming
problems, it suffers from severe limitations. It does not converge to a local min-
imum unless the latter occurs at a vertex of the feasible domain. Otherwise, the
optimization process either converges to a non—optimal vertex or it oscillates in-
definitely between two or more vertices. One way of avoiding this undesirable
behaviour is to add artificial side constraints (called move limits (Svanberg 1987))
to the linear subproblem statement. This move limits must then be gradually
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Figure 3.6: Conventional vs. convex linearization method.

tightened at each stage of the process by using some properly chosen update for-
mula (see Figure 3.6). Because it introduces some convex curvature in the ap-
proximate functions, the approach proposed herein does not require any control
parameters such as move limits. The key idea of the method is to perform the
linearization process with respect to mixed variables, either direct (z;) or recip-
rocal (1/z;), independently for each function involved in the problem, so that a
convex and separable subproblem is generated. Separability is automatically ob-
tained because first—order Taylor series expansions are employed, while convexity
is achieved by using ad hoc criteria to select the mixed linearization variables (see
Equation (3.20)):

¢ objective function f(X):

direct variables z;if f; >0,

. . 1, (3:27)
reciprocal variables - if f; <O,
e constraint functions h;(X):
direct variables =;if h;; <O,
(3.28)

1
reciprocal variables —if h;; > 0.
z;

In this way, considering for example the objective function f (X), employing the
graphic notation introduced by the Equations (3.25) and (3.26), and considering

9The so called sensitivity derivatives.
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relation (3.27), its own approximation given by the convex linearization scheme
defined by Equation (3.20) comes out from the expressions:

k
x%s

f (X;Xk) =f (Xk) + Z fi (.Z‘l —.Z'f) + Z f,x—z (.’Ez — mf) . (3.29)
i€ (f) ier; (f) '

It is convenient to normalize the design variables x; so that they become equal to

unity at the current point X* where the problem is linearized in the form:

I
o = = fro = fiak, (3.30)
i

8

consequently, the Equation (3.29) becomes easier, (Fleury 1989):

f (Xnorm; Xk) — f (Xk) + Z finorm (x?orm _ 1) +
i€t (f)

1
+ Y e (1_W>' (3.31)
i€l (f) ¢

Adopting these simple rules, applying the same linearization techniques also to
each constraint function h; (X) as done before for the objective function f(X),
and dropping the superscript *°™ for the normalized variables, the following con-
vex and separable subproblem is generated (Fleury and Braibant 1986; Nguyen,
Strodiot, and Fleury 1987; Fleury 1989):

- fi
ST S N
i€nr () i€l (f)
. hz'j — i
subject to Z i Z hijz; < hyj ji=1...,m
iclt (hy) il (hj)
Z;, STi ST i=1,...,n

where the constraints h; contain the zero order contributions in the Taylor series
expansion in the form:

EJ' = hf + Z hij - Z hz] (333)
i€ (hy) i€l (hy)

It is important to notice that, even if the main variables in the primary problem
statement had been chosen as the reciprocal variables, nothing would be changed
in the explicit subproblem statement.
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It should be now pointed out that iteratively solving subproblem of Equation (3.32)
is easier than solving problem of Equation (3.24). Therefore, it is natural to con-
sider solving this last problem by a sequence of convex separable subproblems
since the technology for solving subproblems is so advanced. One efficient way to
solve the explicit subproblem is by Lagrangian dual techniques of mathematical
programming (Fletcher 1987, pag.236) because of its properties of convexity and
separability (see Section 3.5.3). After these preliminaries the final version of the
convex linearization method can be stated as follows:

Complete algorithm:

STEP 1 : choose a starting point X° for the original subproblem defined by
Equation (3.24). Let k = 0;

STEP 2 : solve the explicit convex separable subproblem of Equation (3.32)
for the approximated solution X;

STEP 3 : let k =k + 1, and let X* = X;

STEP 4 : if the stopping criterion is satisfied, then stop with X*. Other-
wise, go to STEP 2.

In the next Sections the techniques for solving STEP 2 will be presented following
the work done Fleury and Braibant in (1986).

As shown in Section 3.5.1, the first—order explicit approximations of the objective
functions (Equation (3.32)) and of the constraint functions (Equation (3.33)), be-
cause they result from convex linearization, are locally conservative. This means
that they tend to overestimate the values of the true functions. In other words,
the linearized feasible domain corresponding to the explicit subproblem of Equa-
tion (3.32) is generally inside the true feasible domain corresponding to the primary
problem of Equation (3.24). This property is illustrated in Figure 3.6. As a result,
the convex linearization method has a tendency to generate a sequence of design
points that funnel down the middle of the feasible region. The primal philosophy,
consisting in using a sequence of steadily improved feasible designs, is maintained.
This represents an attractive feature from an engineering point of view, since the
designer may stop the optimization process at any stage, and still get an accept-
able non—critical design, better than its initial estimate.

In summary then, the explicit subproblem defined by Equation (3.32) exhibits the
following remarkable properties:
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high—quality first—order approximations;
e conservative feasible subdomain;

e convexity;

separability.

3.5.3 The dual solution scheme

Since the convex linearization method benefits from the properties of convexity
and separability, the explicit problem presented in Equation (3.32), which is re-
ported in the following for the sake of simplicity, can be solved efficiently by dual
mathematical programming methods:

min Z fi.'L'z'— Z £

€It () ierz ()
. hi; — ]
subject to Z m—z: - Z hij.'L‘i < hj 4 =1,...,Mm inequality constraints

i€lf (hy) i€l (hg)

z; <o < Ty 1 =1,...,n side constraints
(3.34)

It is worth to note that the side constraints represent a particular case of the in-
equality constraints, also called behaviour constraints. However, they are written
separately in our explicit problem statement, because the dual method approach
described in the sequel can handle them more efficiently when considered apart
from the general constraints.

Given a general constrained optimization problem such as the standard one defined
by Equation (3.24), its dual problem consists in maximizing a quasi-unconstrained
auxiliary dual function that depends only on the Lagrangian multipliers associ-
ated with the main primal constraints, linearized by an appropriate approximation
scheme. In this case, these Lagrangian multipliers, also called dual variables, have
to remain non—negative. The effectiveness of the dual formulation mainly lies in
the fact that the maximization of the objective function is performed in the dual
space with respect to the space of the original problem: the dimension of the dual
space is relatively short and it depends only on the number of the active constraints
involved in the considered optimization step (Fleury and Braibant 1986; Fleury
1989). Since the side constraints can be treated separately from the behaviour
constraints, the dual variables to be used are limited to the Lagrange multipliers
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associated with the approximated behaviour constraints. Thus, denoted by X the
vector of the design variables z; and by A the vector of the Lagrangian multipliers
)i, the Lagrangian function can be written in the following way:

[ “ hz _
L(X’A):Zfiwi_Z§+ZAj (Zm—?—Zhijmi—hj> y (3.35)
+ - = + -

where the following notation has been introduced:
e objective function f:
o= > and Y = Y (3.36)
+ ieIf (f) - i€l (f)
e constraint functions h;:
o= > and > = ) (3.37)
t ienf(hy) — el (hy)

The dual maximization problem corresponding to the original minimization prob-
lem described by Equation (3.32) assumes the form:

max  1(8) =3 fins () - 10 P+
+ _ K3

#30 |X 5  ~ e ()

Jj=1

subject to A; 20
(3.38)

where X (A) denotes the original solution design point of the auxiliary minimiza-
tion problem (given a vector A):

min L(X,A)
_ - (3.39)
subject to z; < T; < T

Because the Lagrangian is separable, this n—variable problem can be decomposed
in n single variable problems:

min_ L; (z;, A). (3.40)

z,<Ti<Ts
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The explicit statement of this minimization problem depends upon the sign of f;
(Equation (3.26)):

Di
fi>0 = Li(z;,A) = fixi + m—z + g%,
K3

fi<0 = Li(z;,A) = —ﬁ,+%+qz’$i,

'Z.’L K3

(3.41)

where p; and g¢; are constants depending only by the dual variables A; (Lagrange
multipliers):

pi = Zhij)\j 20,
+
(3.42)
gi == hij\j >0.

This coefficients have to always remain non—negative in the feasible domain of the
dual space, because, as earlier imposed, the inequality A; > 0 must be satisfied.
Moreover, the Lagrangian problem of Equation (3.40) necessarily has a unique
solution, obtained imposing that the first order derivative of the function L; (x;, A)
with respect to the design variable z; vanishes. It turns out that, because the
side constraints must to be satisfied, each one—dimensional minimization problem
defined by Equation (3.40) can be solved in closed form, yielding explicity the
primal design variables z; in terms of the dual variables A; respecting the following
expressions:

e Case one:
Di . 2 Y4 -2
>0 = ;= if 20 < —— <73
fi ’ V fi+a = fita ¢
. 3.43
T =1; if pi < (fi+q)z} (3.43)
T =T if pi>(fi+a)7;
e Case two:
qi i
‘ , (3.44)
T =1; if pi < fi+qiz;
T =T if p;>fi+a7;
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Remembering that the coeflicients p; and ¢; depend only upon the dual variables
Aj (as earlier shown in Equations (3.42)), we have obtained completely explicit
relations between the primal variables and the dual ones. We can now note that,
for each point belonging to the dual space, the primal variables are subdivided
in two categories: the fized variables and the free variables. It is then convenient
to introduce the following set of free variables I for the indices i of the design
variables:

I ={i:suchthat z; <z <T;}. (3.45)

The free variables (i € I) are given, dependently from the sign of the first deriva-
tive f; of the objective function with respect to the design variables, by the first
expression of Equation (3.43) or by the first expression of Equation (3.44). The
second and the third terms of Equations (3.43) and (3.44) give the expressions of
the remaining fixed variables.

For the sake of completeness, it is worth noticing that in the special case where
fi = 0, both formulae of Equation (3.43) or of Equation (3.44) can be used. The
two following particular cases should also be mentioned:

z;=z; if p;=0 and f;20,

z;=T; if ¢g=0 and f;<0. (346)
Knowing X (A), the dual problem formuled by Equation (3.38) is explicitly de-
fined. It is a quasi-unconstrained problem and it can therefore be readily solved
using a steepest ascent algorithm!© slightly modified to handle the non—negativity
constraints on the dual variables A;. Such a gradient method requires the first
derivatives of the dual function to be available. Fortunately, an interesting feature
of the dual formulation is that these derivatives are extremely simple to compute,
because they are given by the primal constraints:

_al hi; _
9=y = > j&) - Z hijzi (A) — hj. (3.47)

— @i (

At this point it is worth pointing out that the convex linearization method can be
used when some or all of the design variables, instead of varying continuously, can
only take on discrete values. In such a case the dual method formulation becomes
still more attractive. The dual function remains continuous, while its first—order
derivatives are discontinuous.

For the purposes of a deeper discussion of the solution process of the dual prob-
lem that will be presented in the following part of section, it is convenient to

10The steepest ascent is the dual algorithm of the more popular and used steepest descent
algorithm which, in opposition to the first, searches the optimal condition by minimizing the
objective function while the first does the same thing by maximizing the objective function.
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re—formulate the starting main problem of Equation (3.34) by using a different
mathematical notation: until now, in fact, with f(X) we have denoted the objec-
tive function of a general optimization problem, while with h;(X),j =1,... ,m
we have denoted the constraint functions. For the rest of the sections, indeed, it
becomes more easy to assume the following more compact and synthetic notation:

e ho(X) = objective function;
e hj(X), j=1,...,m = constraint functions.

Trivially, in this way, with the notation:
hj(X),  j=0,...,m, (3.48)

letting start the index j from 0 and no more from 1, we can indicate all the
categories of the functions involved in the problem, as the objective function and
the constraint ones. The objective function is simply obtained putting j = 0. In
this way, the Equations (3.26) can be written as it follows:

dho _ Ohy

8.'L'i Xk 6.Z'Z Xk

hi(] and hij (3.49)
With this new notation the primal optimization problem of Equation (3.34) be-

comes:
. hio  +
min Z hioz; — Z = —h

i — i

subject to Z%_Zhiﬁi <hj j=1,...,m (3.50)
+ -

T, ST ST i=1,...,n

It is worth noticing that in this case, adapting the expressions to the new formu-
lation, provided that the generic design point where the objective and constraint
functions are evaluated continues to be written with the notation X*, the coeffi-
cients h; contain the contributions of zero—order in the Taylor series expansion in
the form:

h; :Z|h,~j|z§—h,- (xX*) ji=0,...,m. (3.51)

At this point, remembering again that following this new compact notation, j
starts from 0, we can briefly re-write the new version of the Equations (3.35)—
(3.41) that define the dual problem presented before. Obviously, such equations
can be obtained by applying the same logical processes followed for the first for-
mulation (3.50):
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e the Lagrangian function of Equation (3.35) becomes:

m

L(X,A) =)\ <Z % =Y hijzi — Ej> ; (3.52)
j=0 + 7t -

e the dual problem statement of Equation (3.38) assumes the following expres-
sion:

” hij o _7.
max I(A) = Z Aj l; 7 (A) thﬂfz (A) h‘]‘| (3.53)

=0

subject to Aj 20 ji=0,...,m

where, following the common practice, it is assumed that the Lagrange mul-
tiplier A\¢ associated to the objective function is fixed to the unit value;

o the Equations (3.39) and (3.40) do not change, consequently remaining;:

min I(A)=L(X,A)
_ . (3.54)
subject to T; KTy LT
min_ L; (z;,A); (3.55)

Z; <2 <Ts

e in this case, the value of L; (z;,A) is given by the following expression and
no more by the Equations (3.41):

Li(ei,A) = T + g, (3.56)

where the constants p; and ¢; are given again by the Equations (3.42);

o the Equations (3.43) and (3.44), following the new notations become the
same expression:

T = i if i< Pi o T3,

q; qi (3 57)
T =z if  pi < g, '
T; = T if  pi> a7

Now, completed the udpating phase of the equations governing the dual problem
statement, we can proceed in the explanation of the formulation of the dual solu-
tion scheme.
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Because the dual problem is completely explicit, and because the corresponding
primal problem has an easy algebraic structure, the second—order derivatives of
the dual function:

0?1

Hik = 55,00, (3.58)

can be written in closed form. From Equation (3.47) we have:
0g; hi; 0x; ox;
H.,, = 227 — Dy T R —% 3.59
AW ; 22 ANy Z TN (3:59)
where Hj;, is the Hession matriz defined by the second-order derivatives of the

dual function. Differentiating the first expression of the Equations (3.57), which
represent the relations between primal and dual variables, it follows that:

; Op; » Jgi
Ox; _ ia)\k B ’8)\k .
B = e, e, (3.60)

for the primal free variables. Of course, this derivatives are equal to zero for the
remaining fixed variables. By using the definitions of the coefficients p; and ¢;
reported in Equation (3.42), it can be seen that:

Opi = +h; if hir >0 and Opi =0 if hir <0,
Nk 20 (3.61)
0g; . 9qi '
= —h; f i = f i 2 )
N hik 1 hir <0 and N 0 1 hir >0
so that:
i h; .
Ovi _ hax i s,
6)\k 2xiqi
(3.62)
Omi _ hai e g <
6/\k o 2(];.2 ik '

Finally, combining the previous results, we can obtain the following explicit form
for the elements of the dual Hessian matrix:

1 T;
Hji = 5 > nini—, (3.63)
i€l 4

where:

(3.64)
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and the coefficients n;; obey the same rules. It is important to underline the fact
that in the summation of Equation (3.63) the index i only refers to the primal free
variables, i.e. to the variables z; that do not reach their own lower bound z; or
upper bound Z; (Equation (3.57)). This means that the second—order derivatives
of the dual functions are discontinuous whenever a free primal variable becomes
fixed, or conversely.

The fundamental difficulty in using Newton type methods for solving the dual
problem resides in these inherent discontinuities of the Hessian matrix. Fortu-
nately, the topology of the dual space can be described in an exact mathematical
way via the concept of second order discontinuity planes. Based on this concept,
Fleury in 1989 proposed a very reliable sequential quadratic programming (SQP)
method to solve the dual problem.

3.5.4 The constraint relaxation

In practical applications a difficulty that frequently occurs is that the initial design
violates some of the constraints. Very often it is difficult to get a feasible design
point because two or more constraints are incompatible. In the convex linearization
method, this difficult might be acute because of the conservative character of the
approximate constraints. It can even lead to a breakdown of the optimization
process. In fact, although conservativeness is most of the time a desirable property,
it is not so when the initial starting point is seriously infeasible. In such a case it
can happen that the linearized feasible subdomain be empty, so that the method
can no longer be applied. To cope with this difficulty an additional variable 4,
called relazation variable, is introduced into the explicit subproblem statement of
Equation (3.50), which becomes the following relazed subproblem:

h
min E hiox; — E x_zO + zowd
m — I

: hij 7 LA
_ ey . B =1,...
subject to E+ o E hijei < hyj + 2; (1 2) J=be.,m (3.65)

where w is a user—supplied weighting factor, and:

n
7=y |hglaf  j=0,...,m (3.66)
=1
represent increments to the functions h; (X), j =0,...,m, opening up the feasi-

ble domain in the design space if necessary.
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Clearly, if the relaxation variable ¢ hits lower bound (§ = 1), nothing is changed in
the problem statement, which will usually happen when the starting design point
Xk with k = 0, is feasible or nearly feasible. On the other hand, if the starting
point XF is seriously infeasible, the algorithm will find a value of § greater than
unity, which means that the linearized feasible domain will be artificially enlarged.
Taking the solution of the current explicit subproblem of Equation (3.65) as a new
linearization point, the next feasible subdomain will generally be non empty. The
method can then be applied as initially stated in Section 3.5.2, yielding unit values
of the relaxation variable § at each subsequent iterations.

From the modified primal problem of Equation (3.65), it is easily seen that the
Lagrangian problem related to the relaxation variable ¢ has the form:

. 1\ «

From this minimum condition, ¢ is given in terms of the dual variables A; by the
relations:

YD VP m
0 # if Z)\jzj > wzp,
0 P
Jm° (3.68)
6=1 if Z)\jzj g weg.
j=0

The dual solution scheme of Section 3.5.3 needs only little modification to take
care of the addition of a relaxation variable 6. Whenever a new dual point has
been obtained in the iterative process, the relaxation variable ¢ is computed from
Equation (3.68). As long as § remains fixed to 1, nothing is changed in the
optimization process. If the relaxation has to be activated, i.e. d > 1, then it
is necessary to modify the definitions of the dual gradient vector g; of the dual
function [ (A) of the Equation (3.47) and the definition of the Hessian matrix of
Equation (3.63) as it follows:

_ 0 hy PN

= g5 = Lty ~ Lt () Ty (1-3). @
— 1 oo T lezk

Hj. = 5 5 Mgk T 5 es (3.70)

iel
As implemented herein, relaxation is uniformly applied to all the constraints and its

purpose is simply to balance the effect of conservativeness in the convex lineariza-
tion method. For this uniform relaxation being effective, it is implicitly assumed
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Figure 3.7: Cantilevered structure with tip load.

that the feasible domain corresponding to the primary problem (Equation (3.24))
is non—empty. If is not the case, for example because two or more constraints are
really in conflict, then uniform relaxation is not a satisfactory technique. Current
researches are directed toward other relaxation methods that would be capable
of finding a minimal relaxation for an infeasible problem. These methods imply
introducing several additional relaxation variables d;, one for each constraint that
the user accepts to relax.

More deeper formulations and demonstrations about the constraints relaxation
technique are given in the contribute of Nguyen, Strodiot, and Fleury (1987), in
which it is also perfomed a complete convergence analysis of the convex lineariza-
tion method, introducing also two sofisticated modifications of the algorithm itself.

3.6 Numerical examples

The computational solution procedure that was employed for the examples shown
below is based on a FEM approximation of the considered structure, combine with
the use of the MP routine for solving the associated discrete, convex optimization
problem. The FEM discretization is based on the elements introduced in Sec-
tions 5.2 (shell) and 5.3 (arch) modelled using the surface geometry of Chapter 4.
About optimization, the method proposed in Section 3.5.2 is used and the global
design problem is solved as a combined FEM-MP problem involving stresses as
well as displacements as variables in the optimization routines.

3.6.1 Thickness optimization

The various concepts discussed in the previous sections have been applied to a wide
variety of classical problem (Bendsge 1996), in order to test the effectiveness and
capability of the proposed approach. In this section we consider the membrane—
thickness optimization, using the element proposed in Section 5.2.
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The first four examples refer to planar design domain (Krog and Olhoff 1997) with
different loading, geometry and support conditions as depicted in Figures 3.7, 3.9,
3.11 and 3.13(a). The results, obtained asking for the optimum thickness distri-
bution under displacement constraints and a minimum of the total volume of the
elements, are shown in Figure 3.8 (with different mesh refinement) and in Fig-
ures 3.10, 3.12, 3.13(b) and 3.13(c).

The task in examples of Figures 3.14(a) and 3.15(a) is to find a best—possible
thickness distribution for a prescribed domain an loading, a maximum displace-
ment imposed and two different constraints: a beam simply supported in the first
case (Figure 3.14(a)) and clamped in the second (Figure 3.15(a)). Figures 3.14(b)
and 3.14(c) display the optimum solution to the simply—supported beam problem
and Figures 3.15(b) and 3.15(c) illustrate the optima to the clamped problem.

3.6.2 Fiber—truss optimization

After having tested the capability of the membrane—thickness optimization, in the
following we show six numerical examples dealing with the arch finite element pro-
posed in Section 5.3. All the examples herein shown, ask for the optimal design
of the fiber sectional area under displacement constraints and a minimum of the
total volume of the elements.

The first two examples deal with the optimization of the side part of two different
bridges. As an illustration, Figures 3.16 and 3.18 show geometry, load, boundary
conditions and the maximum displacement constraint. The resulting optimum
structures are shown in Figures 3.17, 3.19 and 3.20. Note that the shape of the
bridge is predetermined, but is a pure outcome of the optimization process the
thickness distribution.

The third example (Figure 3.21) considers a well-known 2D structure which is
fixed at one side, and loaded by a vertical force at the right—down corner of the
opposite side. Figure 3.22 shows the result for a 19-bar structure.

The last cases consider three full 3D optimization examples. The first one is
presented in Figures 3.23 and 3.24 where a one—floor and two—floor building, re-
spectively, are subjected to torsion loads at the upper surface and equipped with
simple supports at the lower surface corners. Figures 3.23 and 3.24 display the
optimum thickness distribution. The second example, in Figures 3.25 and 3.26,
deal with a 3D cantilever which has a triangular cross—sectional area. Three nodes
at one end of the cantilever are fixed while at the opposite, three end nodes are
free; one vertical force applies at the free end—down node. The optimal design for
this load case looks like that shown in Figures 3.25 and 3.26. In the last example
we consider a 3D truss—dome that consists of three floors, containing 12 nodes
each and an additional top node. Application of a single vertical load at the top
node results in the design of Figures 3.27.
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Figure 3.8: Optimum thickness distribution with different mesh discretizations
referred to the cantilever beam of Figure 3.7.

130



CHARACTERISTICS OF SAILCLOTH

22 elementi finiti

20
]
©
40 elementi finiti

LS max

Figure 3.9: Cantilever beam with a through—thickness distributed load at the
center of the plate.

Figure 3.10: Optimum thickness distribution with a 22 x 40 elements discretization
for the cantilever beam of Figure 3.9.
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Figure 3.11: Square plane—stress plate with a tip load.
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Figure 3.12: Optimum thickness distribution with a 22 x 40 elements discretization
for the square plate of Figure 3.11.
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Figure 3.13: (a) Thick cantilever beam subjected to a end—free distributed load
and its optimum thickness distribution. (b) Two—dimensional view and (c¢) three—
dimensional view.
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Figure 3.14: (a) Optimum thickness distribution for a simply supported beam

under a mid-point transverse load.

dimensional view.

(b) Two—dimensional view and (c) three—
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Figure 3.15: (a) Rectangular box domain with clamped ends and a pinched load
at the center. (b) Two—dimensional view and (c) three-dimensional view.
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Figure 3.16: Seventh bar truss initial design.

Figure 3.17: Optimum transverse sectional area distribution.
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Figure 3.18: Twenty—five bar truss initial design.

Figure 3.19: Twenty—five bar truss final design.

Figure 3.20: Optimum area distribution.
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-

Figure 3.21: Nineteen bar truss under a tip load.

Figure 3.22: Optimum sectional area distribution.

Figure 3.23: Cubic one—floor design domain subjected to a pure torsion.
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Figure 3.25: Three dimensional cantilever truss under a tip load: optimum distri-
bution of the sectional area (View 1).

Figure 3.26: Three dimensional cantilever truss under a tip load: optimum distri-
bution of the sectional area (View 2).
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Figure 3.27: Optimization of the sectional area of a three dimensional truss-dome
structure.
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3.6.3 Fiber—membrane optimization

While in Section 3.6.1 we have tested the membrane thickness optimization, in Sec-
tion 3.6.2 we have verified the fiber sectional area optimum design. At this point
it is natural to link both together, in order to model the sail as a fiber—-membrane
element. This approach results completely different from any other sail theory
involving a fiber-reinforced composite laminates (for references see Section 3.3.1).
Before coming to the real sail optimization, we need to test the fiber—-membrane
linking on an easier structure than the sail.

The first two examples show the unit cell with and without reinforcement in Fig-
ures 3.28(a) and 3.29(a), respectively. All these examples ask for a minimum fiber
volume with membrane geometry predetermined and maximum displacement im-
posed. The results of the optimization routine are shown in Figures 3.28(b) and
3.29(b) for the unit cell examples.

A combination of 4 basic upwind cells are considered and optimized in Figure 3.30.
In order to confirm the effective collaboration between fibers and membranes, it
has been analysed the two structures presented in Figures 3.31(a) and 3.32(a)
composed of quadratic domain with a few holes, where we have only fiber and not
membrane elements. Obviously, as shown in Figures 3.31(b), 3.31(c), 3.32(b) and
3.32(c), the optimal distribution needs more area in the trusses within the holes
than elsewhere in the structure. This transverse area concentration is due to the
lost in collaboration together with the membrane in order to capture the stress
distribution.

The last example, in Figure 3.33(a), is absolutely similar to the one presented
in Figure 3.15(a). We have obtained exactly the same optimum distribution in
thickness as shown in Figures 3.33(b) and 3.33(c) compared with Figures 3.15(b)
and 3.15(c).

After having succesfully tested our approach in the previous sections, we are ready
to model and optimize the sail. We start from the aerodynamically optimized
plain—sail of Section 1.3.2.3 shown in Figure 1.22, using Kevlar—fiber and Mylar—
matrix film material introduced in Section 3.2. Geometrical boundary conditions,
coming from the mast and boom, and force boundary conditions due to the gra-
dient wind load are shown in Figure 3.34 and completely explained in Chapter 2.
After having determined, from a structural analysis, the isostress lines over the
sail (see Figures 3.35 and 3.36), we re—orient the mesh in order to better follow the
same lines. Figure 3.37 shows the re—oriented mesh. Now, the fiber network, in
Figure 3.38, must follow the re—oriented mesh of Figure 3.37 to determine a uni-
form stress distribution over the entire sail. Then we can apply our optimization
algorithm to obtain the best possible thickness distribution in the chord network.
In Figures 3.39, we show some results from an intermediate configuration in the
iterative optimization routine, and in Figures 3.40 the final optimum design.
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Figure 3.28: (a) Design domain, load, support conditions: the unit cell truss—
membrane model. (b) Optimum solution of the unit cell.

oV

(a) (b)

Figure 3.29: (a) Design domain, load, support conditions: the upwind unit cell
truss—membrane model. (b) The optimum solution.
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(a) (b)

Figure 3.30: Optimum design of the portion of a sail between the mast and the
boom using the cells defined in Figure 3.28(a) and 3.29(a).

Figure 3.31: Optimum design of a coupled truss—-membrane cantilever beam with
a hole in the center.
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Figure 3.32: Chess—board optimization.
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Figure 3.33: Optimum design of a pinched beam composed of a system of mem-
branes and trusses.
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Figure 3.34: Geometrical and statical boundary condition.
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Figure 3.35: Isostress line path over the sail after the pure structural analysis

applied to the aerodynamically optimized sail.
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Figure 3.36: Four different zoom of the sail: (a) Boom. (b) Middle mainsail. (c)
Upper part of the sail. (d) Top of the sail.
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Figure 3.37: Re-oriented mesh following the isostress lines.
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Figure 3.38: Kevlar fiber network in the sail.
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Figure 3.39: (a) Fiber-membrane distribution during an intermediate configura-

tion of the optimization process. (b) Top of the sail (zoom).
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(b)

Figure 3.40: (a) Fiber-membrane optimum design at the end of the optimization

process. (b) Top of the sail (zoom).
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Chapter 4

General fundamentals of shells

Ach Gott! die Kunst ist lang;

Und kurz ist unser Leben.

Mir wird, bei meinem kritischen Bestreben,

Doch oft um Kopf und Busen bang.

Wie schwer sind nicht die Mittel zu erwerben, Durch die man zu den Quellen
steight!

Und eh man nur den halben Weg erreicht,

Muss wohl ein armer Teufel sterben.

Goethe-Faust Erster Teil

This chapter deals with the mathematical formulation of the theory of general thin
shell-like—membranes, and in Chapter 5 we will discretize the previously defined
equations.

A shell may be defined as a three-dimensional body that is bounded by two closely
spaced surfaces. The sail, that is the shell structure we are trying to model, is
extremely thin and therefore heavily rely on an almost pure membrane stress state.
In order to guarantee this stress state, the shape of the shell plays a dominant
role in the initial design of the structure. Then, the basic components of the
theory of shells are designated herein as: shape, equilibrium, compatibility and a
constitutive law.

Sections 4.1 and 4.2 begin by defining the vector and tensor notation and a number
of fundamental relationships which are essential in the representation of the surface
geometry (see Section 4.3).

Sections 4.4 and 4.5 deal with the strain—displacement equations and the definition
of stress within a continuous three—dimensional body.

For materials which are isotropic in nature, Section 4.6 contains the development
of the stress—strain relationship in tensor form.
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Finally, the strain—displacement equations of general thin shell-like-membrane are
derived in Section 4.7.

4.1 Vector and tensor algebra: definitions, formu-
las and concepts

If P and Q are any two points in R® space, the directed line segment from P to Q
locates the position of @) with respect to P. Such a directed line segment is called
position vector, and is characterized by its lenght, which gives the magnitude of
the distance from P and @, and its direction (Figure 4.1(a)). We will use the
notation by which vectors are written in bold, i.e. v. It’s important to note
that whenever two or more vectors are parallel to the same line, they are said to
be collinear; parallel to the same plane, they are coplanar; otherwise it is a free
vector. Let’s now explain in brief the more important properties and operations
of vector algebra:

O addition and subtraction: according to the parallelogram law, we can write:
C=A+B=B+ A, commutative law (4.1)
A-B=A+(-B), (4.2)

0 multiplication by a scalar: if a vector A is multiplied by a scalar m, one
obtains another vector which has m times the magnitude of A:

mA = Am, (4.3)

O scalar product: also known as the dot product and inner product:

A-B=B-A, commutative law (4.4)
A-A=AA= A% .
A-(B+C)=(A-B)+(A-C), distributive law (4.6)

O vector product: also called the cross product, skew product and outer product:
AxB=-BxA, (4.7)
(A+B)xC=(AxC)+(BxC), distributive law (4.8)

O a vector of unit lenght, called unit vector, may be defined as:

. A
eA_AJ (49)
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O linear dependence and components of a vector: a set of n vectors A;... A,
is said to be linearly dependent, if a set of n numbers 81, 82,... , 8, can be
found such that:

BrAy + BaAg +--- + A, =0, (4.10)

where 1,8, --. ,Bn cannot be all zero. If the expression (4.10) cannot be
satisfied, the vectors are said to be linearly independent. If there exists in a
properly space (i.e. manifold (Berger and Gostiaux 1988)) a set of n linearly
independent vectors, and a set of n + 1 linearly independent vectors cannot
be found, then we are in a n—dimensional space. In a R® space a set of four
linearly independent vectors cannot be found. On the other hand, a set of
three linearly indipendent vectors, like:

e e e, (4.11)

is called a basis for this space. It is clear from the concept of linear depen-
dence that we can represent any vector in a three—dimensional space as a
linear combination of the basis vector (4.11) (see Figure 4.1(b)):

A = Alel “+ A282 —+ A3e3. (412)

The vectors Ale;, A%e; and A3e; are called the vector components of A,
and A', A% and A3 are called the scalar components or measure numbers of
A associated with the basis e, es and es.

e
P

/ A383
1
€

3

Figure 4.1: Vector representation.

Associated with any arbitraty basis is another basis that can be derived from it.
We can construct this basis by taking the scalar product of the vector A with the
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cross product e; X es:

A - (e1 X (32) = A3e3 . (e1 X 82), (413)
since e; X ey is perpendicular to both e; and es; then solving this expression for
A® we obtain:

€] X ey €] X ey

A3 =A - =A- , 4.14
€3 (e1 X 82) [818283] ( )

where [ ] is the scalar triple product. In a similar fashion, we can obtain the
following expression for A' and A2:

1 _ . €9 X e3
A=A Torosen] (4.15)
A2—A.83X& 41
[916293] ( 6)

We thus observe that we can obtain the components A', A2 and A® by taking the
scalar product of the vector A with special vectors, which we denote as follows:

1 _ ey X e3

= 1
fereses]’ (4.17a)
2 ez Xeg
= Terereal’ (4.17b)
e = X (4.17¢)

B [616293]-

The set of vectors, in Equations (4.17), constitutes the dual or reciprocal basis.
Notice from the basic definitions that we have the following relations:

ele;=e’-ey=e’-e3=1, (4.18)
and in general
. (1 itz
e'-e; =J; 1 Z J_’ (4.19)
0 ifi#j,

where the symbol 6; is called the Kronecker delta.
It is possible, since the dual basis is linearly independent, to express a vector in
terms of the dual basis (as we did for the expression (4.12)):

A= Alel + A2e2 + A3e3, (420)
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and we can express the original basis (4.11) in terms of the dual basis (4.17) in
the following way:

e?xe’

e = m, (421&)
e3 x el

€y = 7[e1e2e3], (421]3)
el x e2

ez = @, (4210)

It follows from the above expressions that:

Al = A el A? = A -e?, A3 =A-e?, or A= A-ef,  (4.22)
Al =A -eql, A2 =A- €y, A3 =A- es3, or Aiz A - €e;. (423)

It is now clear, from Equations (4.22) and (4.23), that there are two ways of
expressing the same vector for a given basis: the cogredient (A1, A2, A3) and con-
tragradient (A, A%, A%) descriptions. It is important to note that we introduced
a basis system, but not an unitary one. For a unitary basis, in a related coordi-
nate system, the term cogredient is called covariant and contragredient is called
contravariant.

4.2 Coordinate systems

Before entering the coordinate systems world, in order to understand why we are
looking for the derivative of a vector A in a kind of coordinate system, we have to
underline the physical meaning of the differentiation of A with respect to a scalar.
Suppose that a vector is written as a function of a general scalar t = A = A(t).
This vector will usually have different magnitudes and direction for different values
of the parameter ¢, as shown in Figure 4.2. Consider now two values of ¢ differing
by an infinitesimal amount, say ¢ and t + At; then the definition of the derivative
of a vector with respect to ¢, having in mind Figure 4.2, reads:

dA _ . A(t+AY - AQ)
dt  At—0 At )

(4.24)
By imposing now As = |AA| so that s can be considered as the distance measured
along the trajectory, we can write Equation (4.24) as follows:

dA . AAAs

o =AM a (4.25)
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In the limit, AA/As is a unit vector that is tangent to the trajectory:
dA ds .
FTi il
It is clear that whenever the A direction changes, but its lenght is fixed, then the
derivative AA/dt is perpendicular to the same A vector.

(4.26)

AA = A(t+ At) — A(t)

A(t + At)

Figure 4.2: Variation of a vector as a function of a scalar ¢ and its differential
change.

4.2.1 Cartesian Coordinate System

When the basis vectors are constant, that is, with fixed lenghts and directions,
the basis is called Cartesian. The general Cartesian system is oblique. When the
basis vectors are unit and orthogonal (orthonormal), the basis system is called
rectangular Cartesian, or simply Cartesian. For an orthonormal system, there is
no distinction between cogredient and contragredient components;

[616263] = 1, (427)
el = e, e? =ey, e = ey, (4.28)

hence, let us introduce an orthonormal cartesian basis system:
{éw,éy,éz} or {’Zl,ig,i3} , (429)

where e’ = e; = &;, (i = z,y,2). A position vector to an arbitrary point (z,y, 2)
or (2%, 22, 2%), measured from the origin, is given in Figure 4.3(a) by:

r = x&, +yeé,+ z€,

= z'dy + 2%, + 2383 = 2745 (4.30)
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The distance between two infinitesimally removed points is given by:

dr - dr = (ds)? = (dz)* + (dy)* + (d2)*. (4.31)

(a) Rectangular Cartesian (b) Curvilinear

Figure 4.3: Coordinate systems

4.2.2 Curvilinear Coordinates

Consider now a transformation to a new set of coordinates denoted by (6*,62,6°):

6! =0 (!, 2%, 23) = 0 (w,y,2) (4.32a)
6% = 6?2, 2%, 2%) = 0% (z,y,2) (4.32b)
62 = 03 (!, 22, 2%) = 63 (w,y, 2), (4.32¢)

the inverse transformation of which is (|0z7 /06| # 0):

' =z =2(0",6%6°) (4.33a)
z? =y =y(h',6%,6% (4.33b)
3 =2 =2(0",6%,60%). (4.33c)

When the above transformation (4.33) is nonlinear, the coordinate curves denoted
by 61, 62 and 6 are curved lines and the system (8',62,6%) is called curvilinear.
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When the transformation is linear, the coordinate curves will be straight lines, but
not necessarly parallel to the original (z,y, z) system, and a new Cartesian system
will be defined.

Consider a point P and its associated curvilinear coordinate system as illustrated
in Figure 4.3(b). The position vector r leading from a fixed point O to the point
P, can be expressed as a function of the general coordinates °:

r =r(6",62,6°%). (4.34)

The covariant base vector g; (see pag. 157) characterize the change in the position
vector along one of the coordinate curves from the given point P. Mathematically,
they can be defined by the relationship:

or

8 = 3 (4.35)
These vectors
or or or
g1 = 0L’ g2 = 9927 g3 = 963’ (4.36)

are directed tangentially along the coordinate curves and may be applied to all
vectors associated with the point P; furthermore this basis is referred to as the
unitary basis, noting that these vectors (Equation (4.36)) are not unit nor orthog-
onal. Equation (4.35) assumes the position vector (4.34) to be differentiable and
uniquely defined at each point. As we will see in Chapter 5, this condition is of
particular importance in the numerical analysis of shells (Naomis and Lau 1990)
where the continuum is discretized into a finite number of elements and the dis-
placements behaviour of each element is specified in terms of a local coordinate
system, (see Figure 4.4 for an example).

A set of vectors, referred to as contravariant base vectors, g’, (see pag. 157 and
Figure 4.4) can be defined such that they are normal to all the covariant base
vectors:

gi-g =6 (4.37)

4.2.3 The fundamental metric

The metric tensor can be defined by considering the elementary distance between
two adjacent points. Let P be a point whose coordinates are 8% and ) a neigh-
bouring point with coordinates 8% + df?, if dr defines the infinitesimal vector PQ,
then:

dr = g;db’. (4.38)
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X2

€
9%

01

gl
Figure 4.4: Example of a covariant and contravariant base vectors in two dimen-

sions in a Cartesian orthogonal coordinate system.

The magnitude of the vector dr, conventionally referred as the line element ds,
can be computed by dot multiplying Equation (4.38) by itself, so as to write the
square of the infinitesimal distance between two points in the unitary basis in the
following way:

ds® = dr - dr = g;df" - g;d6", (4.39)
and defining
9ij = 8i " &j, (4.40)
then Equation (4.39) becomes:
ds?® = g;;df'd§’ . (4.41)

The quantities g;; are the components of a symmetric tensor (g;; = g;;) referred
to as the metric or fundamental tensor. The metric tensor plays a key role in
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the fundamental absolute tensor calculus (Reddy and Rasmussen 1982a): if it
is possible to find a transformation to a coordinate system such that all g;;’s
are constant, the space is Fuclidean, otherwise it is said to be non—Fuclidean or
Riemannian.

By dot multiplying both sides of Equation (4.40) with the base vector g7, the
metric tensor can be used to relate the covariant and contravariant base vectors:

gi = 9ijg’. (4.42)

Similarly, the contravariant components of the metric tensor can be defined by
the dot product of two contravariant base vectors and expressions analogous to
Equation (4.40) and (4.42) can be constructed:

g7 =g' g, (4.43)

g =gg;. (4.44)

An important relationship which is often used in the numerical computation of the
contravariant components of the metric tensor can be derived by dot multiplying
both sides of Equation (4.44) by gj:

g -gr=9"g; g (4.45)
Subsituting Equations (4.37) and (4.40) into the above relationship yelds:
gikgkj = (5;, (4.46)
which can be written in matrix form to represent a system of nine equations:
g1 912 @3] [g'" ¢ ¢"® 100
g21 922 923| [9% ¢ ¢®| =10 1 0. (4.47)

31 32

g3 0 0 1

931 932 933 g g

Having computed the covariant components of the metric tensor and assembled
them in the form required by Equation (4.47) it becomes possible to compute the
contravariant components by simply inverting the covariant component matrix.
Provided two independent base vectors are selected, an inverse will always exists.

4.2.4 Relation between two curvilinear coordinate sustems

The ability to establish a set of transformation equations between two coordi-
nate systems provides a valuable tool in the numerical analysis of shell struc-
tures (Bernadou 1996). Consider a set of two different curvilinear coordinate
systems 6,67 and assume a relationship between them exists in the form:

0t = 616" ,6%,6°), (4.48)
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if the above transformation is reversible and possesses as many derivatives as
required, the inverse can be written in the form:

6" =67 (6',6%,6%). (4.49)

From Equations (4.48) and (4.49), the transformation derivatives df? and df’ are:

80t ., o,

- 7 — B 467 .
o’ = P df’ = Bi.df" (4.50)

-, 801 . g

J = — g = ‘] ? 4 ]_
dp = -’ = Bl b, (4.51)

which can be combined to form the relationship:

. o0t 9gr .

Consider an arbitrary vector v at a point P and define v¢ = (v!,v% v?®) and
vi = (v v¥ v¥) as the contravariant components of v with coordinates §° and
6% respectively. Using the definitions introduced by Equations (4.50) and (4.51),
the following contravariant transformations can be written:

vi= ﬂ;,vj’, (4.53)

vi' = Bflvi, (4.54)
and similarly, the relationship between the covariant components are:

vi=p vy, (4.55)

Vi = B;l V. (456)

Now, the displacement vector v, can be defined with respect to either of the
coordinate systems:

v =vig;=vigy or v= vjgl = vj:gj’, (4.57)
and dot multiplying both sides of Equations (4.57) by g* and g:

vk =vi'gy - g and vj, = vj,gj’ - (4.58)
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Comparing Equations (4.53) and (4.55) with Equation (4.58), enables the trans-
formation tensors ,Bj-, and ] , to be defined alternatively as:

Furthermore, the general tensor T can be given either in the old base g; or in the
new base g (Eschenauer, Olhoff, and Schnell 1997):

T = tklll g8y = tijgigj. (4.60)

The transformation formulas read as follows:

£ = GBI or ¢ = gi gl ¢kl (4.61)
then from:
T =t;g'g’ = trrg" g, (4.62)
follows:
ti; = BE B twr or tuy = BEBhtu. (4.63)

4.2.5 Christoffel symbols

In a general curvilinear coordinate system we are interested in derivatives of the
basis vectors with respect to the coordinates. Consider the partial derivative of
the i—th unitary vector with respect to the j—th coordinate. We can express this
vector as follows:

gij = Iijegr = Tijeg® (4.64)

By dot multiplying Equation (4.64) with g’ or g, the symbols T'}; and Tyj; can
be isolated:

Tijk = &i,j - ks (4.65)

rfj =g g (4.66)

Equations (4.65) and (4.66) define the Christoffel symbols of the first and second
kind respectively (DoCarmo 1976, pag.231). The third index of Christoffel symbol
can be raised and lowered by using the metric tensor (4.40) and (4.43):

Tijk = Tl (4.67)
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Iy =Tigg". (4.68)
In addition, differentiating Equation (4.34), yields:
Thij = 8i,j = Toji = 8ji (4.69)

which, combined with Equation (4.64) shows that the Christoffel symbols are
symmetric with respect to the first two subscripts:

Dijr = Tjir, (4.70)

Iy, =T%. (4.71)

In determining the tensorial quantities associated with a coordinate system, it is
usually possible to obtain explicit expressions for the covariant components of the
metric tensor (4.40). These expressions can be differentiated and combined with
Equation (4.64) to yield an alternative form for the definition of the Christoffel
symbols (Reddy and Rasmussen 1982a, pag.75-77):

1 1
Lijie = 5(9jnsi + 9rij — 9ijik) T} = Egkl(gli,j + Gij.i — 9ija)- (4.72)

4.2.6 Covariant derivatives

Let v be an arbitrary vector defined in terms of its contravariant components:
v =v'g;. (4.73)

Differentiating Equation (4.73) yields:

Vi = U,ijgi +0°'gi;,
which can be combined with Equation (4.64) to form:

v,j = (v} +v"T};)gi- (4.74)
Defining (Naomis and Lau 1990, pag.20):

vll; = (v + kafW-), (4.75)
enables Equation (4.74) to be semplified to:

V,]' = Ui|jgz'. (476)
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The quantity v'|; is called the covariant derivative of the contravariant component
v® and is a second order tensor (Ciarlet 2000, pag.30). By adopting a similar
approach, the covariant derivative of the covariant component v; can be expressed
in the form:

— kTk

Uilj = (’Ui,j — v Fij)' (477)

Since v|; and v;|; are the components of a tensor, the index i can be raised and
lowered in the conventional manner:

vilj = 0" gri, (4.78)

'l = vkl 9" (4.79)

The above concepts can be extended to obtain expressions for the covariant deriva-
tives of higher order tensors. Of particular interest are the equations describing
the covariant derivatives of second order tensors. These are used in the formula-
tion of a number of geometric properties related to a surface’s curvature (Gould
1988, pag.17-45).

Let ¢ be a scalar expressed as the product of a second order tensor A;; with two
arbitrary vectors u* and v7:

(]5 = Aijuivj. (480)
Differentiating ¢ with respect to z* yields:
Ok = A,-j,kuivj + Aijufkvj + Aijuiv’jk. (481)
Similarly the covariant derivative of Equation (4.80) may be written in the form:
¢|k = A,’j|kui1}j + A,’jui|k1}j + Aijuivj|k. (4.82)
Using Equation (4.75),
¢|k = Aij,kuivj + Aijui|k1}j + A,-juivj|k — A,-jull“};luj — A,-juivll“il, (483)
and since ¢ is a scalar, ¢ 1, = @|r, enabling Equations (4.82) and (4.83) to be used
to define the covariant derivative of A;; as:
Aijli = Agjp — AT, — AuTh,- (4.84)
In a similar way, relationships can be derived for the contravariant and mixed
components of the tensor A (Naomis and Lau 1990, pag.21):

Al = AL, + AT, — AT (4.85)
Al = Ag,k — AT, + AlTY,, (4.86)
A, = AY + ATy, + AT, (4.87)
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4.3 Surface geometry

4.3.1 Curvilinear coordinates on a surface

We! give here the main results in the geometrical description of a shell; for further
details, we refer the reader to (Koiter 1959), (Green and Zerna 1968, pag.373-451),
(Krétzig 1980) and more recently to (Bernadou 1996) and (Ciarlet 2000). First
we will define the middle surface of the shell and then we introduce its thickness.
Let £3 be the usual euclidean space referred to a fixed orthonormal reference
system (O,%1,12,73) (pag. 158), and Q a bounded open subset of the plane £2
whose boundary is denoted I'. Then the middle surface S of the shell is the image
in £2 of the set O = QUT (9 is called the reference domain) by the mapping s:

s: (z%,2°%) e Q C & — s(z*,2°) e S C &

We write S = s(T'), such that S = SUAS, and we assume s and I to be sufficiently
regular. In particular, we assume that all points on the middle surface S = s(Q)
are regular so that, using Equation (4.35), the vectors

Os .
ai:S,izﬁa 7’:04,/3, (488)

are linearly independent for all points (%, 2°) € Q. These two vectors define the
tangent plane at the surface S in all points s(z®,z”) and are usually referred as
the first fundamental forms of the middle surface (Bernadou 1996). The normal
vector to the tangent plane is given by:

a® —ag = 2 X35 (4.89)

" Jag x ag|’

| - | denoting the euclidean norm in the space £° equipped with the usual scalar
product (a,b) — a - b. Then the point s(z®,z") and the three vectors a; define
a local curvilinear coordinate frame for the middle surface with the covariant basis
attached to the point s(z®,2”) (see Figure 4.5).

We add to the two curvilinear coordinates @ and 2?, which enable the middle
surface to be defined, a third coordinate z, which is measured along the normal ag
to the surface S at the point s(z®,2%). This system (2%, 27, 2) is, at least locally,
a system of curvilinear coordinates of £3. The thickness t of the shell is defined
through the mapping:

t: (z*,2°) € Q — {z € Rz > 0}.

17t should be remembered that all Greek indices take the values 1, 2 and all Latin indices the
values 1, 2, 3.
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11,€x

Figure 4.5: Definition of the middle surface S.

The shell C is then the closed subset of £2 defined by:

C={Me&%OM=r=s(z*21°) +2a3, (2%2°) €

4.90
t(ma,mﬁ)} . (4.90)

1
—it(wa,mﬁ) <z<

DN | =

The derivatives of the vector OM = r = s(z*, %) + zagz are given by the vector
gi:

‘ Equation (4.88) ‘

g =0M,;=r;=s;+za3; =a; +z2a3,;, i=aq,p. (4.91)

)

It also becomes advantageous to adopt separate notations for tensorial quantities
related to points lying on the middle surface and those which are within its im-
mediate vicinity: the notations are summarized in Table 4.1.

Since g3 is assumed to be normal to the vectors g, and gg, it follows that:

ga X g
g3 = - b

— B2 X85 4.92
o < g5] (4.92)
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Geometry Middle Surface | General Surface
Position vector S r
Line element ds dr
Base vectors a; a' az=a’ | g g g3=¢g°
Metric tensors anp a®? Jop 9P
Christoffel symbols I fga

Table 4.1: Middle and general surface notation.

and
g3 g3 =1 (4.93a)
8o 83 =Yaz =0 (4.93Db)
83,083 =0 (4.93c)
g33-83=0 (4.93d)

As a result, the metric tensor components (Equation (4.40)) expressed in matrix
form are:

911 g1z O
gij = | 921 g2 0 |. (4.94)
0 0 1

The Christoffel symbol I';;;, has been defined previously by Equation (4.65); it
follows from Equations (4.93c) and (4.93d) that

303 = Lass = Ta3q = 333 = 0. (4.95)
In addition, by differentiating Equation (4.93b):
80,3 831+838 8=0, (4.96)
which after combining with Equation (4.65) yields:
Toaps = T30 = —Tg3a = [gaz = —T'305 = —Tass- (4.97)

In addition, Equation (4.68) may be combined with Equations (4.94) and (4.95)
to simplify a number of the Christoffel symbols of the second kind:

Ty, = Loy = T3 = 0. (4.98)
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These results can be substituted into Equations (4.75) and (4.77) to arrive at the
following relationship for the covariant derivatives of a vector component v, in the
general surface:

Valg = Va,p — vyl'ap —vslogp
=Y
Va3 = Va,3 — vy [g
=7
U3la = v3,0 — Uy D'3,
a a ,Y—C! 3R (499)
v*g =vGh + v Ts, +v°Tgs
v = v + U’YT:S
=3
Ve = v?a +0'T,,.
In Section 4.2.5, the Christoffel symbol has been introduced to represent the com-

ponents of the derivative of a base vector. For the middle surface z = 0, the third
component of Equation (4.64) may be expanded and written in the form:

a3, = [3458° + T3,32°. (4.100)
Using Equations (4.95) and (4.97), the above expression can be simplified to:
ag o = —[,p3a°. (4.101)

The term I'yg3 is a measure of the rate of change of the base vector az along a
parametric curve. I'pgs is a plane symmetric tensor and is expressed by the symbol
bap which is referred to as the curvature tensor or the second fundamental form of
the middle surface (Bernadou 1996). Thus, Equation (4.101) can be rewritten as:

ba,ﬁ = Fa,@S = —ag,q - ag- (4.102)

Alternatively, if Equation (4.96) is restricted to the middle surface z = 0, the
curvature tensor may be defined by the expression:

aq,8-a3 = —a3 3 - Ay = bug. (4.103)

The above formula is simple and particularly useful in the numerical computation
of the curvature tensor where it is often possible to express the base vectors a, as
functions of the curvilinear coordinates z.

The mixed and contravariant components of the curvature tensor can be derived
using the metric tensor of the middle surface:

b8 = by,a?

a5 o (4.104)
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Consider a vector v which is defined in the form:
vV = vaa® + vza’. (4.105)

Taking the derivative of v with respect to 27 and making use of Equations (4.76)
and (4.99) we obtain:

V.5 = Va|pa® + vs|ga’ = (va,p — 0,705 — Usbap)a® + (v, +v,b})a’.  (4.106)

Moving from the definition of the covariant derivative in a three-dimensional man-
ifold €2, given by Equation (4.77), we can introduce the covariant derivative on
a surface (middle) in £2? (Ciarlet 2000, pag.88-89), that is the two dimensional
counterpart of Equation (4.77):

Vallg = Va,6 — v, T4 (4.107)
This enables Equation (4.106) to be semplified yielding:
v 3 = (va|lg — v3bag)a® + (vs g + vwbg)a3. (4.108)
The covariant derivative of v, can therefore be written in the form:
Valg = Vallg — V3bags- (4.109)

Similarly, if the vector v is defined in terms of its contravariant components the
following relationship can be derived:

v*lg =v% + 0T}, (4.110)
v¥|g = v*|ls — v*b§ (4.111)
v = (v¥]|g +v°b3) aq + (v + v7byg) as. (4.112)

Generally, v is also defined for points adjacent to the surface. Hence the partial
derivative of v with respect to 2° exists and can be expresed as a function of the
contravariant or covariant base vectors as detailed below:

V3 =vy3a% + v3|3a3 = (Va,3 +vy0)) % + v3,3a3, (4.113)

vz =v%3a, + v¥|3a3 = (v"g + v"’b,‘;‘) a, + v’33a3. (4.114)

The idea of a two dimensional counterpart for the covariant derivative of surface
vectors can be extended to surface tensors of any order. Of particular interest is

171



Roberto Nascimbene Sail Modelling for Maximal Speed Optimum Design

its application to plane tensors such as the curvature tensor. Since bz, = bos =
bss = 0, Equation (4.84) can be expanded to yield:

baﬁ|’y = baﬁ”'y = baﬁn - béﬁriv - ba&rgw- (4-115)

An important group of relationships required in developing a general shell theory
in tensor form are the Gauss-Codazzi equations of differential geometry. Briefly,
these equations allow the terms § and «y within Equation (4.115) to be interchanged
and can be derived by comparing the components of the partial derivatives a, g
and a, ,g. Restating Equation (4.64) in planar form:

Aq,8 = Fiﬂag + baﬁa3. (4.116)

Differentiating Equation (4.116) with respect to 27 and collecting terms, we write:

80,3y = (T, + T4TE, — bagth ) as + (T bey + bas.y ) 5. (4.117)

Now a,,,s can be obtained by interchanging the indices 8 and +y. Since a, g, and
ay g are equivalent, the ag components may be compared to yield the relationship:

basy = T5bes = bar,s — Té5bey (4.118)

Substituting Equation (4.118) into Equation (4.115) enables the standard form of
the Gauss-Codazzi equations to be written:

| baslly = bayls- | (4.119)

Adopting a similar line of reasoning it may also be concluded that:

b5l = b215- (4.120)

4.4 The strain tensor

Consider two adjacent points A and B which are within a continuous three di-
mensional body as illustrated in Figure 4.6. While the body is in an undeformed
state, a curvilinear coordinate system x is established and the points A and B are
assumed to denote the end points of an element vector ds. Using Equations (4.38)
and (4.39), the vector ds may be written in the form:

ds = g;da’, (4.121)
and the square of the line element, ds, may be computed from the relationship:

ds? = ds - ds = g;;dz'da’. (4.122)

172



GENERAL FUNDAMENTALS OF SHELLS

A "B
Figure 4.6: Displacement and strain.

During deformation, point A undergoes the displacement u and moves to A, while
point B experiences a slightly different displacement u + du when moving to B.
If the coordinate system is allowed to undergo the same deformation as the body,
the deformed vector d$ can be written as:

ds = g;dz". (4.123)
Similarly, the square of the line element ds is:
ds? = gijda'dx’ (4.124)

The degree of deformation is characterized by the difference in the squares of the
line elements ds and ds:

d3® — ds* = (§ij — gij) dz'dz? . (4.125)
Defining

1

vis = 5 (Gij = 9i3) (4.126)

Equation (4.125) becomes

ds? — ds* = 2v;;dzda’. (4.127)

173



Roberto Nascimbene Sail Modelling for Maximal Speed Optimum Design

The quantities -y;; are the symmetrical components of a covariant tensor which
is called the strain tensor (Green and Zerna 1968, pag.56) and is referred to the
middle surface.

It is possible to express the strain components ;; in terms of the displacement
vector u by examining the deformation of two adjacent points within a body. From
Figure 4.6, the following vector equation can be constructed:

ds+u=ds+u+du. (4.128)

Using Equation (4.76), the infinitesimal change in displacement, du, can be written
as:

du = ug|;g"da’. (4.129)
Substituting Equation (4.129) into Equation (4.128) yields:
ds = ds + uy|;g*dz?, (4.130)
which allows the deformed line element to be expressed as:
ds - d§ = (gidz’ + ui|ighda?) - (g;dz? + wi;g'dz?) (4.131)
= (9ij + wilj + ujli +u¥liugl) dz'da’.

Through Equations (4.122), (4.125) and (4.128), the above expression simplifies
to

2’y,'jd$id$j = (UZ|J + ujlz' + uk|,~uk|j) dzidz’ . (4.132)

The factors dz’ and dz? cannot simply be cancelled on both sides since these
expressions represent the sums of products containing the factors 11,712, ...
However, Equation (4.132) holds for the components of any line element vector
ds. By selecting a line element for which only dz' # 0, it can be shown that (Green
and Zerna 1968, pag.57):

1
= (wily + ugls + w¥launl;) - (4.133)

’Yz'j=2

This process may then be repeated for i, j = 2,3. For mixed values of the indices,
a line element in the form

ds = gydzt + goda?, (4.134)

is selected and a similar process is adopted to show that Equation (4.133) is valid
for all 4, j.
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The strain-displacement equation defined above is nonlinear as a result of the
quadratic term u*|;ug|;. It is based solely on the assumption that the body under-
going deformation is continuous. For small displacements, the strains associated
with the quadratic terms can be assumed negligible in comparison to the linear
ones thereby reducing Equation (4.133) to:

1

’Yz'j=2

4.5 The stress tensor

If a three dimensional body is in equilibrium under a system of forces, then the
stresses within the body can be studied by considering an infinitesimal area dA
of arbitrary size and orientation (Fliigge 1960). At any point within the body, a
reference frame and its associated base vectors g; may be established. Together
with the three curves AB, AC and CB illustrated in Figure 4.7, the base vectors
may be used to form the edges of a tetrahedron. The area of the triangle ABC
can be computed via the vector cross product:

dA = %dr x ds. (4.136)

Therefore, using dr = db — da and ds = dc — da, Equation (4.136) can be

Figure 4.7: Stress definition.

expanded to yield:
1
dA = 3 (db — da) x (dc — da)
= %(db x de + de x da + da x db). (4.137)
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The vectors da,db and dc have only one non zero component and can be written
in the form:

da = dalg;,, db = db%g,, dc = dc’gs. (4.138)

Expanding Equation (4.137),

dR

Figure 4.8: Force components.

1
dA = 3 (d°de® € g' +dc*da €z g + da'db” €123 8°)
= dAg’, (4.139)
with d4; = %dbzdc3 6231;dA2 = %dc3da1 E312,dA3 = %daldb2 €1923.

In Equation (4.139), the quantities €;; are referred to as the permutation symbols
and are defined by the following set of rules:

€ijk=+/9 if 4,7,k is a cyclic sequence,
€ijk=—+/9 if i,j,k is an anticyclic sequence, (4.140)
€ix=0 if 4, j, k ia an acyclic sequence.
The term g is determined by arranging the nine components of the metric tensor
gi; in a square matrix and then calculate its determinant.

Using a similar procedure, it is also possible to compute the areas associated with
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the triangles OAB, OAC and OCB:

1 1

dAoas = 3 (db x da) = §db2da1 €213 g2 = —dAsg®,  (4.141a)
1 1

dAoac = 3 (da x dc) = §dalch €132 g2 = —dAog?,  (4.141b)
1 1

dAocs = 5 (dexdb)=cdc’db® €s g' = —dAig'.  (4.141c)

Comparing Equations (4.139) and (4.141a) it is evident that the normal area
associated with the sides of the tetrahedron joined at the point O are the covariant
components of dA. Having derived these components, the forces dP,dQ and dR
may be defined in the form:

dP = —oldAg;, (4.142a)
dQ = -0%dAsg;, (4.142b)
dR = —0%dAsg;. (4.142c)

The quantities 0¥ are the contravariant components of a symmetric second or-
der tensor called the stress tensor. It is important to note that the quantities
oYdA;,0%dA, and 037dAs are not exactly forces since g; is generally not a di-
mensionless unit vector (see pag. 160).

From Figure 4.8, the equilibrium equation (Heyman 1977):

dF = —dP — dQ - dR, (4.143)
can be written and combined with Equations (4.142) to yield:
dF = (aljdAl + 0¥ dAs + 0'3jdA3) g = aijdAigj. (4.144)
This relationship allows the force components dF? to be expressed in the form:

dF’ = o' dA;. (4.145)

4.6 The constitutive equations

For an elastic material whose stress-strain behaviour is essentially linear, Hooke’s
law may be written in the form (Green and Zerna 1968, pag.159):

ol = Fiiklg,, (4.146)

where E#! is a fourth order tensor referred to as the elastic modulus. This system
of equations is applicable to a variety of materials possessing either orthotropic,
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isotropic or anisoptropic properties (see Section 3.3).

In the proposed method, it is assumed that the material has isotropic proper-
ties, due to the real evidence that yarns and material-matrix have a linear elastic
isotropic behaviour on their own. As a result, many of the components of the
elastic modulus are identical and Equation (4.146) may be written in a more con-
venient form. To achieve this, the stress-strain properties of an isotropic material
expressed with reference to a Cartesian coordinate system are examinated. In
matrix form, using Equation (3.16):

11

o 1-v) v v 0 0 0 £11

22
4 v 1-v) v 0 0 0 £922

33
o o E v v (1-v) 0 0 0 €33

12 = ——""—
o - 0 0 0 (1 — 2v 0 0 €12 )
o2 A+ -2v) 0 0 0 0 (1—2v) 0 €o3
51 0 0 0 0 0 (1—2v)| les

(4.147)

where E and v refer to Young modulus and Poisson’s ratio respectively.
By using the symmetric properties associated with the stress and strain tensors
it becomes possible to summarize the 81 components of the tensor E¥* in the
following form (Ciarlet 1988):
ijkl _ Ev siighl 4 E
1+v)(1-2v) 21+v)
Although Equation (4.148) is valid only within a cartesian coordinate system,
it can be generalized by replacing the Kronecker deltas with the corresponding
components of the metric tensor (Green and Zerna 1968):

(6757 4 §il§it). (4.148)

Ez]kl — ij kl ik 7l il jk . 4.14
50+ 7) ((1_2,/)9 9" +9"g" +g"g (4.149)
Equation (4.149) can now be combined with Equation (4.146) to yield the consti-

tutive equations for a linear elastic material:
- E 2v - o o
ij ij Im il jm im . jl m- 4.150
o 2(1+V)<(1_2V)g 9" +g g™ + 9™y )sz (4.150)

The inverse relationship can be computed by firstly expressing Equation (4.150)
in terms of the mixed components ¢’ and o (Naomis and Lau 1990, pag.38):

i b i v msi ) .

secondly, an expression for 77 is obtained by letting i = j. Equation (4.151) then
becomes:

) E ) 3v E
- i m) — m 4152
7T A1) (E’ taz 2u)5’"> =20 (4.152)
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which can be substituted into Equation (4.151) to yield:

. 1 . .
el = I (1 +v)o} —voyds] . (4.153)
The application of Equations (4.150) and (4.153) to plane stress systems is of
particular importance to the development of a shell theory. When a body is
in a state of plane stress, the stresses ¢3,0§ and o3 are assumed to be zero.

Equation (4.153) can therefore be written as:

Eeg = (1+v)og — Vagég, (4.154)
Eg = 52 =0, (4.155)
Ee} = —vot. (4.156)

Similarly, the procedure used to invert Equation (4.150) can be applied to the
above expression. The following relationship defining the stress-strain properties
of an isotropic plane stress material may be developed:

E
of = —— |e5 + eog| . (4.157)

(1+v) (1-v)

By applying the metric tensor g®?, the contravariant stress components may be
written in the form (Kratzig 1980):

o =029, (4.158)

Similarly, the pertinent strain components of the middle surface are expressed in
terms of the covariant components of the strain tensor:

ey = £,59%, (4.159)
et =59 (4.160)
Combining Equations (4.158), (4.159) and (4.160) yields:
E
o = m[(l - 1)g%*7¢%° + vg®P g% 5, (4.161)
which can be written in the form:
g% = {o%* g°F P oPPYT = :ebe 5 (4.162)
where:
»naB — L .
(1-v?)
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giigli 1g1112212 12 12

9 g (1-v)g g7 +vg g

nggll 21 12

(1 _ V)ngng + VglngZ 921922
e
99 99
(1-— V)gﬂéq;l;_ vg?lg?l gzzg;z , (4163)

9779 97y

and using Equation (4.182b):

1y1 ,pv 11y2 ,puv
_ [AuAva A AL

[g” 912] [ ( )
= v v 4.164
g g% AL at XN at

As an example, really used from a computational point of view in Chapter 5, we
consider a two—dimensional skew coordinate system (R,S) (Washizu 1968):

=R+ Scosa y=Ssina, (4.165)

as shown in Figure 4.9, where « is a constant. Now using Equations (4.40) and

Ily

Figure 4.9: Local curvilinear coordinate system (R, .S)
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(4.43), we can derive the following relations:

911 =1, g =1, g1a=g2n =cosqa, /g=singq, (4.166)
g =cscla, g =csc’a, ¢ =g = —cosacsc’a, (4.167)

and applying Equations (4.61) and (4.63) to the stress and strain components, we
can write:

E11 =€z, €22 = £, COS A+ &y sin® a + Yoy SiD @ COS @, (4.168)
Y12 = Y21 = 265 COS QU + Yy Sin @, (4.169)

o' =0, +oycot’>a — 27,y cota, 0% =0y csc? a, (4.170)

0'? =0 = —g, cot a + T,y csC @, (4.171)

where 1 refers to the R—direction and 2 to the S—direction. Then, combining the
previous equations with the system (4.163), we have the stress—strain relations in
the (R, S) coordinate system as follows:

Sl s 1 cos? a + vsin? o —cos a .
. 11
2| = Ecsc” a |cos? q + vsin2 a 1 —cosa coo
12 (1 7‘,2) 1+ cos® a — vsin?
o —cos —cos a - Y12

’ (4.172)

4.7 The theory of shells: geometrical relations

A shell structure may be defined as a body consisting of an inner surface, called
the middle surface, and two outer surfaces which are parallel to each other. The
normal distance from the middle to the outer surfaces are assumed to be the same
although they need not be constant. Consider a shell of uniform thickness ¢ as
illustrated in Figure 4.10; let s and r denote the position vectors of two points A
and B which are located at the same coordinates £ but are separate by a distance
z normal to the middle surface, as defined in Section 4.4 and in Table 4.1. From
Figure 4.10, the vector equation

r =s+ zas, (4.173)
can be written and differentiated to form the expression:
ro,=s84+z2a3, <= (Eq.(4.91)). (4.174)

By using the definition of a base vector introduced in Section 4.3, Equation (4.174)
can be expressed as:

8o = aq — zbBag = (08 — 2b5) as. (4.175)
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dr = dz“g,

Figure 4.10: Position vector of a point on a shell

The coefficient (62 — zb2) relates the covariant base vectors associated with the
general surface 23 = 2 to the middle surface base vectors a,. It is called the shift
tensor and is denoted by the symbol ug (Green and Zerna 1968, pag.374):

ph = (88 — 2b8), (4.176)
and Equation (4.175) becomes:
g = fihag. (4.177)
Similarly, by introducing a tensor A2, which relates the contravariant base vectors:
g’ = Ma~, (4.178)
applying Equations (4.177) and (4.178) to Equation (4.37), yields:
g% -gs=A7a"- ,uza(; = /\z,ug, (4.179)
from which it can be concluded that:
0 = XSy (4.180)

The approach adopted in Section 4.2.3 for the computation of the contravariant
components of a metric tensor can also be applied to the above expression. Equa-
tion (4.180) represents a system of four equations and if expanded, may be written
in the form:

A& )\ 'ua 'ua 1 0
a B Te B = ) 4.181
[Aﬁ /\g] [u@ ug] [0 1] (4.181)

182



GENERAL FUNDAMENTALS OF SHELLS

Having computed the tensor components ug and assembled them in the form
required by Equation (4.181), A§ can be computed by simply inverting the matrix
containing the shift tensor components pj.

Similarly, the metric tensors gas and g®? at the point B (see Figure 4.10) may
be expressed in terms of the corresponding quantities aog and a®® at the point
A. Starting with the definition of the metric tensor given by Equation (4.40) and
combining it with Equations (4.177) and (4.178):

Jop = 8o " 88 = plAy - [i3a5 = P pans, (4.1822)
g°% = g* . gf = \%a" - Mal = )\g)\fjav", (4.182b)

Alternatively, if the product of two base vectors from opposite system, g, and a?,
are considered then the shift tensors may be computed from the relationships:

ga-a’ = pla, -a’ = pf, (4.183a)
g% -ag=\Ja" -ag = Aj. (4.183Db)

From the definition of the Christoffel symbol given in Section 4.2.5,
Tos = a8 = (Whas) - \af = (1 5+ TS5 ) AL (4.184)

However, the planar derivative of the shift tensor is:

pélls = Mi,/a + Nirgﬂ - Ngriﬁa (4.185)
which enables Equation (4.184) to be simplified yielding:
Top =T05 + AL lls. (4.186)
Similarly, by applying Equations (4.65) and (4.66):
=3
Top = 8oy -8° = (Hhas) 4 a° = pdbss, (4.187)
Ty = 83,5 - 8% = —bg,a” - A\¢a’ = —A$DY. (4.188)

4.7.1 Further kinematics

Figure 4.11 illustrates two points A and B lying within a shell as it undergoes
deformation. In the undeformed state, A lies on the shell’s middle surface and
B lies a distance z from the point A along the normal vector as. After the shell
undergoes deformation, point A moves to A, and point B to B. The displacement
vector connecting the points B and B, can be written as:

v=u-—zaz+a. (4.189)
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Figure 4.11: Section through a shell before and after deformation.

The vector a is expressed in the following form:
a = zaz + 2f. (4.190)

The components of the vector f describe a combination of rotational and strech-
ing modes which allow the general surface to deform freely. Substituting Equa-
tion (4.190) into Equation (4.189), yields:

v =u+ z(as — ag) + 2f. (4.191)
Referring to Figure 4.11, the vector equation
§=s+u, (4.192)
may be written and differentiated with respect to 2% to yield:
S3=s3+us. (4.193)
From Equation (4.35),
s3=a3, and S§j3 = as, (4.194)
enabling Equation (4.193) to be written in the form:
ag—az3=ug. (4.195)
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For any point on the middle surface, the displacement vector u can be specified
as a function of the coordinates z*. An expression defining u 3 can therefore be
formed using Equation (4.113):

us3 = (Ua73 + Uvbg) a® + u3,3a3. (4196)
Substituting the above relationship into Equations (4.195) and (4.191), yields:
V= [ua +z (ua,B + wag + fa)] a® + [U) +2z (’11]’3 + f3)] 337 (4197)
where w = us.
Alternatively, the general surface displacement vector v can be expanded into its
normal and inplane components:

V = 0,8 + v3g°. (4.198)

The displacement components v, can be expressed in terms of the middle sur-
face displacement components u, and f, by dot multiplying both sides of Equa-
tion (4.197) with the base vector gq:

Vo = [Uus + 2 (us3 + uyb] + f5)] a’ . g,. (4.199)
This expression can be further simplified through the use of Equation (4.183a):
Vo = [us + 2 (us3 + uyb] + f5)] 1l (4.200)

Similarly, the displacement components v3 are determined by dot multiplying both
sides of Equation (4.197) with the base vector g*:

vg=w+z(wz+ f3) (4.201)

4.7.2 The change in curvature tensor

The change of curvature in a shell’s middle surface may be defined as the difference
between the curvature before and after deformation. This change is denoted by
the tensor k2 and can be expressed in the form (Mason 1980):

k) = b —bl, (4.202)

where b) and b}, are the curvature tensors before and after deformation respec-
tively. The covariant components are obtained by applying the metric tensor:

KRag = Ezaw - baﬁ. (4.203)
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From Equation (4.126) the middle surface strain tensor .5 can be written in the
form:

1.
EaB = 5 [aag — aag] . (4.204)

Using the above expression to isolate aqs and then substituting into Equation (4.203),
yields:
Kapg = gag — bag — 25367@ (4.205)

The metric tensor for the deformed middle surface can be described by the equa-
tion:

@’ = a® — 297, (4.206)
which can be combined with the relationship:
b) = bsad’”, (4.207)
to yield
b) = bsg [a®7 —26°7]. (4.208)

Multiplying both sides of the above expression by 2e,5 and neglecting quadratic
terms in strain, the equation

ZEng = 2l~)5aa67&yg, (4.209)
is obtained. The change in curvature tensor can now be expressed in the form:
Kag = Bag — bag — 25504(16767/3, (4.210)

defining the curvature tensor b, through the use use of Equation (4.102) (Gould
1988, pag.22-27):

bap = —83,q - 5. (4.211)
Differentiating Equation (4.195) with respect to z®, yields:
83,0 = 83,0 T Wy3a (4.212)

which can be combined with Equation (4.196) to form:

83,0 = aza + (us3 + uyb]) @ + (us3 +u\ b)) al, +
3

; (4.213)
+ w 3qa” + w,3a’,.
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In addition, Equation (4.192) may be differentiated with respect to z° to yield:
ag =ag+ug. (4.214)
The displacement derivative u g, may also be defined using Equation (4.108):
u g = (uglls — whsp)a’ + (wp +u,b})a’. (4.215)

Equations (4.213), (4.214) and (4.215) can now be substituted into (4.211) and
keeping only the linear terms in displacement, we obtain:

—bap = [33,a + (us3 +uyby) a’ + (us3 + uyb}) al, + wzea® + w,3a,3a] ‘
- [aﬂ + (upllg —wbyp) a” + (w s + ugbg)aﬂ
= ~bap + (up3 + usb3) . + (us3 +uyb3) @ - ag — wsbap —
= (upllg — whyp) bG,

= —bap — (uplls — whys) B + (ups +u,b)la — wsbas.
(4.216)

The above equation is combined with Equation (4.210) to arrive at an expression
which describes the change of curvature of the middle surface in terms of the
dislacements u, and w. Once again, only linear terms are retained within the
formulation:

Kap = (Uplls — whys) UG — (upy3 +uybi)lla + wis bap — 23645 (4.217)

4.7.3 Strain—displacement equations

In Section 4.4 the deformation characteristic of a continuous three dimensional
body were examinated. For small displacements, the general strain tensor 7;; can
be expressed in the form:

1
mij = 5 (vilj +v5i) - (4.218)
Aim in this section is to express the general strain components in terms of the
middle surface displacement quantities uq,us, fo and fz (Mason 1980). An ex-
pression defining the inplane strain 7,3 may be obtained by letting the indices
i=aand j=p:
1
Nap = 5 (Vals +vpla).- (4.219)
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The covariant derivative of the displacement components v, can be derived by
combining Equations (4.77), (4.186) and (4.187):

Valg = Va8 — vpfgﬁ — ’Ugfiﬁ
= Va8 — Upll5 — Up/\gﬂi”ﬂ — v3pugbss (4.220)
= valls — v, Mus |5 — vspdbss.
For clarity, each term in Equation (4.220) will be considered individually. The
quantity ve||g is defined by differentiating the inplane displacement vector com-
ponent vgy:
valls = [(us + 2 (us3 +usb3 + f5)) 3] lls
= [us + 2 (us;3 + uyby + f5)] o lls +
+ [uslls + 2 (us3llp +uyllsb + b3l + folls)] o (4.221)
= uspdllg + usllad, + 2 [(us,s + uyby + fs) pdlls+
+ (usslls +uqyllgby +usb3lls + fslls) ual -

Equation (4.180) is combined with Equation (4.200) when expanding the second
term of Equation (4.220), obtaining;:

v pSlls = [us + 2 (us3 + uyb] + f5)] o s, |l

’ (4.222)
= [us + 2 (us,3 + uybs + fo)l talls,
and Equation (4.201) is utilized to form the last term:
'l}3ugb55 = [U) +z (w,3 + f3)] ,uib(;g. (4.223)

The three Equations (4.221), (4.222) and (4.223) are substituted into Equation (4.220)
to form:

Valg = usllppd, — wpdbss + 2[usslls + uqyllgd] +u b} lls + fsllslud — (4.224)
—z[w 3z + fS]Nibéﬂ'

From Equation (4.224), vg|, is obtained by interchanging the indices & and 3. An
expression for the general strain tensor 7,3 can now be formulated by substituting
Equation (4.224) into Equation (4.219):

2ap = usllpud, — wpdbss + 2[usslls + usllsb] +ubllls + fsllalud +
+ Ué”txﬂg - wﬂ?ﬂbéa + z[us 3lla + U'v”abg + U’yb’g”oz + fd”a]Ng - (4.225)

— zlws + f3ludbss — 2w,z + f3]ubbsa-
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The relationship describing the strain of the middle surface, denoted by the symbol
€ap (see pag. 186), is obtained by letting z = 0:

1
Eaf = §[ua||5 + u5||a — 2wba5]. (4.226)

This equation can be substituted into Equation (4.217) to yield the following
expression for the change in curvature of the middle surface:

Kop = _u’y”abg —ugllyb3 — ugslla — U'Yb,’r}”a + w,3bap + whysb.- (4.227)

Equations (4.226) and (4.227) are relationships which can be used to simplify the
general strain—displacement Equation (4.225). This process begins by considering
the difference 2(1jap — ey50% 1%):

21ap — eyspid ) = usllsm, + vsllaps — usllsppud — usllvudpf +
1]
+ w(2bys il fs — fabss — Hibsa) +
2l

+ 2(ug 3llppd + ussllanh + uqyllgb o + uyllabipl +  (4.228)
+uyb Nt + w3 llatss + follane + Follapss) -

3
= 2(ws + f5)(uabss + 1bsa)

o

Next using the definition for ;2 given by Equation (4.176), each one of the four
designated groups is considered individually. Starting whith group [1]:

[1] = usllg (8] — 2b%,) + uslla (85 — 2b3) —
— s 5(8567 — 2b18% — 2b36) + 2°b1bS) —
— uslly (8562 — 26285 — 2b507 + Z2b1b%)
= 2[u|sb5 (87 — 2b7) + uellb7 (65 — 2b3)]
= 2ugl|, [b30g, + 02 p3]
= Zuallvbl[t%ui + 52/;%]_
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Similarly, group [2] is expanded, term by term in the following way:
[2] = whys (2L — pd,8} — p7) =
= whys(26],65 — 226]b% — 22b85 + 22°bLbj — 6265 + 2b0) —
— 6765 + 2b367)
= —2w([bysb% (67 — 2b7) + bysbZ (65 — 2b3)]
= —zwb,s[bjud, + bau]
= —zwbysb) (05T, + O )]
Examining the third group:
[3] = 2[us 3w (6ﬁll’a 5aﬂ5) + uyly 57(5/3/104 5aﬂﬁ)
+ b3 110 (O s + 05 p3) + Fsll (S + 6aﬂﬁ)]
= Z(u6,3”u + uvllubg + uvbg”V + ft?”l/)[ ﬂ/‘a + 5;.“?3]7

and finally, the fourth group simplifies to:
4] = —z(w;s + fz)béu[ﬂafsﬁ + Mﬁ‘5 ]-
Substituting groups [1]-[4] into Equation (4.228) yields:

1
Nap = 551//1%/15 + 52(usslly + uqlluby + uqabglly + uslly b7 +

2 (4.229)
+ follv — whysb, — (w3 + f3)bsu) G5 + p304],
which combined with Equation (4.227) becomes:
o = vty — 52w + Foba — Ssll V05 + o] (4.230)
By introducing the notation (Kratzig 1980, pag.32):
Gsv = f3bsv — fsllvs (4.231)
Equation (4.230) becomes:
Mg = Eantid 5 — S 215y + 05 W5 + H0Z]. (4.232)

2
For the strain components 7,3, the indices 7 and j in Equation (4.218) are set to

a and 3 respectively:

1
5 (Vals + v3la).- (4.233)

77a3:2
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Expressions for the covariant derivatives of the displacement vector v can be ob-
tained from Equation (4.77). These are simplified using Equations (4.98) and
(4.188), enabling the following relationship to be written:

1
Naz = E(ua,3 + 3,0 + 20,A705). (4.234)

It is possible to express 7,3 in terms of the middle surface quantities u and f
by expanding each term individually in Equation (4.234). Differentiating Equa-
tion (4.200) with respect to z3:

Va3 = [ug + 2(us3 +uyby + f5)apa + (4.235)
+ [us + 2(us 3 +uyby + f5)]1d 5.

The thickness of a shell is assumed to be small when compared with the other
dimensions of the structure, in particular, with its radius of curvature. Conse-
quently, variations in the curvature tensor along the z® axis are assumed to be
negligible. Hence the above expression can be simplified to:

Va3 = [us,3 + 2(us33 + Uy,3b] + f5,3)14d- (4.236)

Similarly, Equation (4.201) is differentiated with respect to z%, to form the ex-
pression:

V3, = W, + z(w,Ba + f3,a)7 (4237)
which can be combined with Equations (4.200), (4.234) and (4.236) to yield:
203 = Ua,3 + 2usbd, +w o + 2[2u,b]00, + us b3 (6L + k) +
+ U 3301 + W30 + 2f5bY + f531% + f,a]-

The middle surface strain tensor £,3 can be easily obtained by letting z = 0 in the
previous equation::

(4.238)

1
Ea3z = 5[’“’(1,3 + 2U§bi + ’U),a], (4239)

and using this expression, the strain tensor 7,3 can be written in the form:

1 5 WEN% v
Na3 = €a3 + 5z[2u7b}ba + ug 3by, (00 + pa) + (4.240)
+ ug 3300 + w30 + 2f5b0 + f5.300 + f3,0]-

Finally, the strain components 733 are formulated by letting ¢ = j = 3 in Equa-
tion (4.218); this leads to the relationship:

733 = €33 + z(w,33 + f373), (4.241)
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where:
£33 = W,3. (4.242)

Equations (4.232), (4.240) and (4.241) completely describe the kinematic strain—
displacement behaviour of a shell structure. Our numerical formulation, intro-
duced in Chapter 5, capable of analysing shells of arbitrary geometry, would there-
fore need to introduce the equations previously constructed.
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Chapter 5

Finite elements for shells and curved
members

5.1 A survey of shell finite elements

The development of appropriate methods for the analysis of shell structures is
increasingly demanded to ensure the integrity of structural design. In the last three
decades there has been a tremendous interest in computational shell mechanics and
numerous theoretical models have been developed and applied to various practical
circumstances (Yang, Saigal, Masud, and Kapania 2000). Analytical solutions to
shell structures are limited in scope and in general no single theory has proven to be
general and comprehensive enough for the entire range of applications: arbitrary
shapes, general load and support conditions, irregular stiffening, cutouts and many
other aspects of practical design. The finite element method has consequently
become prominent in the analysis of such shells in view of the ease with which such
complexities can be dealt with. Three different approaches to the finite element
representation of shell structures can be identified (Hinton and Owen 1984):

1. the first one based on flat triangular or composite—quadrilateral elements;

2. finite elements derived from three-dimensional elements by the use of degen-
eration methods;

3. stress—resultant—based formulations;
4. incompatible modes approach;

5. enhanced strain approach.
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The first numerical study of shell problems involves facetting the shell by plane
triangular plate elements, onto which a membrane stiffness is superposed. The re-
sults obtained are found to be satisfactory, but depending on the problem, very fine
meshes have to be employed. A number of difficulties and shortcoming arise from
the application of flat elements to curved shells (Gallagher 1976), such as the pres-
ence of discontinuous bending moments, which do not appear in the continuously
curved actual structure. Numerous in—plane and bending element formulations are
available, and, in both, conformity was achievable in flat assemblies. Clearly, if
the elements are not co—planar conformity will, in general, be violated. Despite
these problems, which can be surmounted through various artifices and additional
computational effort (Zienkiewicz and Taylor 1991), simple triangular elements
have been developed and applied to the nonlinear analysis of shells of arbitrary
shape (Qun, Mu, and Wengi 1998; Qun, Mu, and Wengqi 1999). The problem that
remains is to determine if the loss in solution accuracy (as compared with curved
elements) is properly balanced by the lower computational cost of these simple
elements.

The second approach, originally introduced by Ahmad, Irons, and Zienkiewicz in
1970, discretizes the fundamental equations of 3D—continuum via isoparametric el-
ements with indipendent rotational and displacement degrees of freedom; three di-
mensional stresses and strains are analysed in a local or global orthogonal cartesian
coordinate system and degenerated to shell behaviour by introducing simultane-
ously physical assumptions at discrete points. The popularity of these elements is
due, in part, to their simplicity of formulation that is able to avoid the complexities
of fully general shell theories. Numerous modifications and generalizations to non
linear (geometrical and material) analysis of the degenerated shell approach can be
seen in Ramm (1977), Hughes and Liu (1981a), Hughes and Liu (1981b), Hughes
and Cornoy (1983), Dvorkin and Bathe (1984), Hallquist, Benson, and Goudreau
(1986) and Liu, Law, and Belytschko (1986). The books by, for example, Bathe
(1996), Hughes (1987), and Crisfield (1986), offer comprehensive overviews of the
degenerated solids approach and related methodologies which involve some type of
reduction to a resultant formulation. Numerous modifications and generalizations
of the degenerated shell approach has been done due to the fact that, despite its
simple approach, the discretization of a Reissner—Mindlin model is not straight-
forward both in plates and shells frames. The inclusion of transverse shear strain
effect in the finite element models introduce an undesirable numerical effect, the
so—called shear locking phenomenon. This means that as the thickness of the plate
and shell become extremely thin, the shear strain energy predicted by the finite el-
ement analysis can be magnified unreasonably even though the average value of the
shear strain over the area tends to zero. Finite element schemes for shells problem
also suffer of the so—called membrane locking: the finite element approximation of
the membrane component of the energy is unstable with respect to the thickness
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of the shell. The term membrane locking was coined in (Stolarski and Belytschko
1983) where the authors showed that it is related to an inadequate representation
of inextensional modes; later Pitkaranta (1992) and Leino and Pitkaranta (1994)
have analysed from a mathematical standpoint the membrane locking in a cylin-
drical shell problem showing that in the standard finite element methods locking
occurs especially at low degrees of discretization. Several solutions to avoid the
numerical locking have been proposed in the degenerated solid approach:

- mixed formulation (Bathe, Brezzi, and Cho 1989; Brezzi and Bathe 1990;
Dvorkin 1995; Bucalem and Bathe 1997);

- reduced integration (Zienkiewicz, Taylor, and Too 1971);

- selective reduced integration (Zienkiewicz, Taylor, and Too 1971; Malkus
and Hughes 1978);

- partial reduced selective integration (PRSI) (Chinosi and Lovadina 1994;
Chinosi and Lovadina 1995);

- penalty partial reduced selective integration (PPRSI) (Nascimbene 2001).

The third point of view, in shell theories, states that thin bodies are best treated by
replacing the general set of three-dimensional governing equations by a set of, in
some sense, equivalent equations leading to the construction of shell theories. One
of the first achievement in this direction was due to Argyris and Scharpf (1968a)
in the development of the SHEBA family of finite elements (Argyris and Scharpf
1968b) and, thereafter, their generalizations (Argyris 1982; Argyris and Tenek
1994a; Argyris and Tenek 1994b). Working along similar lines, Simo and Fox
(1989) proposed a stress—resultant—based geometrically exact shell model which
is formulated entirely in stress resultants and is essentially equivalent to a one
director inextensible Cosserat surface (Bernadou 1996).

It is well known that the presence of incompressibility leads to the so—called lock-
ing phenomenon in case of a discretization with standard displacement elements.
Several methods to circumvent this problem have been developed. Amongst these
are the reduced integration techniques (Zienkiewicz, Taylor, and Too 1971) or the
mixed methods (Brezzi and Bathe 1990; Nascimbene and Venini 2002). In some
approaches rank deficiency of underintegrated elements, which then leads to hour-
glassing, is bypassed by stabilization techniques (Belytschko and Tsay 1983). The
method of incompatible modes had been introduced by Wilson, Taylor, Doherty,
and Ghaboussi in 1973 as an approach for improving the behaviour of low—order
elements in bending—dominated deformation patterns. Taylor, Beresford, and Wil-
son (1976) corrected the particular form of initial formulation by enforcing the
patch test satisfaction. Lately, Simo and Rifai (1990) in the linear case and Simo,
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Armero, and Taylor (1993) in the non-linear case have developed a family of ele-
ments which are based on the Hu—Washizu variational principle. These elements
are extension of the incompatible BM6 element developed by Taylor, Beresford,
and Wilson.

Several enhanced strain elements have been developed over the last year (Rhiu and
Lee 1988; Yeom and Lee 1989; Parish 1990; Rengarajan, Aminpour, and Knight
1995; Ish and Guttal 1997; Kemp, Cho, and Lee 1998). These elements provide a
robust tool for numerical simulations in solid mechanics, due to the construction
of the elements with enhanced strains.

5.2 An alternative approach for shell finite ele-
ments: Based Gauss Mixed Interpolation

Before describing the derivation of the BGMI (Gobetti and Nascimbene 2002),
the kinematic of our shell element will be briefly introduced. The element is
derived directly from the equations described in Section 4.3, applying two main
assumptions:

- normals to the middle surface of the shell before and after deformation re-
main straight;

- the normal stress component (i.e. os3) is constrained to zero and eliminated
from the constitutive equations.

At first, we outline the basic concepts and notations underlying our formulation:

Global Coordinate Set (X,Y, Z): this is a Cartesian coordinate system, in rela-
tion to which, nodal coordinates, displacement field, global stiffeness matrix
and applied force vector are referred;

Curvilinear Coordinate Set (R,S,T): let R and S be two curvilinear coor-
dinates in the middle plane of the shell and T a linear coordinate in the
thickness direction. It is important to point out that the frame (R,S,T) is
equal to the curved reference (81,62,0%) defined by Equations (4.32);

Natural Coordinate System (r,s,t): we assume that (r, s, t) vary between —1
and 1.

The element displacement field can be expressed as:

u=ugr+Tls, (5.1a)
v =wvg — TR, (5.1b)
w = wr, (5.1c)
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Figure 5.1: Nine-node element in the global and local curvilinear coordinate sys-
tem.

where u, v and w are the components of the general surface displacement vector v
(see Equation (4.189)) and ug, vs, wr, g and §s are the components of the middle
surface displacement vector u (see Figure 4.6 and Equation (4.192)); both of them
are referred to the general curvilinear coordinate system (R,S,T). Now, using
Equations (4.126), (4.135) and (4.204), the membrane-bending general surface
strains egp and £sg and the in/out of plane shear terms yrs, Yrr and ysr, can
be written as:

€RR = 55, (5.2a)
€ss = g—g, (5.2b)
YRS = g—g + 38_11;’ (5.2¢)
YRT = g—; + 2—27 (5.2d)
e = g_; n g_ls"- (5.2¢)
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Now substituting the kinematic field (5.1) into Equations (5.2), we obtain the
general surface strains as a function of the middle surface displacements:

Oun  pObs (5.3a)

SRE = 5p T 3R’

_ 6’115 (9912
£SS = aS T 35 (5.3b)
o BuR 6?]5 895 663
VRS—¥+ﬁ+T(% ﬁ)’ (5.3¢)
_ 811]{1"
YrT =05 + PR (5.3d)
_ 6’11)'1"
st = —0r + 55 (5.3e)
or in matrix form:
- a 8 -
R 0 0 0 , Tﬁ
€ T2 u
6RR 0 35 0 T(’)S 0 UR
Ss s
wms| = |2 2L o 22 19 |w (5.4)
" T8 or oR 0S| [g | '
YRT o R
YsT 0 0 @ 0 1 Os
i
[0 0 o5 0 |

We have defined Equations (5.3a) and (5.3b) as membrane—bending strain because
it contains a coupling of flexural and axial deformation in this model of a curved
shell. It is important, at this point, to underline the two coordinate systems
used in this analysis: the X,Y, Z system is Cartesian and orthogonal and is used
as absolute reference coordinate system; the R,S,T one is curvilinear and not
necessarily orthogonal, whose origin is centered in the node placed in the center
of the considered element. In particular, the R axis runs from the node 6 towards
the node 8, and S from 7 to 5, and T can be obtained as the direction orthogonal
to the plane R — S (see Figure 5.1). Nevertheless, for computational reasons we
introduce a natural coordinate system (r,s,t) with variables normalized in the
range of variation (—1,1), such that:

T, (5.5)
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where [p and ls are the lenghts of an element along the R and S direction, re-
spectively; and h is the thickness of the shell. The indipendent variables ug, vg,
wr, O and Og can be expressed with reference to the generalized displacements
U,V, W, 0x, 0y and 67 of the shell nodes within the (X,Y, Z) global coordinate
system, using transformation (4.50) in combination with Equation (4.59):

ur = UcosRX + V cosRY + W cos RZ (5.6a)
vs = UcosSX +V cosSY + W cos SZ (5.6b)
wr = UcosTX + VcosTY + W cosTZ (5.6¢)
Op =0x cosﬁ)\(+0y cosﬁ’—i—@zcosﬁ (5.6d)
s = 0x cos§)\(+0y cos§?+0z cosSZ (5.6e)
or in matrix form:
uR cosRX cosRY cosRZ 0 0 0 U
vg cosSX cosSY cosSZ 0 0 0 I‘/{/
wr| = |cosTX cosTY cosTZ 0 0 0 x| - (5.7)
Or 0 0 0 cosRX cosRY cosRZ 0y
Os 0 0 0 cos SX cosSY cosSZ] (g,
Finally, substituting Equation (5.7) in Equation (5.4) we obtain:
oU — dcosRX OV — dcos RY
ERR = @COSRX'F UT + ﬁCOSRY"‘ VT +
oW  — _ dcosRZ x dcos SX
+ ECOSRZ+WT +T (ﬁ COSSX‘}‘GXT—F
00y — dcosSY 06 7 —~ dcosSZ
Y 08 SY + 0y L5820 | D2 557 4,022 :
+8R cos SY + Oy 3R +8R cosSZ + 8y 3R ), (5.8)
oU — dcosSX OV — dcosSY
=& 05X + ULEE22 L 9Y 055y + vIEL2T
€SS aScosS +U 35 +6SCOSS +V 35 +
ow —~ dcosSZ 00x — dcos RX
+ ﬁcosSZ+WT -T <¥ cosRX+0XT+
00y —_ dcosRY 06 7 —_— dcosRZ
DY osRY + 0y 258 L P2 R7 49,2502 :
+6S cosRY + 6y 35 +6S cosRZ + 04 35 >, (5.9)

199



Roberto Nascimbene Sail Modelling for Maximal Speed Optimum Design

oU — dcosRX OV = dcos RY
- e 2 Y Z
YRS cosRX +U + 5 cosRY +V 3 +

ow — dcosRZ OU — dcos SX
+¥COSRZ+WT+ﬁCOSSX+U7+

oV = dcosSY oW —~ dcos SZ
+ ﬁCOSSY‘f‘VT + ﬁCOSSZ‘FWT +

00x — dcos SX 00y — dcos Y
+T (WCOSSX+0XT + ﬁcosSthﬁyiaS +

dcosSZ 00x — dcos RX
griewa 9IX X _ g, A
oS OR cos R Ox OR

00y — OcosRY 00z — 6cosRZ>7 (5.10)

00 —~
+ B—;COSSZ-FQZ

—ECOSRY—H}/T — ECOSRZ—QZT

U  — dcosTX OV  — dcosTY
= s TX + U2 L 2 osTY + Ve
VRT = pg costA oR et T aR

ow — dcosTZ
+ ﬁ cosTZ + WT +

+0x cos SX + Oy cos SY + 0z cos SZ, (5.11)

ou — dcosTX OV  — dcosTY
YsT = %COSTX‘FUT + ﬁCOSTY"'VT'F

dcosTZ B
oS

—0x cosﬁ—é’ycos}/{?—ezcosﬁ. (5.12)

ow —
+ ﬁcosTZ—l—W

In Equation (5.7), the terms cos }/Z)\(, cos I/ﬂ\’, cos 1/%?, cos §)\(, cos §}7, cos 5’2,
cosT X, cosTY and cosTZ, are needed to permit the transformation between the

(R,S,T) and (X,Y,Z) coordinate systems, as defined by Equations (4.50) and
(4.59).
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5.2.1 Discretization

As is well known the isoparametric approach (Crisfield 1986) states that the same
approximated functions modelling the displacement field have to be used to de-
scribe the shape of the field itself. First of all, the formulation adopted herein
permits the introduction of identical discretizing functions for both transversal
displacement and rotation of a section. Moreover, having in mind the curvilinear
shape of the element which is going to be formulated, the use of the same functions
describing the axial displacement seems to be suitable, so the following relations
hold for a nine node elements:

9 9

U = ZNiui, GX = ZNieXz’; (513)
z;l 19—1

V = ZNivi; Oy = ZNiaYi; (5.14)
zzl z:gl

W = ZNiwz’a 0z = ZNiezm (5.15)
=1 =1

where N;(i = 1,2,..,9) are the shape functions, all second order polynomials for
nine-node element:

N; = [rri(L+rr) /2 4+ (1 =) (1 —rD)][s8:(1 + 88;) /2 + (1 — s*)(1 — 52)] (5.16)

The expressions (5.16) can also be used to describe the geometry of the middle
surface of the shell, within the frame of the isoparametric approach:

X 9 Xz
Y = Ni(r,s) | Y; : (5.17)
Z] g =1 Zi ] mia

In Equations (5.17), the shape functions N; were assumed to be dependent just on
the variables r and s. With a small change in their definition it is also possible to
introduce the dependence on a third indipendent variable ¢ through the thickness:
1 1 )

Nitop = 5(1 +t)Ni,  Nibottom = 5(1 —t)N;, i=1,...,9. (5.18)
The use of this local coordinate system facilitates the evaluation of the matrices
related to the discretized problem in terms of the global coordinates X, Y and Z,
simply following the strategy stated by the isoparametric approach; therefore, the
general surface coordinates can be written:

X 9 X; 9 X;
Y[ =Y Niop(r,s,t) [ Yi|  + ) Nivottom(r,,t) | Vi , (5.19)
VA i=1 i top i=1 Zi bottom
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where:

B

Xitop = Xi + 5 Cos TX;, (5.20a)
B

Xibottom = X; — 5 o8 TX;, (5.20b)
oo

Yitop = Yi + 5 cos TY;, (5.20c)
o

Yibottom = Y; — 5 cosTY;, (5.20d)
B

Zitop = Zi + ) cosTZ;, (5.20e)
h —

Zipottom = Zi — 5 08T Z;. (5.20f)

Obviously, the introduction of the coordinate ¢ in the formulas governing the phe-
nomenon is only a first step towards a more complex formulation of the model, such
as that of layered materials or of piezoelectric shells (Gobetti, Venini, and Nascim-
bene 2002) or of material of which a known initial stress distribution throughout
the thickness has to be taken into account; furthermore, the introduction of the
through—thickness integration via ¢ coordinate, makes easy the evaluation of the
Jacobian matrix:

0X 9Y 0Z
or  or or
g |ox or o o
ds 0O0s O0Os
0X 9Y 0Z
ot ot ot

The substitution of Equations (5.13)—-(5.15) and (5.5) into Equations (5.8)—(5.12),
gives unsatisfactory results from several points of view:
U ON; BV 4 N dcos RY v
i+ ? cos i+ N; or . i+

)GXz'+

h 2
Ozi|t— 3 —, 5.22
1) Z] 2}lR ( )

i ON; . dcos RX
ERR:Z WCOSRX¢+N,' or

i=1

i

lé] RZ ON; . lé] SX
o8 W; + —— cos SX; + N; geossa
i or or

ON; —
+ (—' cos RZ; + N;
or

dcosSZ
or

dcos SY

AN; —
+ | —— cosSY; + N;
or

ON; —
Oyi+ | — cosSZ; + N;
i or
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dcos SY

8
5Z Ny 8cos RX
dcos 52 wi — | [ 2N cos B 4+ N, 208 X
s i s Os

by + ON; = vBcosﬁ
1- Yi 5 i L

9 —
ON; — 17} SX
£ss = E {(KCOSSX,'—‘,-Ni&

im1 s

ON; —
> U; + (— cos SY; + N;
. Os

)it
>9xi+
h 2
i o IR -2
i>92:|t2}l5 (529

N; o
+ (6— cos SZ; + N;
Js

ON; — dcos RY
+ e cosRY; + Nj—
s

29: ON; 2 BX ON; 2 — N 2 8cos RX 2 BcosSX Ui +
= — cos i i il 7o P — i
RS= 2|\ Tas 1s or Ir Is  os im or | )"
ON; 2 ON; 2 2 dcos RY 2 8cosSY
+ —cosRY +——cosSY + N; £ Jeos By 2 geosor Vi +
ds lg Ir ls Os i Ilr or 5
AN; 2 —  BN; 2 2 8cos RZ 2 dcosSZ
2 cosRZ; + ¢ S5Z; + N; ik Bl w;
+ ( Bs 1g STt G cosS it (ls 8s | Iln or )) it
n ON; 2 e ON; 2 X N 2 9cosSX 2 8cos RX thG
—— — COS i — — COS i i — - — — i
Os ls or Ilr ls Os lr or i 2 X
ON; 2 — ON; 2 —_— 2 8cosSY 2 8cos RY h
T2 cosSY; — 2 cosRY; +N; | = - = t—0y;
+ ( s 15 O8OV g, st N (15 s ‘ in  or )) Qlvit
" ON; 2 ON; 2 57 LN 2 dcosSZ 2 dcos RZ tho (5.24)
— ——-—cos —0z:
95 1s © ar In TN\ T as Tin o or |, PR

° 8cos TX
E —cosTX 4+ N ——88

i=1 or

ON; — BcosTY
Ui+ | —cosTY; + N;——
; or or

)it

TZ 2 _ _
BCL ) Wi:| ™ + N;cos SX;0x; + N; cos SY;0y; +
) R
1

ON; .
+ (— cosTZ; + N;
or

+ N; cosﬁam}, (5.25)

)i

2 — —
) Wi:| l_ - Ni cos RXia)u - Ni cos RY,:&YZ' -
. S

9 .
Z{[( cosTX +N78008TX

{ Os

ON; — 17} TY
U; + | —> cosTY; —i—NiL
. Os ds

8cosTZ

(2N s TZ: + N,
Os o8 ‘ ‘ ds

— N,' COS@GZi}. (5426)

First of all the tangential coefficients vrs, YrT, YsT have a more refined definition
in terms of the basic variables of the discretization because they are described by
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a higher order polynomial than the strain rate of deformation egr and £gg. This
fact produces an incorrect estimation of the shear deformation in comparison with
the strain due to membrane and bending. This is particularly evident at the lower
thickness limit (h — 0) because of the different rate of velocity shown by the two
different contributions to the global deformation energy (respectively bending and
shear types as shown in Equations (5.140) and (5.141) for the monodimensional
problem), as they tend zero together with the thickness. Our procedure provides
a solution scheme the main advantage of which is its compatibility with the exact
solution whatever the choice of integration scheme, regardless the number of nodes
employed in describing the element. The incorrect evaluation of the two compo-
nents of the strain energy seems to be ascribed, as suggested by some heuristic
improvement known as reduced integration schemes, to a too high polynomials de-
gree of the function shaping the tensor components (5.22)—(5.26). Looking back to
the difficulties related to the non pertinent choice of the polynomials degree, this
procedure follows the strategy of decreasing the v and £ polynomials order (second
order for our nine-node element) by means of new, suitable shape functions. Let
us introduce:

Yrs = NiVrs1 + N2 Vrs2 + N3Vrss + NiVksa (5.27a)
Yrr = NiYer1 + N2Yrr2 + N3VRrs + NiVRr4 (5.27b)
Y51 = Nivsr1 + N3Vsr2 + N3v5rs + Nivsra (5.27c)
€rr = Ni€rr1 + N2€Rrpo + N3€Rps + NicRpa (5.27d)
€55 = Ni€ss1 + Nyessy + N3esss + Nicssy (5.27e)

or in matrix form:

-’77251-
Yis = [Nf Nj Ny Np] [7BS2| = N*ajg, (5.28)

YRS3
| YRS4 ]

-ﬁzn-
Yer =[Ny Nf Np Np] |TET2| = Ny, (5.29)
YRT3
L YRT4]

204



FINITE ELEMENTS FOR SHELLS AND CURVED MEMBERS

Y511

Yer =[Ny Ny Ny N;]|15T2| = Ny, (5.30)
YsT3
Y5T4

E.*

RR1
E.*

* —_ * * * * RR2 — * kK

crr =[N Ny Nj Nj] & ps = N'egg, (5.31)
*
€RR4

*
€ss1
E*
* * * * * SS2 | — * Lk
Ess—[N1 Ny N3 N4] e = N¥egg, (5.32)
E*
SS54

where a new set of shape functions is defined for a nine—node element:

w8 (5], mei) ()

N§=Z<?+T>'<?_3)7 NZ=Z<\/?§+T>'<?+S>,
one degree lower and defined at the four Gauss points, which exactly integrate
the flexural strain energy. The use of Equations (5.27) now give for v and € a
contrasting definition because v and € were previously defined in a slightly different
way in Equations (5.8)—(5.12). This incoherence can be removed by imposing the
coincidence of the new shear—polynomials (5.28)—(5.30) with the old ones (5.24)—
(5.26); and the coincidence of the two new membrane/bending—polynomials (5.31)
and (5.32) with the old ones (5.22) and (5.23), at a number of selected points. To
this purpose the Gauss integration points have proved to be very efficient. Here

is developed the nine—node case. Referring to the Equations (5.28) and (5.24) we
have:

(5.33)
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’7;251 =
ZQ: ON; ON; 2 cos X +N 2 dcos RX 2 9cosSX Uit
~ s Is ar | Ir i s g ds . Ir or ) *
F,E:(—@,fé 75
N aN; | 2 w7 +8Nz- 2 5 il 2 cosRY 2 dcos SY Vit
— COS 7 — COS i 7 _— —_——— 7
Os ls or lr ls Ir ar
7,5 7,5 ¢
ON; 2 — AN; 2 2 cosRZ 2 BcosSZ
+ —cos SZi + N, | — — Wi +
Os s or lr ls X lr or i
7,5 7,5 ‘ ¢
aN;| 2 —~  ON;| 2 2 dcosSX 2 8cos RX h
+ | = ZcosSX; — Z cosRX; + N; |__ = - = t—0xi +
Os ls or lr ls Ir or . 2
7,5 7,5 ¢
N ONi| 2 = ONi| 2 7, N 2 BcosSY 2 Hcos RY Boi s
— COS i — — COS —— —_— - — — i
9s | s or | in ls Ir  or 27Y
7,5 7,5 ‘
8N;| 2 —~ aN;| 2 2 5z 2 8cos RZ h
+ — cos SZ; — —cosRZ + N; |__ — cos =2 deosna t—0z;
Os ls or lR ls lR or . 2
T,S T,S ‘
N _ V3 _ V3
Trs2 =T =~ §=+—
3 3
N _ V3 _ V3
Yrsz =T = +—- §=——
3 3
V3 V3
Vhsa =T =+ =+
3 3
*
Trs1
7*52 * n
TRS3
*
TRS4

and referring to the Equations (5.29) and (5.25), (5.30) and (5.26), (5.31) and
(5.22), (5.32) and (5.23), we can write:

= yhp =B'U, (5.35)
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* * !
Vst ="srT =vsr =B U, (5.36)
75=1 2 Ta=1 2
=
ERR =€ERR =>epr=B U, (5.37)
7,5=+ Y3 T I=£ Y3
=
ETSS = €RR = Egs =B U, (5.38)
7 =43 75=+ Y3

where U = [U1 Vi Wi Ox1 Oy1 0z1...Ug Vo Wy 0x9 Oyg ng]T is the nodal
displacement vector in the global reference system. The final result is:

4x54 1?54
ves=[Ni Ny Nf Nj] BU=B U, (5.39)
4x54 13514
Yer =[N Ny Ny N;] B U=B U, (5.40)
4x54 1_><{I4
vér =[Ny Ny N; N;j]B'U=B U, (5.41)
4% 54 1xX54
J— =l
eqn=[Nf Ny N; N;]B"U=B U, (5.42)
4XT54 :%5;1,
ess=[Ny Ny N; N;]B"U=B U (5.43)
Now we can write:
- =1l
" B
€RR =l
E5s E
Yrs| =BU=| B |U, (5.44)
Yrr B
Vs —
ST B
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where the B(5 x 54) has the following expression:
B(1) B(2) B(3) B@#) B(G) B(6)

B(7) B(8) B(9 B(10) B(ll) B(12)
B = |B(13) B(14) B(15) B(16) B(17) B(18) : (5.45)
B(19) B(20) B(21) B(22) B(23) B(24)
B(25) B(26) B(27) B(28) B(29) B(30)
and the B(7),(i = 1,...,54) terms can be written, only for the first node, in this
way:
N — RX
B(1) = N cos RX1 + Ny fcos R N1*| +
or F=_ V3 5__ /3 F=— V3 5=_ V3 or 1 ¢
=="3°=73 =="3°=773
i 9N, cosl/i-)\(1+N1 8 cos RX N2*| i
or |__ V3 -_ /3 __ 3 __+/3 ar . G
7=—¥3 5= T=—Y3 5=
ONy — dcos RX .
+ cos RX1+ N1 Njlg+
ar a3 /3 B /3 ar
3 3 3 3
ON, — Bcos RX . 2
+ cos RX1 + Ny Nilg ¢ — (5.46)
or F=38 - V/3 F=¥38 5=3 or 1 lr
=73 5=73 =73 :5="73
N — RY
B)=1{ 2 cos RY1 + Ny feos R NY| o+
ar __ 3 ___ 3 _ 3 3 or
7=—¥3 5= 3 7=—¥3 5= ¥3
n ON; cos BV N dcos RY N*| "
1 1
or w3 5_/B s /B o B or 2le
3 °="3 3 3
ONy — dcos RY .
+ cos RY1 + N1 Ny, +
O | evB s 3 B B 07
3 3 3 3
N — RY 2
+ oM cosRY 1 + Ny feos R Nilg ¢ — (547)
or | VB 3 s VEs_v3 Or | Ir
=73 5=73 =73 =73
ANy dcos RZ .
B(3) = cos RZ1 + N1 Ny | g+
o | VB 3 e B 3 O
3 3 3 3
4 ON1 cos iZ N dcos RZ N*| i
or | __E,_v3 S e BavE  Or e
T=— g% 3= T=—2,5=2
N — RZ
+ 5N cos RZ1 + N1 Dcos B N3*|G+
or F=VY3 5=_ 3 F=¥38 s _ 3 or
3 3 3 3
N — RZ 2
+ [ cos RZ1 + Ny feos R Nilg ¢t — (5.48)
O |oe 3 53 P Y N Ir
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B(4) = 5N cosSX1 + N 9 cos X N o+
I BNCER R S S Y S ST e
F=—¥3 5=_3 F=—8 5= V3 1
ON- - dcos SX .
+ Brl cos SX1 + Ny o N3 |+
=3 5-3 == 3 5= 3 1
ON; 5% N dcos SX N
+ cos SX1+ N1 3 |G +
or VB 3 /3 —__ /3 or
=33 5=_ =33 5=_ 1
AN — dcos X ¢
+ ! cos 5X1 + N1 €08 NE| (5.49)
O | _v/B /B B B Or ¢
m=Y8 5=v3 7=8 5=3 1
N — 5Y
B(5) = 88 ! cos SY1 + N % Nyla+
T olr=— Y3 =3 F=— V3 35— V3 L Y
ON; v N dcos Y N
+ cos SY1 + N1 — ole +
or | __v3._v3 e 3 _v3 O
T=— 52 5= T=— G2 ,5= 1
0N, — dcos Y N
+ cos SY 1+ N1 = N3|G+
or |__ 3 _ 3 __ V3 - 3 Or
7=8 5= =8 5= ¥ 1
dcos SY

0Ny —~ dcos SZ .
B(6) = cos SZ1 4+ N1 Ny la+
S PRV Y S S S A
3 3 3 3
ONy —~ Bcos 57 .
+ cos SZ1 + N S N2|G+
or F=— V3 5=V3 F=— 3 =3 or 1
3 5="3 3 :°="3
AN = dcos 52
+ ! cos SZ1 + N = N?T|G+
or F=M8 5__ 3 F=3 s _ 3 or N
3 3 3 3
N —~ dcos 57 t
+ ! cos 571 + Ny cos Nilg (5.51)
O |oesB 5= /3 PR L
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B(7) = 5N cosSX1+ N cos SX N+
R RNCEE S S N A O e
F=— Y3 5=_3 F=—8 5= 3 1
ON- - dcos SX .
+ 831 cos SX; + Ny e N; |G +
F=—§,?=T3 F=—‘/T§,i=§ 1
0Ny IS¢ N dcosSX N
+ cos SX1+ N 3le +
Os /3 —__ /3 /3 —__ /3 0Os
=33 5=— =38 5=— 1
42 cos5X1 + Ny feos SX N?| (5.52)
s |__/3__ 3 /3 -3 ds G
=% ,5=5" T=5",5= %" 1
N — SY
B(8) = 88 L cos SY1 + N; % Nf|G+
8 F=—\/T§,i=—§ F=—‘/T§,i=—‘/T§ s 1
0Ny SV, 4N dcosSY N*
+ cos SY1 + Ny —_— o le +
08 | __y8 ._v3 e_V3 o3 08
F=— 3 5= F=—8 5= 1
ONy == dcos SY N
+ cosSY 1+ N; - N3|G+
9s |__ 3 _ 3 __ V3 3 Os
T=%,5=-% T=%"5=—% 1
8N — dcos SY
+ E cos5Y1 + Ny cos Ni|, b — (5.53)
os =3 35— - F=3§,§=33§ 9s 1 !
N — dcos 57
B(9) = E cos SZ1 + N1 cos Nl*| +
05 | B3 . w5 Os ¢
T=—¥8 5= =8 5= ¥ 1
0Ny —~ dcos SZ .
+ cos SZ, + N, N2|PG+
s |___ 3.3 me N3 <3 Os
F=— Y3 5=Y3 F=— Y3 5=Y3 1
AN —~ dcosSZ .
+ ! cos SZ1+ N1 N3|G+
Os | __ B _ 3 o3 s__y3 Os
T=%25==-% =% 5= 1
8N — dcos 57 2
+ ! cos S71 + Ny cos Nil, (5.54)
05 | o3 S S S Is
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8N = dcos RX .
B(10) = — 1 cos BX1 + Ny o8 Ni|g+
08 | E e 3 S S S
3 3 3 3
AN — dcos RX .
+ 81 cos RX1 + Ny CO; Ny |+
8 F=—§,?=T3 F=—§,i=§ 8 1
ONy — B8cos RX .
+ cos RX1 + Ny N;|g +
s ?:ﬁ g:-ﬁ ;=3§ §=_3@ 9s 1
3’ 3 3 3
AN, — dcos RX . th
+ cos RX1+ Ny = Nilg ¢ — (5.55)
05 |ovE o3 S~ ls

AN — dcosRY
B(11) = — E cos RY1 + Ny T ) N o
08 |33 B so_v3 98 |
=73 °°=773 =73 %773
0Ny — dcos RY .
+ cos RY1 + N1 N2|G+
A S SV ; S S
n ON1 % N dcos RY N*| 4
cos
O0s |__ 3 _ 3 ! ! /3 3 Os sle
=2 T=— =G = 2 1
3’ 3 3’ 3
AN — dcos RY th
+ E cos RY1 + Ny R ) NIy p = (5.56)
95 |8 5_3 re¥Es_y3 08 1 ls
=73 =73 =73 =73
0Ny — dcosRZ .
B(12) = — cos RZ1 + N1 = Ny |+
CAJN Y. S | S v S L
3 3 3 3
0Ny — 8cos RZ .
+ cos RZ1 + N1 Na|o+
08 | 353 re_vEav3 05 |
3’ 3 3 3
N — dcos RZ
+ ! cos RZ1 + N1 = N;|G+
s F=¥8 5__ 3 F=3 s _ 3 Os N
3 3 3 3
8N — dcosRZ th
+ ! cosRZ; + Ny TR )Nzl b = (5.57)
9s F:@};:@ F=§,§=§ s 1 lS
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N- — 1¢] SX 2
B(13) = oM cos SX1 + Ny cos 2.
or e N3 /3 e N3 .3 ar . lr
A =T33 =73
AN — dcos RX 2
+ ! cos RX1 + N1 cos = Nf'G +
Os e o _ /3 o3 o3 Os . ls
3 > 3 5 5
ON1 — Hcos SX 2
+ cos SX1+ Ny - il
or F=— V3 5=V3 F=_¥3 -3 or 1 lr
3 3 3 3

ON: = dcos RX 2 .
+ cos RX1 + Ny = N2|G+
Os e 3B B e N3 /3 Os . ls
3 '°=3 3 5="3
AN . dcos SX 2
+ ! cos SX1 + Ny cos Z 4
or |__3__ 3 /3 -_ 3 or . lr
T="g3 »S=— "3 T=-g",5=— "3
ON. — dcos RX 2 .
+ 31 cos RX1 + Ny 3 ; N3|G+
s 7=ﬁ §=—ﬁ F=ﬁ E:—ﬁ s 1 S
3 3 3 3
ONy — dcos SX 2
+ ) cos SX1+ N1 3 l_+
" F=§,?=§ F=T3,§=\/T§ r 1] ‘B
0N, == dcos RX 2 .
+ cos RX1+ N1 - ~| N} | (5.58)
95 |._v/8 s_v3 —— V38 —_ /3 Os ls G
7=3 5= =3 5= 1
8N — 8cos SY 2
B(14) = F) - cos SY1 + N1 C(:; 1_+
r F=—§,?=—§ F=—§,§=_§ r 1 R
ONy = dcos RY 2 .
+ cos RY1 + N1 - = | Ny |G 4
ds e N3 o _ /3 e N3 o _ /3 s . ls
3 3 3 3
AN — 8cos SY 2
+ ! cos SY1 + Ny cos i
or |_ 3 3 _ 3 __ /3 ar lr
F=— V3 s=8 m=— 3 5=3 1
ON: B 8cos RY 2 .
+ 331 cos RY 1 + Ny 55 - N, |G +
F=—§,?=T3 F=—‘/T§,§=§ 1 s
ON, — dcos SY 2
+ cos SY1 + N1 e =+
or | _v3 .__ 3 __ /5 .__y3 Or ,) I
B T=g5=-%
ON: By 8cos RY 2 .
+ ) cos RY; + Ny 5. - N3|G +
R R F=V3 5__ V3 s N s
3 3 3 3
AN = 8cos SY 2
+ E cos SY1 + Ny cos — 4
Or |__v3._v3 __/3__y3 Or ) IR
T=-3 :8="3 T=52,5=-5
8N = dcos RY 2
+ ! cos RY; + Ny TR ) S| il (559)
Os 7=§’§=\/T§ ;=§ §=§ ds ) s
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N —~ dcosSZ 2
Bas) = | [ 2V cos 571 + Ny geoss2
or F=_ M3 = V3 F=_ V3 s__ V3 or 1 Ir
3 3 3 3
dcos RZ

i3 e e
ON1 —~ cos SZ 2
+ cosSZ1 + N1 — 4

aN — dcos 57 2
+ ! cos SZ1 + N1 o8 —+
O | 5= 3 =Bs=_v3 Or | ) Ir
3 3 3 3
ON: o RZ 2
+ ! cos RZ; + Ny cos — g +
EA SV Y =Bz 08 Is
3 3 3 > 3
0Ny 8cosSZ 2
+ cos SZ1 + N1 _+
O |oe @ 5= F= B 5= 3
8="3 3 °="3
ONy — acosRZ 2
+ cosRZy + Ny — | Ny | (5.60)
s F=Y3 5-3 F=Y3 533 ls
3 °="3 3
ON- — 8 RX
B(16) = |- E cos RX1 4+ N1 €os

AN, — dcos SX th|
+ cos SX1 + Ny - — | NY |+
Os | __vB s _V3 se_VEs__vi 05 | ]lIs
3 3 3 3
ON- — o RX t
+ |- 1 cosRX1 + N; cos —
or |_ 3 V3 _ 3 __ /3 ar lr
F=— Y8 5=V3 F=— 8 5=3 1
ON- o SX th .
+ E cosSX1+ N cos = | N3 |G 4
08 |3 53 e_vBs_vs 05 | ]ls
=="g 5="3 =="3 5=73

F=¥3 5=_ V3 V3
3 3 3 3

cos ﬁl + N1

3 Os

ON:; — 17} RX t
+ (- ! cosRX1 4+ N cos —4+
Or | _vB ; 3 __ 3 __y3 Or ) IR
T=-g »S=73 T=-3",5="3
dcos SX

th| .,
geosoSA 1) S] Ni|, (5.61)
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N = dcosRY | \ th
B(17) = 5N cos RY1 + Ny cos By
or | VB 3 __ J3__ 3 Or Ir
7=—¥3 5= 3 F=—¥3 5=_ V3 1
ON 8cos SY th .
+ 81 cos Y1 4+ Ny 3 P’ Nig +
s F=—§,?=—‘/T_ F=—§,§=_§ s 1 S
ON1 — 8cos RY th
+ |- cosRY1 + N, — 4
ar F=_3§‘§=3§ ?=_3§ §=33§ ar . lp
ON1 dcos SY th .
cos SY1 + Ny — — N2|G+
ds NV S| e N3 /3 Os ) 1ls
=—"3 =73 =73 5=73
AN — dcosRY | \ th
+ |- 1 cos RY1 + N, cos — 4
or N3 o _ V3 a3 o3 or . Ir
=73 S=—"3 =73 5=—"3
AN dcos SY th .
+ ! cos Y1 + Ny I Ng |+
Bs | _v3 .__\3 __J/3___y3 Os L) ls
=g s=—g T=g".s=— g
N, — dcosRY | \ th
+ |- 3 cos RY1 4+ N1 - — l_+
" F=\/T§’§=§ F=T3,§=§ r 1) ‘B
8N, — dcos SY th| .,
+ cos SY1 + Ny —_— —| N, (5-62)
os F=3§,§= 3 F=33§,§=33§ s 1 ls

reeEamE T

AN — dcosRZ| \ th
+ | — E cosRZy + Ny cos — 4
or e 3 /3 e 3B 3 or . lr
=—"g :*=73 =—"3 :*=73
ON dcosSZ| \ th
+ ! cos SZ1 + Ny geos>2 — N2*|G+
0s e V3 /3 e V3 o3 0s . ls
=—"3 5=73 =—"3 5=73
AN, — dcos RZ th
+ |- cos RZ1 + N1 —J,-
or F=V3 s _ /3 F=V8 s _ 3 3’!‘ 1
3 3 3
ON1 —~ BcosSZ th
+ cos SZy + Ny —
9s F=V3 5—_ V3 F=V3 s-_ 3 ls
3’ 3 3’ 3
ON. — 2] RZ th
+ |- ! cosRZ, + Ny ©os —
or /3 o3 /3 o3 or . lr
=g »S=73 =g =73
ON — dcosSZ| \ th
+ ! cos 571 + Ny TEE2TN ) 2| Np|,  (5.63)
05 | o3 =g 08 ) ls
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— dcosTX
B9 ={ (M cosTX1 + Ny €os Ni |+
Or | __ VB oo 3 re_ B so_y3 Or ¢
F=—3 5= V3 F=—¥3 5=_ Y3 1
N . dcosTX
+ 681 cosTX1+ Ny C(z; )N2*|G+
r F=—§,§=T3 F=—§,i=§ r 1
ONy — dcosTX .
+ cosTX1+ Ny - N3|G+
Or | LB e 3 VB v3 0T |
3’ 3 3 3
oM cosTX1 + Ny Geos TX| ) ) U2 (564
Or | B 3 oV _v3 O “fir
T="3 =73 T="3 5="3 1
_ dcosTY
B(20) = oM cos TY 1 + Ny cos NI+
or | __v8,__ 3 ve B B OF ¢
F=—3 5= V3 F=—¥3 5= 3 1
ONy — dcosTY .
+ cosTY1+ Ny Na|g +
or | 3 __ /3 ~ 5 __v3 Or
T=— 3 5= 3 F=— 3 5= V3 1
ONy — B8cosTY .
+ cosTY 1+ Ny Ni|. +
Or | _v3 o _ 3 oEa__yi 0T | ¢
73 5 73 5
5N cosTY; + N JcosTY cosTY Ny 2 (5.65)
or | _vi._v3 YT s or e g
1\=T,3=T 1‘=T S=T 1
ONy — BcosTZ .
B(21) = cosTZ1 + Ny NY| o+
or | __vs___ya Y SR SR N ¢
Y R/ AV R/
0N, — dcosTZ N
cosTZ1 + Ny Na|o+
or | 3 -3 V3 v3 O
=3 8="g T=—3 =3 1
N —— dcosTZ
+ oM cosTZ1 + Ny cos N3*|G+
or | _vs,__v3 VB o__v3 Or |
- 37 3 - 37" 3
— 2
L [(om cosTZ; + Ny dcosTZ Nilgt— (5.66)
Or o3 53 S . S L lr

_335(:055}1>N;|G+(N1|;=_33§7 33@COS§:§1)]\G‘|G~F

, 5=

+(N1|_ N \/§COS§)\(1> N§|G+(N1|_ V3 - \/50085}1) NI|G (5.67)
T=3",5=— %" T=13",5=5"

(5.68)
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3 cosg'El) Nyl + (N1
3

g

_§’§=§ COSSZl> NQ*'G +

+ <N1 |7=33§,§=—33§ cosSZ1> N;|g+ (N1 |7=33@’§=3§ cosSZ1) Ni|l, (5-69)
N — dcos TX
B(25) = ! cosTX1 + Ny €08 NP+
1la
s |_ V3 - V3 _ V3 — 3 Os
== Y3 5= 8 F=— Y3 5= 8 1
+ 3N1 cos’f’-)\(l-i—Nl dcosTX N;|G+
O | VB B se BB 05 |
3 3 3 °="3
ONy — dcos TX .
+13 cos TX1+ N1 5 N3|o+
8 F=§,i=—@ F=§,§=—§ 8 1
ONy — 8cos TX .
+ cosTX1+ Ny Nilg ¢ — (5.70)
os 7=33@>F= 3 =3 ,;:A@ 9s 1 l
N — dcos TY
B(26) = ! cosTY1 + Ny €08 N+
9s Os tle
F=—§,§=—§ F=—§,§=—§ 1
ONy — BcosTY .
+1 5 cosTY 1+ Ny 5 Ny, +
i 3,§=33§ F=— 3,§=33@ 8 1
n 0N, TV, 4+ N dcosTY N*| n
cos
0s | __ 3 _ 3 ! ! /3 3 Os sl
=3 5=_ =¥ 5=_ V3 1
ON _ dcosTY .
+ ! cosTY 1 + Ny cos Nilg ¢ — (5.70)
Os o3 o3 o3 o3 ds . l
=73 5=73 =73 5=73
ONy — dcosTZ .
B(27) = 5 cosTZ1 + N1 5 Ny | g+
8 F=—§,§=—§ F=—‘é§,§=—§ 8 1
ONy — dcosTZ .
+ cosTZ1+ Ny Ny |, +
08 |oe 5 a3 SIS S LA
==—"3 5=73 =-"3 5="3
ON- — o TZ
+ 1 cosTZ1 + Ny cos N;|G +
Os |__ 3 _ 3 __ V3 - 3 Os
F=Y3 5=— ¥ =Y 5= V3 1
N — dcosTZ . 2
+ 5 E cosTZ1 + Ny % Nila i (5.72)
8 F=§’§=T3 F=§,§=\/T§ 8 1 s
B (28) = — (N1|F=—§,E=—‘/T§ cos RX1) N1 | — (N1|T=_§’§=§ Ccos RX1) N;|G —
- (Nl|F=T3 3 cosRX1> Nilg — (N1|F=Tg’§=T3 cosRXl) Nilg (5-73)
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B (29) = — (N1 | va.__va cosRYl) Ni|g - (N1|__ Vi Ja cosﬁ?l) N3|g—
=— V3 5=_ 3 r=— V3 5= 3
- (N1 |;=3§,§=_33@ cos RY1) Nilg — (N1|;=3§ o3 €08 Ryl) N, (5.74)
B(30) = — (N1|T B B cosﬁl) Nf|G — (N1|?—_ﬁ 3 cosRZl) N, |G _
37T 3 - 3773

The tangent stiffness matrix K can be obtained using the local definition for the
strains and constitutive matrices as:

/ B'DBAYV, (5.76)
1%

where dV = |J|drdsdt and J,B and D are given by Equations (5.21), (5.45) and
(5.109), respectively. The numerical solutions, in Section 5.2.3, are all obtained
using 3 x 3 exact integration in (r, s)—direction in Equation (5.76), and 2, 4, 6, 8,
10 or 12 Newton—Cotes points in ¢ direction.

5.2.2 Surface geometry

In Equations (5.46)—(5.75) the cosinus terms depend on the then present state
of equilibrium via the corresponding nodal cartesian coordinate (X;,Y;, Z;,1 =
1,2,3). The equations used to describe the middle surface geometry, may be
derived from expression (4.30), in terms of a position vector emanating from the
origin of the global reference system (X,Y, Z):

r=X2+Y% + Z’ig, (577)

in which 21, 22 and 23 are unit vectors along the X, Y and Z axes, respectively,
and X, Y and Z are given by Equation (5.17). The covariant components of the
tangent vector to the middle surface, are given by Equation (4.91):

or or

T =th ae =T, (5.78)

these are vectors tangent to R and S coordinate lines, respectively. Defining the
Lame parameters A and B using Equation (4.89):

A2 =rR'rR, 32 =rsg-rg, (579)
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the unit tangent and normal vectors are given by Equations (4.91) and (4.92),
respectively:

rg cos}/jz{ r COSSE
tgp = ’7 = coslzl\/ , tg= ’F = cosS/'l\/ , (5.80)
cos RZ cosSZ
rp Xrg COS]iX
tr =tp xts=—""—0= = lcosTY |. (5.81)
cosTZ

Using Equations (5.78) and (5.79) in combination with the expressions (5.17), we
can write the explicit form of the cosinus terms fot the i*"-node of our nine node
element:

E;

cos E)\(,- = (5.82a)
VE? + F? +G?
— F
cosRY ;= ——n | (5.82b)
VE? + F? +G?
— G
cosRZ; = ——— | (5.82¢)
VE? + F? + G?
— E!
cos SX; = - = — . (5.82d)
/Ei2 + Fz'2 + Gz'2
— F!
cosSY; = - = —, (5.82e)
VEZ?+F*+G?
_ Vel
cosSZ; = - = —, (5.82f)
/EZ2 +-F;2 +G12
cos I/’)\(,- = cos I/%}\/, cos ,5/’21 — cos §1\/, cos }/EE,-, (5.82¢g)
cos f}\’i = cos }/%?, cos §)\(, — cos }/U\(,- cos ,S/’Z,-, (5.82h)
cos ﬁ,- = cos E)\CZ cos §}\/z — Cos J/ﬂ\’, cos §)\(,-, (5.82i)
where:
9 9
Bi=) 5| X0 B=2 5| Yo Gi=) 7| 2 (5.83)
i=1 i i=1 1 =1 T
2. ON; 2. ON; 2. ON;
E = ‘| X;, F'= Y, G = | Z;. 5.84
2 E R P T K
— 1 — 1 — k3
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5.2.3 Some numerical examples

The shells studied to verify the method proposed in the previous sections, are:
- a cylinder with point load;
- a vault;
- a hemisphere;

the few of which we have an analytical solution in literature (Timoshenko 1940)
and (Bernadou 1996).

5.2.3.1 The cylinder

The cylinder we have analyzed is a tube with radius R = 300, lenght L = 600 and is
subject to two radial loads P = 1 which are opposite diametrically (Figure 5.2(a)).
The ends of the cylinder are constrained by a diaphragm so that U = V = 0.
More, we have set D = Es®/12(1 — v?) with E = 3-10° and v = 0.3. We have to
remember that those adimensional parameters which have to be included into the
model, are: R/s = L/h =100or s/R = h/L = 0.01. In order to simplify the mesh
creation and to reduce the size of dates, we have used the cylinder symmetry by
studying only an octave of it. The Table 5.1 shows the good convergence in terms
of displacements as well as stresses with BGMI in comparison to the selective and
reduced integration. Furthermore Figure 5.3 shows the displacement field and the
stress—through—thickness behaviour under the pinched load.

Table 5.1: Comparison of values by changing the finite element model.

Nodes Number Integration
w Ng Ny
per element | of elements type
3x3 0.0016836 | 123.34 | 90.173
3x2 0.15541 | 391.84 | 417.27
9 3x3
2x2 0.20923 289.64 | 351.07
BGMI 0.18130 | 363.53 | 450.83
Exact 0.1825 | 620 | 520
value
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X,U P=10000

R=300{ !

free

Figure 5.2: Some numerical examples.
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5.2.3.2 The vault

Another application of the code has been made on a vault having a lenght L = 50
and thickness s = 0.25, subject to a unitary dead load. (Figure 5.2(c)). We
have set £ = 4.32 - 10% and v = 0.0; in this case the parameters which have to
be included into the BGMI are: s/R = h/L = 0.001 or R/s = L/h = 100. In
the cylinder, studied in the previous section, the shear locking prevails, on the
contrary, the vault is a kind problem where the shear deformation energy is much
lower with respect to the membrane one, and so it is dominated by the membrane
locking. In Table 5.2 we show the convergence of the displacement patter also with
very few elements in the mesh.

Table 5.2: Displacement pattern for the vault problem.

Nodes Number Integration W CPU
per element | of elements type seconds
3x3 0.00049992 5.11
3x2 0.00052161 5.17
9 3x3
2x2 0.00087434 4.79
BGMI 0.00084472 5.66
E
xact 1 0.00084
value

5.2.3.3 The hemisphere

The last analyzed structure is an hemisphere simmetrically loaded with a radius
R = 10 and thickness s = 0.04. We have set E = 6.825- 107 and v = 0.3 and
R/s = L/h = 250. When the surface is not perforated (6 = 0) in literature we can
find that the theoretical value of the displacement of the loaded nodes is 92.24.
This kind of problem is dominated by the membrane locking, as well as shear
loacking. In this case the surface has a double curvature. The 9 nodes element
becomes singular by using the reduced integration, while with the selective one
it is stiff and converges slowly; with BGMI we obtain exactly the theoretical value.

An efficient nine node element devoid of shear and membrane locking, even in the
extreme limit, has been proposed. The results of the test problems solved show
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that the proposed element not only has a good convergence at the thin limit but
also yield accurate predictions even with coarse mesh.

5.2.4 Geometric nonlinear formulations (small strains)

The main topic of this section is to formulate an incremental analysis: being known
the configuration at time (load level) ¢ we search for the configuration at time (load
level) t+ At (Onate and Oliver 1986). For this purpose we make use of the Update
Lagrangian Formulation (UL), but, at first we prefer to introduce the basics of the
Total Lagrangian Formulation (TL).

5.2.4.1 Total Lagrangian Formulation

For the equilibrium configuration at time ¢+ At, the Principle of Virtual Work (Bathe
1996), states:

A , HALS: 6 (afe) 0dv = AR, (5.85)

In the above we have use Bathe’s notation (Bathe 1996, pag.523) and:

e tS is the 289 Piola—Kirchhoff stress tensor, corresponding to the t—configura-
tion and referred to the configuration at time ¢t = 0 (undeformed) (Marsden
and Hughes 1983). It should be remembered that §S is the pull-back of the
Kirchhoff stress tensor tr from the t—configuration to the configuration at
t = 0 (Bonet and Wood 1997, pag.63).

Defining a coordinate system in the t—configuration (spatial configuration), with
coordinates (*z%;i = 1,2,3), we can write:

'r="7""g'g;, (5.86)
where:
trid = zta“ (5.87)

and g; are the covariant base vectors obtained from Equation (4.35).

e % and fp: densities in the t = 0 and t—configuration respectively.

t

e tgil: contravariant components of the Cauchy stress tensor in the spatial

configuration.
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The coordinate system (X,Y, Z), previously introduced (pag. 196), in the t =
0 configuration (reference configuration), can be renamed in indicial notation
(X1, T =1,2,3), in order to write:

ts =15 G;Gy, (5.88)

where G are the covariant base vectors referred to the reference configuration.
Using the standard notation of manifold analysis (Berger and Gostiaux 1988):

057 = (F1); ' (P (5.89)
where:
. Olxt
t —
ofr = axT’ (5.90)

is the mixed components of the deformation gradient tensor (Malvern 1969).

e le: Green—Lagrange strain tensor, corresponding to the ¢—configuration and
referred to the configuration at time ¢ = 0 (Bathe 1996). Defining in the
spatial configuration the Almansi strain tensor ‘e (Malvern 1969) we can
write:

bers = (5F)) tei (4F)’,. (5.91)

e !R: virtual work of the external loads acting in the t—configuration.

We will now develop the incremental equations working in the element natural
coordinate system (r,s,t) (the convective system introduced at pag. 196), where
we introduce the following notations:

e !g;: covariant base vectors in the spatial configuration (natural system);
e G;: covariant base vectors in the reference configuration (natural system).

In the spatial configuration:

‘o ="' 'g'g;, (5.92)
br =17 'gi'g;, (5.93)
‘e = "¢V 'g'g;, (5.94)
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It is worth pointing out that (Fung 1965):

5T =47, (5.97)
i, (5.98)

for I =4 and J = j.
For the incremental step from the t—configuration to the (¢ + At)—configuration:

HALSIT _ b1 | (S1T (5.99)
increment

e = e+ i1y (5.100)
increment

ofry = ofiu + OﬁfJ (5.101)

linear terms nonlinear terms

For linearizing the step, we use:

oS = oCT7E L gékr, (5.102)
601y = 00€1J. (5103)

In Equation (5.102) (C is the tangent constitutive tensor in the reference config-
uration.
Hence, the linearized incremental equations are:

/ o(:'”KLoéKLfs(oéIJ)OdV‘i'/ 581§ (ofirs) 0V =
oy oy
= tHAlyg A £S5 (017)%dV.  (5.104)
\4

As it is well known, the (¢ + At)—configuration is determined using the above
equation in an iterative scheme. For our element we interpolate the incremental
displacement and rotations using Equations (5.13)—(5.15); the in-layer incremental
strains are derived from the displacement interpolations using Equation (5.44). In
this way, from expression (5.104), an equation of the form:

(tKp + §Kn) U = 2R — IF, (5.105)
is obtained for the linearized incremental step. In Equation (5.105) we have:
e !Ky: linear stiffness matrix;

° SKNL: nonlinear stiffness matrix;
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e U: vector of generalized incremental displacements;

o HAIR: vector of nodal forces equivalent (in the sense of the Principle of
Virtual Work) to the external loads acting at (¢t + At);

e LF: vector of nodal forces equivalent to the stresses acting at time ¢.

The solution of Equation (5.105) provides a linearized approximation to the step
from ¢ to (t + At). An iterative scheme (Bathe and Cimento 1980) is used until
the following equation:

HAIR, AR = 0, (5.106)

is satisfied within certain computational tolerances.

5.2.4.2 Update Lagrangian Formulation

In the Update Lagrangian description all static and kinematic variables are referred
to the configuration at time ¢. This implies that the reference configuration is
conveniently updated after each displacement increment solution has been found.
However, the basic steps for deriving the finite element formulation do not differ
much from those followed for the Total Lagrangian description. Moreover, all
the relevant finite element matrices can be easily deduced from those obtained in
previous sections simply taking into account the following:

1. all derivatives appearing in the expressions of the strain matrices (5.45) are
now with respect to the coordinates at time ¢;

2. the Jacobian matrix (5.21) contains the derivatives of the coordinates of the
configuration at time ¢ with respect to the natural coordinates;

3. the initial displacement effect is automatically taken into account by updat-
ing the reference configuration;

4. the volume and surface of the shell correspond to the actual values in the
configuration ¢;

5. the 2°4 Piola—Kirchhoff stresses S are referred to the configuration at time
t and, thus, become identical to the Cauchy (true) stress . The Cauchy
stresses are updated after each new displacement increment has been found,
and then they are appropriately transformed to the next reference configu-
ration,;

6. a final point should be said about the constitutive equation to be used. It can
be shown that both the Updated and Total Lagrangian formulation give the
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same results if the coefficients of the constitutive matrix in both formulation
are related by the expressions:

i j k !
Ox' Oz 0Oz" Oz TIKL

Ok — o
0XT0X7JOXK oXT ’

(5.107)

where, as usual, indexes 0 and ¢ refer to the initial configuration and the config-
uration at time ¢, respectively. Moreover, it can be proved (Bathe 1996) that for
small strain conditions in a UL formulation, Equation (5.107) gives approximately:

1Ok o o CTVEL — Equation (4.172). (5.108)

In our formulation, the stress—strain relation can be written, using Equations (4.172)
and (5.108), in the following way:

SRR 1 cos® a + vsin® « —cos a 0 0
55 4 cos? a + vsin? a 1 —cos « 0 0 ERR
rs| _ Ecscta 14+ cos?2a —vsin2a 55
o = 2 —cosa —cos a _ 0 0 TRS
oBtT (1 -v?) 2 YRT
sT 0 0 0 G 0 ST
a 0 0 0 0 G
(5.109)

5.3 A monodimensional application of BGMI

5.3.1 A survey of arch finite elements

The development of finite elements for curved structural members has received a
lot of attention in recent years (Petrov and Géradin 1998). The main interest of
the arch element is that it would be able to form a simple case of a more general
curved shell.

Classical curved low order displacement—based isoparametric finite elements, when
used to model thin and deep—shallow shear—flexible arches, show a critical be-
haviour of two kinds (Stolarski and Belytschko 1983): firstly, there is excessively
stiff behaviour (called shear—locking) due to overestimating the shear strain en-
ergy over its bending counterpart; secondly, inextensional or nearly inextensional
deformations are poorly represented, thus resulting in an inability of an element
to bend without stretching (membrane-locking).

In recent years a wide range of researches have been proposed for the develop-
ment of suitable and efficient finite element models for the analysis of thin curved
structures. Among them the following are worth mentioning: selective-reduced
integration (Zienkiewicz, Taylor, and Too 1971; Pawsey and Clough 1971; Fried
1973; Hughes, Taylor, and Kanoknukulchai 1977; Pugh, Hinton, and Zienkiewicz
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1978; Noor and Peters 1981; Pandian, AppaRao, and Chandra 1989), which is
widely used for eliminating higher—order components in strain distributions. Un-
fortunately, these methods may lead to undesirable “mechanism” with zero—energy
modes, due to a low rank stiffness matrix. Furthermore, they may be accompanied
by a deterioration of membrane-bending coupling (Stolarski and Belytschko 1983),
which is one of the essential features of a curved element; it is also of interest to
underline that the convergence is not achieved “from below” and is not monotonic
because reduced integration does not always ensure variational correctness. In the
Discrete Kirchhoff’s theory (Wemper, Oden, and Kross 1968; Batoz, Bathe, and
Ho 1980; Batoz 1982), to obtain the behaviour of thin finite element, constraints
of zero transverse shear strains are imposed at a discrete number of points.

The earliest attempts to idealize curved thin structures, free of membrane lock-
ing, attributed at first to an unsatisfactory description by lower—order isopara-
metric elements of the unstressed rigid—body modes in a strain—free problem, led
Dawe (Dawe 1974a; Dawe 1974b) and Ashwell (Ashwell and Gallagher 1976) to
overcome the problem by using high—order independent polynomial representa-
tion (quintic—quintic) or by incorporating trigonometric displacement fields. Meck
in 1980 showed that failures, which have been observed when using classical poly-
nomial functions for curved elements, were not due to the neglect of rigid—body
motions, but due to the lack of coupling between normal and tangential displace-
ments in which the order of interpolation for the deflection is one order lower than
that for the tangential displacement. The C' element proposed by Ashwell, Sabir,
and Roberts in 1971, with constant strain and linear bending, is a good alternative
to the use of higher order polynomial representation.

In the field consistency approach (Prathap and Bhashyam 1982; Prathap and
Viswanath 1983; Prathap 1985b; Prathap 1985a; Babu and Prathap 1986; Prathap
and Babu 1986; Prathap and Naganarayana 1990; Prathap and Shashirekha 1993),
that ensures a variationally correct and orthogonally consistent strain field by a
reconstitution technique, all “spurious” shear constraints are identified and then
rejected using a field consistent redistribution strategy applied to shape functions.
More recently Lee, Koo, and Choi (1996) proposed a modified Babu and Prathap’s
element (Babu and Prathap 1986) using the separation of transverse displacement
into bending and shear deflection, developing a particular shear strain constant
and linear curvature element consistent in membrane field. Relaxation of penalty
constraints (membrane and shear) at the element level, proposed by Tessler and
Hughes in 1983 and slightly modified by Tessler and Spiridigliozzi in 1986, yielded
constant strain two—node element using a particular anisoparametric formulation
with a non—uniform order of kinematic interpolation scheme.

Recently, Shi and Voyiadjis, using a quasi—conforming element technique (Atluri
1983), presented a shear—flexible two—node arch/beam finite element with lin-
ear bending assumed strain, derived not so easily by the weak form of strain—
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displacement relations; good and accurate results are obtained by Lee and Sin
using to start with, a threenode element based on curvature and then reduced,
by a transformation matrix between nodal curvature and nodal displacements, into
a two—node configuration.

More recently, the material finite element, proposed by Raveendranath, Singh,
and Pradhan (1999), starting from cubic radial displacement and then using the
element equilibrium equations, derives a coupled displacement field (with quartic
tangetial displacement and section rotation) in which the shape functions contain
coefficients involving material properties of the element (Raveendranath, Singh,
and Rao 2001).

In another way, a considerably large number of hybrid elements (Spilker and Munir
1980), with consistent transverse shear stress distributions, and variational mixed
methods based on Hellinger—Reissner or Hu—Washizu principles have been pub-
lished to study locking phenomena and some of them have been considered effec-
tive devices to overcome such difficulty (Noor and Peters 1981; Bathe and Dvorkin
1985; Reddy and Volpi 1992; Bathe 1996). Even if, in view of the equivalence be-
tween reduced—selective integration techniques and mixed finite element (Malkus
and Hughes 1978), in some cases of beams and flat plates, some mixed models
exhibit membrane and shear locking.

It is curious to emphasize that, in some cases, an idealization of curved members
with straight line beam elements achieves acceptable accuracy with many fewer
elements (Kikuchi 1982; Yamamoto and Ohtsubo 1982; Kikuchi and Tanizawa
1984) in comparison with the above-mentioned elements.

More recently steps have been developed in the direction of meshless methods to
solve classical locking problems with finite element methods (Liu and Donning
1998) in the field of shear—deformable curved beams and plates.

All the above approaches have been successfully applied to reduce locking with
different type of “tricks”, achieving in some cases, good levels of accuracy, in spite
of more complex mathematical formulations and computational effort, leading to a
hard introduction in a general purpose finite element programmes and an unlikely
extension to non-linear formulations. Aim of this section is the development of
simple three-node (9 degrees of freedom) and five-node (15 degrees of freedom)
curved shear—flexible beam elements, which should be able to satisfy the following
requirements:

1. the element should be able to avoid membrane and shear locking and violent
stress oscillations in the thin limit;

2. the element should be applicable to any arch’s shape (shallow—deep);
3. accurate geometry modelling;

4. the element should not contain any zero energy modes or mechanisms;
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5. the theory should not be formulated using correction numerical factors;
6. the element should possess a fast and monotonic convergence;

7. numerical efficiency.

The main features of this element lies in the Based—Gauss—Mixed—Interpolation
(BGMI) (Gobetti and Nascimbene 2001) of the normal/tangential generalized dis-
placements and of the transverse shear /membrane strains. The functions shaping
the displacement field are the classical one, on the contrary, because of the pres-
ence in the model of shear, the component of the transverse shear strain is shaped
by means of suitable functions defined over Gauss integration points. Further-
more we have incorporated the possibility of a layered arch and generic form of
transverse section to take into account composite material and initial self-stresses.
The formulation is applied to a great number of problems to verify the concept
employed and its capabilities of the analysis.

5.3.2 The arch finite element with BGMI
5.3.2.1 Basic equations

Herein, we follow exactly the same strategy presented in Section 5.2 concerning
the shell element.

Let ab represent an infinitely small element cut from a curved structural beam
element by one pair of planes normal to the middle axis of the arch. Taking the
curvilinear coordinates axes R tangent at middle line and S normal, as shown
in Figure 5.4, we denote by rg the radius of curvature in the (R, S) plane. The
thickness of the arch, which is assumed constant, is denoted by h. As a consequence
of deformation the element dR will take a new configuration dR due to:

- membrane strain eg;
- shear strain ;

- change of the angle §r between tangent directions before and after deforma-
tion.
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S ——— = initial configuration S
- - - - =deformed configuration

Ts

(a) 1 (b)

Figure 5.4: Membrane strain (a); shear strain (b).

These three strain measures may be expressed in terms of the tangential and
normal displacements u; and v, respectively, and their derivatives:

_dR—dR _ du; | v, :
ER= —m— =R + s < Fig.5.4(a), (5.110)
_ dvny & Fig.5.4(b) (5.111)
— iR g.0. ; .
oy dvngy .
On ="+ « Fig.5.5(a), (5.112)
_ dfg :
X="7% « Fig.5.5(b), (5.113)

and, according to the fact that dv, = dvn, + dvne, we obtain, substituting this
relation into Equations (5.111) and (5.112), a new espression for shear strain that
reads:

y==2 L g (5.114)
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AS
a
R
dR
b
Or
0
T
dfg
d d
) da — dfg

Figure 5.5: Section rotation (a); curvature (b).

With reference to Figure 5.7, the unit membrane elongation of a thin lamina at a
distance S from the middle surface is:

g = 'S
_’f's—l-S

1
(er—Sx) = |— | (er—Sx). (5.115)
1+ 2
In our formulation the thickness h of the arch will always be assumed small in
comparison to radii of curvature: in such a case the quantity S/rg can be neglected
in comparison with unity and we are able to rewrite Equation (5.115):

e=¢ep— Sx. (5.116)

Furthermore, taking into account the last hypothesis (rg > 1) applied to the shear
strain (5.114) and substituting relations (5.110) and (5.113) in Equation (5.116),
the membrane-bending strain eggr and shear strain ygg of the arch element of
length [ are given by the strain—displacement relations:

_ 6Ut 6012
ERR = R S R’ (5.117)
ovy,
YRS = B — 0z, (5.118)



FINITE ELEMENTS FOR SHELLS AND CURVED MEMBERS

or in matrix form:

0 0
il S 7| [u
ERR| _ |OR 0 S@R vt (5.119)
YRS 0 i -1 en ’
OR f

where u; and v,, denote respectively the tangential and normal displacements, and
Or the section rotation of the centroid of the section. We have defined Equa-
tion (5.117) as membrane-bending strain because it contains a coupling of flexural
and axial deformation in this model of a curved beam. The main assumption
underlying the present formulation states that the cross section of the curved
beam will remain plane during each loading step. In the elastic—isotropic range,
a formulation has been herein developed, which takes into account a cross section
conceived as a set of strips in order to permit the analysis of generic cross—sections
(see Figure 5.7). Every strip is identified by two different sets of nodal points
along its border lines as we have depicted in Figure 5.7. These nodes define an
intrinsic curvilinear coordinate system (R,S) having the origin at the centroid of
the strip, the principal ones lying on the baricentral line of the strip along the
element length [ of the beam and supporting the curvilinear intrinsic axis R. A
secondary group of nodes establishes the shape of the cross sections of the arch
and hence a S straight axis normal to the previous ones by the right hand rule
through the thickness h of the strip. For computational reasons we introduce a
natural coordinate system (r, s) with variables normalized in the range of variation
(—1,1), such that:

2 2

r=-R, and s==S. (5.120)
l h

The indipendent variables u;, v, and g can be expressed with reference to the

generalized displacements u, v and 6 of the arch nodes (centroids of an assigned

number of cross sections along the element axis) within the (z,y) global coordinates

system:

u; = ucos Rz + v cos Ry, (5.121)
on = —ucos Ry + v cos Rz, (5.122)
Or =0, (5.123)
or in matrix form:
Ut cosl/%} cos}/ﬁ; O |uw
Un| = |—cosRy cosRx 0| |v]- (5.124)
Or 0 0 1] [0
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S
dR=rd) — 1§78
N i—layer
dR, by |,
da
aa
Figure 5.6: Static variable in a curved
beam. Figure 5.7: Section geometry.
Finally, substituting Equation (5.124) in Equation (5.119) we obtain:
0 A — N —
ERR = —S% + % cos Rx + u@c((;isRRx + % cos Ry + U@cg;Ry ,  (5.125)
ou = o cos ]/%z/ ov = dcos Rz
_|_p_0u _ ov g oS L 12
YRS l 0 GRCOSRy YR +6RcosR;c+v 3R (5.126)

In Equations (5.124), (5.125) and (5.126) the terms cos Rz and cos Ry are needed
to permit the orthogonal transformation between the (R, S) and (z,y) coordinate
system.

5.3.2.2 Principle of virtual work

Figure 5.6 depicts an infinitely small portion of the centerline arch element ab= dR
loaded by a transversal fg, tangential fs loads per unit length and a moment m.
Stress resultants are the axial forces IV, transverse shear T' and bending moments
M at sections a and b of the arch. We adopt sign conventions so that the six
resultants as shown in Figure 5.6 are positive. The equilibrium equations of forces
and moments are written as follows:

N +dN — Ncosdf +Tsindf + fsdR =0, (5.127)
T +dTl — Nsindd — T cosdf + frdR = 0, (5.128)
M +dM — M +TdRcosdf + mdR = 0. (5.129)

Now using the following hyphotesis:
cosdf =21, sindf = d#, dR = rgdf, (5.130)
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we obtain:

dN T
— + — = 131
iR + + fs =0, (5.131)
dl' N

_ = 132
iR +fr=0, (5.132)
dM
4T = 1
iR +T+m=0 (5.133)

Consider infinitesimal virtual displacements from the equilibrium configuration,
with components dug, dv,, and §0g function of the R variable. Thus, the virtual
strains and rotations associated with the infinitesimal virtual displacement distri-
bution, reads:

déut

06r = R
dévn,

=R
_ dotg
XN="R

vy,
T (5.134)
_ 5o (5.135)

rs
(5.136)

For the equilibrium configuration the virtual work due to external loads and gen-
eralized internal nodal loads, may be written as:

sWent = / (fsduy + frOvn + mbOR)dR + |NSu; + Tdv, + Mbg|¢,  (5.137)
R

The second term in Equation (5.137) can be rewritten:

/R d(Nduy) N d(Tovn) | d(MOR)] .y _
0 dR dR dR
R
dN (duy) dT (dv,) dM (dOR)
—_— N —ov, + T — M .
/0 [dR6ut+ 6dR +dR5v + 6dR +dR66R+ 6dR dR
(5.138)
Now we use Equation (5.138) into (5.137) and obtain:
dN dr dM
ext __ bt et _
)% —/R [(dR +fs> dug + (dR +fR> dvn + (dR +m> d0p+
dduy ddvy, débr
N T M 1
+ IR + iR + iR ]dR, (5.139)
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and using equilibrium relations (5.131)—(5.133) with regard of (5.134)—(5.136):
mem}Frane ben}x[:\ling
sTest — / ( Noen +T6v+ Mox)dR, (5.140)
R 4
shear

and the kinematic variables conjugate to N, T and M are eg,~y and x. The coeffi-
cients in the variational form of the virtual work (5.140) are usually connected by
the following inequalities:

E > Gk >> ER?, (5.141)

which state that these parameters act, when a curved beam becomes thin (h/R —
0), as penalty constraints on the membrane and shear energy terms. Most of the
strain energy in a thick beam goes into shear deformation, whereas in a thin beam,
most energy goes into bending strain. Shear locking appears in a formulation which
is not able to represent a state of zero shear in the thin limit independent of the
mesh size. In a thin limit the coefficient for the shear is h and the coefficient of the
bending term is of order h®, so the first one becomes much larger than the latter as
h — 0. In a curved structure membrane action comes from the coupling of bending
and membrane deformation. Membrane locking appears when this coupling is
inconsistent (Stolarski and Belytschko 1982) and the interpolation functions are
not able to describe a state of inextensional bending.

5.3.2.3 Discretization

As is well known the isoparametric approach (Crisfield 1986) states that the same
approximated functions modelling the displacement field have to be used to de-
scribe the shape of the field itself. First of all, the formulation adopted herein
permits the introduction of identical discretizing functions for both transversal
displacement and rotation of a section. Moreover, having in mind the curvilinear
shape of the element which is going to be formulated, the use of the same functions
describing the axial displacement seems to be suitable, so the following relations
hold for a three and five node elements:

3orb
u= Y Nu;, (5.142)
i=1

3orb
v=Y Nuwj, (5.143)
i=1

3orb

0= > Nt (5.144)
=1
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where N;(i = 1,2, 3 or 5) are the shape functions, all second order polynomials for
three—node element:

1 1
N1=§(1—7“)—N3, N2=§(1+T)_N3; N3:(1_T2)7 (5145)

and for a five-node element:

NI = %(1 _r)— %N3 +r(1l—1?) (% - r) + %r(l —r?) (% + r) . (5.146)
N} = %(1 +7)— %N3 —r(1—1?) (% + r) - %r(l ) (% - r) , (5.147)
Ny = (1 =7 +2r(1 —1?) (% - r) —2r(1—1?) (% + r) ; (5.148)
N = —gr(l —r?) (% - r) , (5.149)
Ny = Sr ) (% +r) . (5.150)

The expressions (5.145) and (5.146)—(5.150) can also be used to describe the ge-
ometry of the straight or of the curvilinear beam element, within the frame of
the isoparametric approach. The substitution of Equations (5.120) and (5.142) to
(5.145) or (5.150) into Equations (5.125) and (5.126) gives unsatisfactory results
from several points of view:

3or5 =
N _ .
€ERR = Z (%ul cos Rz; + Niui%>
=t N (5.151)
ON; = Ocos Ry, h ON;
-5 Vi i+ Nivi———— | = siz =5 0i]
+<6vaosRy,+ ViR ) 826R9
3orb =
ON; — 0 cos Ry,
YRS = z (—ﬁui cos Ry, — NZUTy)
=t (5.152)

ON; —~ 0 cos }/%}Z
+ <ﬁv, cos Rx; + N,UZT> — OZN,] .

First of all the tangential coefficient yYrs has a more refined definition in terms
of the basic variables of the discretization because it is described by a higher or-
der polynomial than the strain rate of deformation eggr. This fact produces an
incorrect estimation of the shear deformation in comparison with the strain due
to bending. This is particularly evident at the lower thickness limit (h/R — 0)
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because of the different rate of velocity shown by the two different contributions
to the global deformation energy (respectively bending and shear types as shown
in Equation (5.140)), as they tend zero together with the thickness. Our proce-
dure provides a solution scheme the main advantage of which is its compatibility
with the exact solution whatever the choice of integration scheme, regardless the
number of nodes employed in describing the element.

The incorrect evaluation of the two components of the strain energy seems to be
ascribed, as suggested by some heuristic improvement known as reduced integra-
tion schemes, to a too high polynomials degree of the function shaping the tensor
components (5.151) and (5.152). Looking back to the difficulties related to the non
pertinent choice of the polynomials degree, this procedure follows the strategy of
decreasing the yrs and egg polynomials order (first order in this three-node el-
ement and second order in five-node element) by means of new, suitable shape
functions. Let us introduce:

* _ * % * %
{ TRs = Nl*’yfwl + Niryfﬁ < three-node, (5.153)
€rr = N{€gr +Niekpo
7525 = N£7§251 + N2:’Y£°252 + N327§253 + N{7§254 < five_node.
€rr = Nregp + Nyegpo + Nsegps + Ni€gpa
(5.154)

or in matrix form:

* * * F * % * * * 5* * _ %
Trs = [Nl Nz] [WfSI] =Ny €RR = [Nl N2] [Efm] =N*e" (5.155)
RS2 RR2

-710351-
Yhs =[NP Ng Ny Ng] |TES?| = N°ye, (5.156a)
7{353
L YRS4.]
ERR1
eqr=[N7 N5 Ng Ni] Zfﬂ"’ = N°¢°, (5.156b)
RR3
| ERR4

where a new set of shape functions is defined for a threenode element:

. 3 (V3 . 3 (V3
Nl—ﬁ<?—r), and NZ—Q—\/E(?+T>, (5.157)
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and for five—node:

No__w 11y 3  \(L_1/ 3

v V30 2 2\ 15+230 2 2\ 15+2/30 (5.158)
1.1y 3 |
2 2\ 15+2v30 )’

No__w T rj 3  \(L_1/ 35 |

2 V30 2 2\ 15+230 2 2\ 15+2V30 (5.159)
1.1 % .
2 2\ 15+2v30 )’

NO — 15+ 2v30 T vy 3 N (L_1/ 3 |

5 V30 2 2\ 15+230 2 2\ 15+2/30 (5.160)
11 |
2 2\15+2v30 )’

NO — 15 +2v30 1 ry 3  \(L 1/ 35 |

4 V30 2 2\ 15+2v30 2 2\ 15+2v30 (5.161)
L s |
2 2\ 15+2v30 )’

one degree lower and defined at the two and four Gauss points, which exactly inte-
grate the flexural strain energy. The use of Equations (5.153) or (5.154) now gives
for yrs and egg a contrasting definition because vgrs and eggr were previously de-
fined in a slightly different way in Equations (5.126) and (5.125). This incoherence
can be removed by imposing the coincidence of the two shear—polynomials (5.155);
or (5.156a) and (5.152); and the coincidence of the two membrane—polynomials
(5.155)2 or relation (5.156b) and (5.151) at a number of selected points. To this
purpose the Gauss integration points have proved to be very efficient. Here is
developed the three—node case; we can write the expression for a five—node in a
straightforward manner. Referring to the Equations (5.120), (5.152) and (5.155)
we have:

= (5.162)
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[Nf’Y;le + N;’Yfzsz]

r—
3 —
ON; =~ O cos Ry,
= Z - u; cos Ry, — N; ki L) I
4 or | __v3 _ 3 or
=1 T=—-3 r=—-23
ON; — dcosRr; \ | 2
+ v; cos Rx; + N; vim - —6;N; ,
or |,—_vs Y or l e /3
3 3 3
(5.163)
[NTVRs1 + N3Vksa) =
r:+@
3 —
N — )
= _oNi u; cos Ry; — N; i 9 cos Ry;
P or Y. | r—t 33 or
N, —~ Rz; 2
+ ON; v; cos Rz + N; v; Ocos Ra; | | 2 0;N; ,
or Y 1 Y or l Y
(5.164)
J
[ TRs1 ] =~* =BU, (5.165)
VRS2
and referring to the Equations (5.120), (5.151) and (5.155)2 we have:
€RR = €RR = ¢e* =BT, (5.166)
r::l:? r::l:g

where U = [u; v 61 ---u3 v3 03]T is the nodal displacement vector in the global
reference system. The final result is:

R
ves =[Ny N;] BU=B U. (5.167)

U=B U (5.168)
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Now we can write:

1x9
t
=
€7 B
RR ] =BU=| ... |U, (5.169)
Yrs 1x9
a
B
where:
' N. — i
B (i=1,4,7) = Kh cos Rz; + N; 8C°SR”’J> Nyl o+
A, pm—x3  Or c.
3 3
N — Rz; 2
+ ON; cos Rz + N; 9 cos R, Ny |7 1=123
or r:—',—? T:+§ or G. l
(5.170)
= ON; — Ocos Ry,
B (i=258)= K_J cos Ry; + N yf) N+
T | ,—_ V3 r=— V3 0 G.
3 3
ON: — dcos Ry ; 2
+ | =2 cos Ry; + N; b | Ny - j=1,2,3
or =43 r=t 3 or all
(5.171)
ON; ON 2
B (i=36,9)=- |22 Nyl o+t Ny| |75 J=12,3
o =z g, O [mys Tlg | 172
(5.172)
— ON; — OcosRy;
B(i=1,4,7=||-%2 cos Ry; — N; Yi N+
or |,_ v ’ =@ or G
3 3 ’
ON; — d cos Ry 2
+ | —=2 cos Ry; — N; Ui N3 |7 i=123
or Y 1 r=t 3 or a!
(5.173)

241



Roberto Nascimbene Sail Modelling for Maximal Speed Optimum Design

= N s Rz
Bli=258) = (%N cos Rz; + N; 9cos Ra; N¥| o+
or |,.—_vs p—_v3i Or G.
3 3
ON; = 8 cos Rz; 2
+ | =2 cos Rx; + N; geos N3 - j=12,3
or |,y v rmgg  Or al
(5.174)
B(i = 3,6,9) = —N; N} —N; N} j=1,2,3. (5.175)
rzfﬁ G. r=+£ G.
3 3

where we have defined with the subscript G. the actual Gauss point depending on
the exact integration scheme.

5.3.2.4 Middle line geometry

In the Equations (5.170)—(5.175) the functions of the R variable cos Rz and cos Ry
depend on the then present state of equilibrium via the corresponding nodal carte-
sian coordinate (z;,y;,% = 1,2, 3). The equation used to describe the middle line,
may be written in terms of a position vector emanating from the origin of the
global reference system (z,y):

r=zu+yv, (5.176)

in which u and v are unit vectors along the z and y axes, respectively. The
derivative of r with respect to the curvilinear coordinates is considered:

or

ﬁ =TR, (5177)
this is a vector tangent to R coordinate line. Defining the Lame parameter A:
A2 =T R IR, (5178)
the unit tangent vector is:
. E
cosRrx| _rr |\/EZ+ E2
tp = cos@ =1 " F (5.179)
VEE F?
where:
3orb
ON;
E = a—zmh (5.180)
i=1 r
3orb
ON;
F=>" 6—szi. (5.181)
i=1
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Moreover in previous calculations the shape functions IV; were assumed to be
dependent solely on the variable r. With a small change in their definition it is
possible explicitly to introduce their dependence on a second indipendent variable
s through the thickness:

Niopi = N; (%(1 + s)) and  Npottomi = Vs (%(1 - s)) . (5.182)
The dependence on variable r and s of the shape functions thus introduced, gives
two great advantages even if produces an increase in the consumption of computer
time. The use of two local coordinates facilitates the evaluation of the matrices
related to the discretized problem in terms of the global coordinates z and y,
simply following the strategy stated by the isoparametric approach:

- 3orb " 3orb "
[ :| = Z Ntopi(ra 5) [ Z:| + Z Nbottomi(Tas) |: !
Yy i=1 Yy top

] (5.183)
4 i—1 Yi bottom

On the other hand the introduction of the coordinate s in the formulas governing
the phenomenon is only a first step towards a more complex formulation of the
model, which is invoked by several problems involving particular aspects of curved
beam analysis, such as that of layered materials or of material of which a known
initial stress distribution throughout the thickness has to be taken into account.
From this point of view the portion of the area which corresponds to the beam
has to be divided into strips parallel to the axis of the beam (Figure 5.7) so that
in each strip the numerical evaluation of the then present mechanical properties
may be performed indipendently, the only relationship between them being the
compatibility of the displacement through the thickness.

5.3.2.5 Constitutive law and stiffness matrix

For an elastic isotropic material, the stress vector is related to the strain vector as
follows:

el = Lo el Bl 5180
or in compact form:
o = De, (5.185)
where instead of € we use €* for a three—node and e° for a five—node.
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Transverse
Section

Figure 5.8: A quarter—circular can-
tilever ring. Figure 5.9: A pinched ring.

5.3.3 Some numerical examples

Here we introduce three typical examples of the shear-membrane locking, fre-
quently used to test the capability and effectiveness of the element developed.
The geometrical dimensions and the physical material parameters employed for
the test problems are in consistent units; shear coorection factor k¥ = 5/6 is used
in Equations (5.186)—(5.190).

5.3.3.1 Test case 1: a quarter—circular cantilever ring

The quarter—circular cantilever ring (Figure 5.8) is subjected to a radial point load
at the free end. This moderately deep arch configuration has been idealized using
one and two three node elements; Table 5.3 shows that the results of the present
analysis compare very well with the Castigliano’s solutions for radial displacement
(wez ), tangential displacement (ue,) and section rotation (6. ):

TPR3 7PR 7PR
Wea =~ ( AET T 1G4k T 4EA> ’ (5-186)
PR} PR PR
Yer = 9ET ~ 2GAk 2EA’ (5.187)
PR2
s = . (5.188)

Furthermore Table 5.3 shows the convergence with respect to mesh size (number
of elements used) and the patterns for fixed mesh and variable slenderness ratio
R/h. The element yields accurate solution over the entire range of slenderness
ratio (R/h) avoiding any deterioration in the performance at the lower thickness
value R/h — 100000. We have obtained these results for a three-node element
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using 4-Gauss points in r—direction which exactly integrates flexural energy term,
2—Gauss points in s—direction. Here we haven’t reported the solutions using one
fivenode element because the ratio between exact and f.e.m. solution is, with
R/h between 100 and 100000, exactly equal one.

Table 5.3: Comparison of finite element solutions, using 3 node element, for tip
response of the quarter ring with Castigliano’s solutions; finite element solution
normalized w.r.t. the exact solution.

One—element model Two—element model

R
h

wfem/wew efem/oe:c ufem/uew wfem/wew afem/eew ufem/uew

10 | 0.940692  0.987419 0.944102 | 0.996925 1.000012 1.000121

20 | 0.939445 0.986392 0.940256 | 0.995470  0.999128  0.996967

50 | 0.939095 0.986104 0.939183 | 0.995062  0.998797  0.995807

100 | 0.939045 0.986063 0.939030 | 0.995003  0.998750 0.995641
200 | 0.939032 0.986053 0.938992 | 0.994989  0.998738  0.995600
500 | 0.939028  0.986050 0.938981 | 0.994985 0.998734 0.995588
1000 | 0.939028  0.986049 0.938979 | 0.994984 0.998734 0.995586
5000 | 0.939028  0.986049 0.938979 | 0.994984  0.998733  0.995585
10000 | 0.939028  0.986049  0.938979 | 0.994984  0.998733  0.995585
100000 | 0.939028  0.986049 0.938979 | 0.994984  0.998733 0.995585

5.3.3.2 Test case 2: a pinched ring

Figure 5.9 shows the details of a ring pinched by two identical and diametrically
opposite forces P. This problem is the best example to demonstrate the behaviour
of the elements in a deep arch configuration, and it is widely used by researchers
to assess the performance of curved beam elements. Only one quadrant AB of the
ring is modelled with appropriate symmetric boundary conditions. Castigliano’s
energy theorem yields the following responses for the problem:

PR}(n?-8) aPR 7PR
WA= ( 8rEI ' 8GAE T 8EA> ’ (5-189)
PR}(4—7) PR PR
UB= T4 BT T 4GAk  4EA (5.190)
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Table 5.4 shows the displacement response of the pinched ring modelled by two
and four threenode elements and using one five-node element. Whether us-
ing a three—node element or a five—node element, full-exact gaussian quadrature
rules are employed for evaluating stiffness matrix. Excellent results are observed

Table 5.4: Analysis of a pinched ring using two and four three—node elements
model and one five-node element model; the results are normalized w.r.t. the
exact solution based on Castigliano’s theorem.

Three—node element Five—node element

R Two—element model Four—element model One—element model

h

wfem/wez ufem/uez wfem/wez ufem/uez wfem/wez ufem/uez
10 | 0.984584  0.992341 0.999157 1.000034 1.001103 1.002148
20 | 0.984366  0.991725 | 0.999012 0.999680 1.000600 1.001503
50 | 0.984304  0.991552 | 0.998971 0.999494 1.000600 1.000900
100 | 0.984296  0.991527 | 0.998966  0.999468 1.000600 1.000900
200 | 0.984293  0.991521 0.998964  0.999461 1.000600 1.000900
500 | 0.984293  0.991519 | 0.998964  0.999459 1.000590 1.000900
1000 | 0.984293  0.991519 | 0.998964  0.999459 1.000590 1.000900
5000 | 0.984293  0.991519 | 0.998964  0.999459 1.000590 1.000900
10000 | 0.984293  0.991519 | 0.998964  0.999459 1.000590 1.000900
100000 | 0.984293  0.991519 | 0.998964  0.999459 1.000590 1.000900

throughout all the thickness range from thick to thin to very thin. The capability
and effectiveness of the element BGMI is quite remarkable considering that the
responses are obtained with only one and two element models in the very thin
cases with shear and membrane locking completely eliminated.

5.3.3.3 Test case 3: a thin arch under a moment discontinuity.

Figure 5.10 shows the details of a simply supported thin arch subjected to a
concentrated moment M at the middle of the span. The central displacement by
the Castigliano’s theorem can be calculated explicitly, but are very complex, so
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N ! J Transverse
N\ Section

Figure 5.10: A simply supported arch with a central moment load.

we use a simple case of the Euler beam when it is very thin:

Weg = 0, (5.191)
. 20(v2-1)—7m(4—V2) MR?
Uex = — 16 EI ) (5192)
3—v2+71 MR
oy = — B (5.193)

Table 5.5 shows the convergence behaviour of the finite element solution normal-
ized with the analytical solutions. These studies indicate that the two type of
elements yield very accurate predictions. The values are in very good agreement
with the exact solution given by Equations (5.192) and (5.193) over the entire arc
length.

Two simple and efficient three and five node elements devoid of shear and mem-
brane locking, even in the extreme thin limit, have been proposed. The results
of the test problems solved show that the proposed elements not only have good
convergence in thin like cable element but also yield accurate predictions even
with coarse meshes. As it can be argued by the previous formulation is quite
straightforward the extension to the three-dimensional problem. By coupling this
cable element with the membrane one, we will be able to model the sail as a textile
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Table 5.5: Comparison of finite element solution for central displacement of a thin
simply supported arch w.r.t. the exact solution based on Equations (5.192) and
(5.193).

Three—node element Five—node element
R Two—element model Four—element model Two—element model
h
efem/gew Ufem/uew gfem/ae:c Ufem/uez erm/ge:c ufem/ue:c
100 0.988 1.012 0.999 1.000 1.000 0.999
200 0.988 1.012 0.999 1.000 1.000 0.999
500 0.988 1.012 0.999 1.000 1.000 0.999
1000 0.988 1.012 0.999 1.000 1.000 0.999
5000 0.988 1.012 0.999 1.000 1.000 0.999
10000 0.988 1.012 0.999 1.000 1.000 0.999
100000 0.988 1.012 0.999 1.000 1.000 0.999

composite structure as we have seen in Section 3.6.3 and as we are going to see in
Chapter 6.
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Chapter 6

Conclusions and numerical results

6.1 Sail shape

In this last chapter, we present the three—dimensional structural behaviour of the
optimized sail of Section 3.6.3 under a given wind-load.

A sail is a tensile structure hoisted on the rig of a yacht, inflated by wind pressure.
Our first objective was the aerodynamic optimization of the sail in order to obtain
the maximum thrust force for a given load distribution. The next step was to
model the sail as a textile composite and to obtain the optimum distribution of
the fibers in the material matrix.

Then, a fluid-structure interaction problem occurs (LeMaitre, Huberson, and De-
Cursi 1999): the sail shape depends on the aerodynamic loading, which itself
depends upon the shape. A first way for solving this aero—elastic problem is to
subdivide it into two parts (Schoop 1990). On one hand, we have to solve the
equilibrium shape under a given pressure: a flow field is given and a configuration
of the sail is computed (structural step) (Muttin 1991). On the other hand we
have to compute the wind pressure for a given shape: a new external flow is then
computed by taking into account the new configuration of the sail (aerodynamic
step) (Schoop and Bessert 2001). This leads to a new external flow, a new geome-
try of the sail and so on: the sequence of structural/aerodynamic steps is repeated
until some stopping condition is satisfied.

The aim of this last chapter is to solve the structural sail problem. We consider
the sail as a textile flexible structure, already optimized from an aerodynamic
and fiber—distribution point of view, submitted to an aerodynamic forces resulting
from a given flow field. So, only the resulting aerodynamic forces are computed as
a part of a fluid—structure interaction problem. The effects of the changes of the
geometry on the flow are not considered here.
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The very flexible behaviour of sails leads to large displacement analysis of very
thin structure (LeMaitre, DeCursi, and Huberson 1998). Due to large displace-
ment, our model is geometrically non-linear, and since deformations in modern
sails remain low, constitutive laws of the material can be consider as linear (LeDret
and Raoult 1995). We emphasize on a consequence of the capability of the sail to
undergo large displacements without significant deformations.

From the initial geometry (Figure 6.1) we have computed the equilibrium configu-
ration for the opposite field of external loads (close-hauled course). This compu-
tation case, defined by Charvet and Huberson (1998) as a tack, proves the great
capabilities of our string—-membrane network model which can support a large dis-
placement field and find the final equilibrium configuration (Figure 6.4) even if the
initial (given) shape is far from the solution. A few intermediate configurations,
extracted from the iterative procedure, are plotted in Figures 6.2 and 6.3. The
stress pattern is presented in Figures 6.5 and 6.6.

The future development of the sail models, should be the inclusion in the iterative
procedure of the aerodynamic step coupled opportunily with the structural step.
Furthermore all actual and future models should be improved on real cases that
will require experimental data and measurements in real sailing conditions.
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Figure 6.3: Second intermediate configuration.







CONCLUSIONS AND NUMERICAL RESULTS

Figure 6.5: Final shape stress distribution.
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Figure 6.6: Final shape stress distribution (three-dimensional view).

256



References

Ahmad, S., B. M. Irons, and O. C. Zienkiewicz (1970). Analysis of thick and
thin shell structures by curved elements. Int. J. Numer. Meth. Engng. 2,
419-451.

Argyris, J. H. (1982). An excursion into large rotations. Comput. Methods Appl.
Mech. Engrg. 32, 85-155.

Argyris, J. H. and D. W. Scharpf (1968a). The sheba family of shell elements
for the matrix displacement method. Part 1. natural definition of geometry
and strains. Journal of the Royal Aeronautical Society 72, 873-878.

Argyris, J. H. and D. W. Scharpf (1968b). The sheba family of shell elements for
the matrix displacement method. Part II. interpolation scheme and stiffness
matrix. Journal of the Royal Aeronautical Society 72, 878-883.

Argyris, J. H. and L. Tenek (1994a). High—temperature bending, buckling and
post—buckling of laminated composite plates using the natural mode method.
Comput. Methods Appl. Mech. Engrg. 117, 105-142.

Argyris, J. H. and L. Tenek (1994b). Linear and geometrically nonlinear bending
of isotropic and multilayered composite plates by the natural mode method.
Comput. Methods Appl. Mech. Engrg. 113, 207-251.

Ashley, H. and M. Landahl (1965). Aerodynamics of Wings and Bodies. New
York: Dover Publications, Inc.

Ashwell, D. G. and R. H. Gallagher (1976). Finite Elements for Thin Shells and
Curved Members. London: John Wiley & Sons.

Ashwell, D. G., A. B. Sabir, and T. M. Roberts (1971). Further study in the
application of curved finite element to circular arches. Int. J. Mech. Sci. 13,
507-517.

Atluri (1983). Hybrid and Mized Finite Element Methods. New York: Wiley.

Babu, C. R. and G. Prathap (1986). A linear thick curved beam element. Int.
J. Numer. Meth. Engng. 23, 1313-1328.

257



Roberto Nascimbene Sail Modelling for Maximal Speed Optimum Design

Babuska, I. (1974). Solution of problems with interfaces and singularities. In
C. deBoor (Ed.), Mathematical Aspects of Finite Elements in Partial Dif-
ferential Equations, New York, pp. 213-227. Academic Press.

Bakhvalov, N. and G. Panasenko (1990). Homogenization: averaging processes
in periodic media, Volume 36 of Mathematics and its application. Dordrecht:
Kluwer Academic Publisher.

Banichuk, N. V. (1981). Optimization problems for elastic anisotropic bodies.
Arch. Mech. 33(6), 347-363.

Batchelor, G. K. (1967). An Introduction to Fluid Mechanics. Cambridge: Cam-
bridge University Press.

Bathe, K.-J. (1996). Finite element procedures. Englewood Cliffs: Prentice Hall.

Bathe, K.-J., F. Brezzi, and S. W. Cho (1989). The MITC7 and MITC9 plate
bending elements. Comput. Struct. 32(3), 797-814.

Bathe, K.-J. and A. P. Cimento (1980). Some practical procedures for the
solution of nonlinear finite element equations. Comp. Meth. Appl. Mechs.
Eng. 22, 59-85.

Bathe, K.-J. and E. N. Dvorkin (1985). A four-node plate bending element
based on Mindlin/Reissner plate theory and a mixed interpolation. Int. J.
Numer. Meth. Engng. 21, 367-383.

Batoz, J. L. (1982). An explicit formulation for an efficient triangular plate—
bending element. Int. J. Numer. Meth. Engng. 18, 1077-1089.

Batoz, J. L., K.-J. Bathe, and L. W. Ho (1980). A study of three—node triangular
plate-bending elements. Int. J. Numer. Meth. Engng. 15, 1771-1812.

Belytschko, T. and C. Tsay (1983). A stabilization procedure for the quadri-
lateral plate element with one—point quadrature. Int. J. Numer. Meth. En-
gng. 19, 405-419.

Bendsge, M. P. (1996). Optimization of Structural Topology, Shape, and Mate-
rial. New York: Springer.

Bendsge, M. P.; A. Diaz, and N. Kikuchi (1993). Topology and generalized layout
optimization of elastic structures. In M. P. Bendsge and C. A. Soares (Eds.),
Topology Design of Structures, Dordrecht, pp. 159-205. Kluwer Academic
Publisher.

Bensoussan, A., J. L. Lions, and G. Papanicolaou (1978). Asymptotic analysis
for periodic structures. Amsterdam: North—Holland.

Berger, M. and B. Gostiaux (1988). Differential geometry: manifolds, curves,
and surfaces. New York: Springer Verlag.

258



CONCLUSIONS AND NUMERICAL RESULTS

Bernadou, M. (1996). Finite element methods for thin shell problems. New York:
John Wiley & Sons.

Bisplinghoff, R. L., H. Ashley, and R. L. Halfman (1955). Aeroelasticity. New
York: Dover Publications, Inc.

Bogdanovich, A. E. (1993). Three-dimensional analysis of anisotropic spatially
reinforced structures. Composites Manufacturing 4(4), 173-186.

Bogdanovich, A. E. and B. P. Deepak (1997). Three—-dimensional analysis of
thick composite plates with multiple layers. Composites Part B 28, 345-357.

Bogdanovich, A. E. and C. M. Pastore (1996). Material-smart analysis of
textile-reinforced structures. Composites Science and Technology 56, 291—
309.

Bonet, J. and R. D. Wood (1997). Nonlinear continuum mechanics for finite
element analysis. Cambridge: Cambridge University Press.

Borri, A. and E. Speranzini (1993). Multicriteria optimization of laminated com-
posite material structures. Meccanica 28, 233-238.

Brank, B. and E. Carrera (2000). Multilayered shell finite element with inter-
laminar continuous shear stresses: a refinement of the Reissner—Mindlin for-

mulation. International Journal for Numerical Methods in Engineering 48,
843-874.

Brezzi, F. and K.-J. Bathe (1990). Mixed-interpolated elements for Reissner-
Mindlin plates. Int. J. Numer. Meth. Engng. 28, 1787-1801.

Bucalem, M. L. and K.-J. Bathe (1997). Finite element analysis of shell struc-
tures. Archives of Computational Methods in Engineering 4 (1), 3-61.

Carvelli, V. and C. Poggi (2001). A homogenization procedure for the numerical
analysis of woven fabric composites. Composites Part A 32, 1425-1432.

Cebeci, T. (1999). An Engineering Approach to the Calculation of Aerodynamic
Flows. New York: Springer Verlag.

Chao, W. C. and J. N. Reddy (1984). Analysis of laminated composite shells us-
ing a degenerated 3-d element. International Journal for Numerical Methods
in Engineering 20, 1991-2007.

Chapman, C. and J. Whitcomb (1995). Effect of assumed tow architecture on
predicted moduli and stresses in plain weave composites. Journal of Com-
posite Materials 29(16), 2134-2159.

Charvet, T. and S. Huberson (1998). Numerical calculation of the flow around
sails. Buropean Journal of Mechanics, B/Fluids 11, 599-610.

259



Roberto Nascimbene Sail Modelling for Maximal Speed Optimum Design

Chinosi, C. and C. Lovadina (1994). Mixed finite elements for Reissner—Mindlin
plate model. In M. Papadrakakis and B. H. V. Topping (Eds.), Advances in
Finite Element Techniques, Berlin, pp. 33-38. CST.

Chinosi, C. and C. Lovadina (1995). Numerical analisys of some mixed finite
elements methods for Reissner-Mindlin plates. Computational Mechanics 16,
33-44.

Ciarlet, P. G. (1988). Mathematical elasticity: three dimensional elasticity, Vol-
ume 1. Amsterdam: Elsevier Science.

Ciarlet, P. G. (2000). Mathematical elasticity: theory of shells, Volume 3. Ams-
terdam: Elsevier Science.

Claughton, A. R., J. F. Wellicome, and R. A. Shenoi (1998). Sailing Yacht
Design: Theory. Edinburgh: Addison Wesley Longman Limited.

Correia, V. M. F., M. A. A. Gomes, A. Suleman, C. M. M. Soares, and C. A. M.
Soares (2000). Modelling and design of adaptive composite structures. Comp.
Meth. Appl. Mechs. Eng. 185, 325-346.

Correia, V. M. F., C. M. M. Soares, and C. A. M. Soares (2001). Refined mod-
els for the optimal design of adaptive structures using simulated annealing.
Composites Structures 54, 161-167.

Crisfield, M. A. (1986). Finite elements and solution procedures for structural
analysis Vol.1:linear analysis. Swansea: Pineridge Press.

DalMaso, G. and L. Modica (1986). Nonlinear stochastic homogenization and
ergodic theory. Journal fiir die reine und angewandte Mathematik 368, 28—
42.

D’Amato, E. (2001). Finite element modeling of textile composites. Composite
Structures 54, 467-475.

Daniel, I. M. and O. Ishai (1994). Engineering Mechanics of Composite Mate-
rials. New York: Oxford University Press, Inc.

Dawe, D. J. (1974a). Curved finite elements for the analysis of shallow and deep
arches. Comput. Struct. 4, 559-580.

Dawe, D. J. (1974b). Numerical studies using circular arch finite elements. Com-
put. Struct. 4, 729-740.

Day, A. H. (1996). Sail optimisation for maximal speed. Journal of Wind Engi-
neering and Industrial Aerodynamics 63, 131-154.

DeGiorgi, E. (1975). Sulla convergenza di alcune successioni di integrali del tipo
dell’area. Rendiconti di Mat. 8, 277-294.

260



CONCLUSIONS AND NUMERICAL RESULTS

DeGiorgi, E. (1983). G-operators and I'-convergence. In Proceedings of the In-
ternational Congress of Mathematicians, Warsazwa, pp. 1175-1191. PWN
Polish Scientific Publishers and North Holland.

DeGiorgi, E. and S. Spagnolo (1973). Sulla convergenza degli integrali
dell’energia per operatori ellittici del secondo ordine. Boll. Un. Mat. It. 8,
391-411.

Diana, G., S. DePonte, M. Falco, and A. Zasso (1998). A new large wind tun-
nel for civil-environmental and aeronautical applications. Journal of Wind
Engineering and Industrial Aerodynamics 74, 553-565.

Ding, Y. (1987). Optimum design of sandwich constructions. Comput.
Struct. 25(1), 51-68.

DoCarmo, M. P. (1976). Differential geometry of curves and surfaces. Englewood
Cliffs: Prentice—Hall.

Dvorkin, E. N. (1995). Nonlinear analysis of shells using the MITC formulation.
Archives of Computational Methods in Engineering 2(2), 1-50.

Dvorkin, E. N. and K.-J. Bathe (1984). A continuum mechanics based four-node
shell element for general non-linear analysis. Fngineering Computations 1,
77-88.

Dyrbye, C. and S. O. Hansen (1997). Wind loads on structures. New York: John
Wiley & Sons, Inc.

Eschenauer, H., N. Olhoff, and W. Schnell (1997). Applied Structural Mechanics.
New York: Springer Verlag.

Eschenauer, H. A. and N. Olhoff (2001). Topology optimization of continuum
structures: a review. Appl. Mech. Rev. 54(4), 331-390.

Fallow, J. B. (1996). America’s cup sail design. Journal of Wind Engineering
and Industrial Aerodynamics 63, 183-192.

Fish, J. and S. Markolefas (1992). The s—version of the finite element method
for multilayer laminates. International Journal for Numerical Methods in
Engineering 33, 1081-1105.

Flay, R. G. J., N. J. Locke, and G. D. Mallinson (1996). Model tests of twisted
flow wind tunnel designs for testing yacht sails. Journal of Wind Engineering
and Industrial Aerodynamics 63, 155-169.

Fletcher, R. (1987). Practical Methods of Optimization (Second ed.). London:
John Wiley & Sons.

Fleury, C. (1989). Conlin: an efficient dual optimizer based on convex approxi-
mation concepts. Structural Optimization 1, 81-89.

261



Roberto Nascimbene Sail Modelling for Maximal Speed Optimum Design

Fleury, C. and V. Braibant (1986). Structural optimization: a new dual method
using mixed variables. Int. J. Numer. Meth. Engng. 23, 409-428.

Fliigge, W. (1960). Stresses in shells. Berlin: Springer Verlag.

Fried, I. (1973). Shear in C° and C! bending finite elements. Int. J. Solids
Structures 9, 449-460.

Fujita, A., H. Hamada, and Z. Maekawa (1993). Tensile properties of car-
bon fiber triaxial woven fabric composites. Journal of Composite Materi-
als 27(15), 1428-1442.

Fujita, A., Z. Maekawa, H. Hamada, and A. Yokoyama (1992). Mechanical be-
haviour and fracture mechanism in flat braided composites. Part 1: braided
flat bar. Journal of Reinforced Plastics and Composites 11, 600—617.

Fukunaga, H. and G. N. Vanderplaats (1991). Stiffness optimization of
orthotropic laminated composites using lamination parameters. AIAA
J. 29(4), 641-646.

Fung, Y. C. (1965). Foundations of Solid Mechanics. Englewood Cliffs, New
Jersey: Prentice—Hall.

Gallagher, R. H. (1976). Problems and progress in thin shell finite element
analysis. In D. G. Ashwell and R. H. Gallagher (Eds.), Finite elements for
thin shells and curved members, London, pp. 1-14. John Wiley & Sons.

Garrett, R. (1990). Fisica della Vela: La simmetria tra aerodinamica e idrodi-
namica nel movimento di un’imbarcazione. Bologna: Zanichelli.

Glauert, H. (1926). The Elements of Aerofoil and Airscrew Theory (Second ed.).
Cambridge: Cambridge University Press.

Glénans (1975). Corso di Navigazione dei Glénans (Mursia ed.). Glénans.
Gobetti, A. and R. Nascimbene (2001). Elasto—plastic, nonlinear analysis of a

locking—free shear/flexible curved beam element. In Proceedings of the Eu-
ropean Conference on Computational Mechanics, ECCM.

Gobetti, A. and R. Nascimbene (2002). Development of a new locking—free
curved shell element. In Proceedings of the Fifth World Congress on Com-
putational Mechanics, WCCM-V.

Gobetti, A., P. Venini, and R. Nascimbene (2002). Finite element analysis of
membrane structures including active piezoelectric devices. In Proceedings
of the Third World Conference on Structural Control, WCSC.

Gould, P. L. (1988). Analysis of shells and plates. New York: Springer Verlag.

Gowayed, Y. A. (1997). The effect of voids on the elastic properties of textile

reinforced composites. Journal of Composites Technology € Research 19(3),
168-173.

262



CONCLUSIONS AND NUMERICAL RESULTS

Gowayed, Y. A. and J.-C. Hwang (1995). Thermal conductivity of composite
materials made from plain weaves and 3-d weaves. Composites Engineer-
ing 5(9), 1177-1186.

Gowayed, Y. A., J.-C. Hwang, and D. Chapman (1995). Thermal conductivity of
textile composites with arbitrary preform structures. Journal of Composites
Technology & Research 17(1), 56-62.

Gowayed, Y. A., C. Pastore, and C. S. Howarth (1996). Modification and ap-
plication of a unit cell continuum model to predict the elastic properties of
textile composites. Composites Part A 27, 149-155.

Green, A. E. and W. Zerna (1968). Theoretical Elasticity. London: Oxford Uni-
versity Press.

Guermond, J. L. (1989). Collocation methods and lifting—surfaces. European
Journal of Mechanics, B/Fluids 8(4), 283-305.

Giirdal, Z., R. T. Haftka, and P. Hajela (1999). Design and Optimization of
Laminated Composite Materials. New York: John Wiley & Sons, Inc.

Haan, S. I., P. G. Charalambides, and M. Suri (2001). A specialized finite ele-
ment for the study of woven composites. Computational Mechanics 27, 445—
462.

Hallquist, J. O., D. J. Benson, and G. L. Goudreau (1986). Implementation of a
modified Hughes—Liu shell into a fully vectorized explicit finite element code.
In P. Bergan (Ed.), Finite element methods for nonlinear problems, Berlin,
pp- 283-297. Springer Verlag.

Hashin, Z. (1983). Analysis of composite materials — a survey. Journal of Applied
Mechanics 50, 481-505.

Heyman, J. (1977). Equilibrium of shell structures. Oxford: Oxford University
Press.

Hinton, E. and D. R. J. Owen (1984). Finite element software for plates and
shells. Swansea: Pineridge.

Hu, J. L. and J. G. Teng (1996). Computational fabric mechanics: present status
and future trends. Finite Elements in Analysis and Design 21, 225-237.

Hughes, T. J. R. (1987). The finite element method. Englewood Cliffs: Prentice—
Hall.

Hughes, T. J. R. and E. Cornoy (1983). Nonlinear finite element shell formula-
tion accounting for large membrane strains. Comput. Methods Appl. Mech.
FEngrg. 39, 69-82.

Hughes, T. J. R. and W. K. Liu (1981a). Nonlinear finite element analysis
of shells: Part I. three—dimensional shells. Comput. Methods Appl. Mech.
FEngrg. 26, 331-362.

263



Roberto Nascimbene Sail Modelling for Maximal Speed Optimum Design

Hughes, T. J. R. and W. K. Liu (1981b). Nonlinear finite element analysis
of shells: Part II. two—dimensional shells. Comput. Methods Appl. Mech.
Engrg. 27, 167-181.

Hughes, T. J. R., R. L. Taylor, and W. Kanoknukulchai (1977). A simple and
efficient finite element for plate bending. Int. J. Numer. Meth. Engng. 11,
1529-1543.

Hull, D. (1981). An introduction to composite materials. New York: Cambridge
University Press.

Ish, J. and R. Guttal (1997). On the assumed strain formulation with selective
polynomial order enrichment for p—version shells. Comput. Struct. 63(5),
899-913.

Jara-Almonte, C. C. and C. E. Knight (1988). The specified boundary stiff-
ness/force SBSF method for finite element subregion analysis. International
Journal for Numerical Mrthods in Engineering 26, 1567—-1578.

Jones, R. M. (1975). Mechanics of Composite Materials. New York: Mc Graw—
Hill.

Jones, R. T. (1950). The spanwise distribution of lift for minimum induced
drag of wings having a given lift and a given bending moment. NACA Tech.
Note 2249, 1-14.

Kalidindi, S. R. and A. Abusafieh (1996). Longitudinal and transverse moduli

and strengths of low angle 3-D braided composites. Journal of Composite
Materials 30(8), 885-905.

Kalidindi, S. R. and E. Franco (1997). Numerical evaluation of isostrain and
weighted—average models for elastic moduli of three-dimensional composites.
Composites Science and Technology 57, 293-305.

Kartevelishvili, V. M. and V. V. Kobelev (1984). Rational schemes for reinforc-
ing laminar plates from composite materials. P. M. M. 48(1), 68-88.

Kemp, B. L., C. Cho, and S. W. Lee (1998). A four—-node solid shell element
formulation with assumed strain. Int. J. Numer. Meth. Engng. 43, 909-924.

Kere, P. and J. Koski (2001). Multicriterion stacking sequence optimization
scheme for composite laminates subjected to multiple loading conditions.
Composites Structures 54, 225—229.

Kikuchi, F. (1982). Accuracy of some finite element models for arch problems.
Comput. Methods Appl. Mech. Engrg. 35, 315-345.

Kikuchi, F. and K. Tanizawa (1984). Accuracy and locking—free property of the
beam element approximation for arch problems. Comput. Struct. 19, 103—
110.

264



CONCLUSIONS AND NUMERICAL RESULTS

Kirsch, U. (1990). On the relationship between optimum structural topologies
and geometries. Struct. Optim. 2, 39-45.

Klein, A. and S. P. Viswanathan (1973). Minimum induced drag of wings with
given lift and root—bending moment. Journal of Applied Mathematics and
Physics (ZAMP) 24, 886-892.

Kohn, R. V. and G. Strang (1986). Optimal design in elasticity and plasticity.
Num. Meths. Eng. 22, 183-188.

Koiter, W. T. (1959). A consistent first approximation in the general theory
of thin elastic shells. In W. T. Koiter (Ed.), IUTAM: Proceedings of the
Symposium on the Theory of Thin FElastic Shells, Amsterdam, pp. 12-33.
North-Holland Publishing Company.

Kozlov, S. (1980). Averaging of random operators. Math. USSR Sbornik 37,
167-180.

Kratzig, W. B. (1980). Introduction to general shell theory. In W. Olszak (Ed.),
Thin Shell Theory, new trends and applications, Udine, pp. 4-61. CISM.

Krog, L. A. and N. Olhoff (1997). Topology and reinforcement layout optimiza-
tion of disk, plate, and shell structures. In G. I. N. Rozvany (Ed.), Topology
optimization in structural mechanics, Udine, pp. 237-322. CISM.

Kuritz, S. P. and C. Fleury (1989). Mixed variable structural optimization using
convex linearization techniques. Eng. Opt. 15, 27-41.

Lanchester, F. W. (1907). Aerodynamic. Berlin: Verlag.

LeDret, H. and A. Raoult (1995). The nonlinear membrane model as variational
limit of nonlinear three-dimensional elasticity. J. Math. Pures Appl. 74, 549—
578.

Lee, P.-G. and H.-C. Sin (1994). Locking—free curved beam element based on
curvature. Int. J. Numer. Meth. Engng. 37, 989-1007.

Lee, S.-S., J. S. Koo, and J. M. Choi (1996). Development of a new curved beam
element with shear effect. Engineering Computations 13, 9-25.

Leino, Y. and J. Pitkaranta (1994). On the membrane locking of h — p finite
elemets in a cylindrical shell problem. Int. J. Numer. Meth. Engng. 37, 1053—
1070.

LeMaitre, O., E. S. DeCursi, and S. Huberson (1998). Large displacement analy-
sis for ideally flexible sails. Furopean Journal of Mechanics, A/Solids 17(4),
619-636.

LeMaitre, O., S. Huberson, and E. S. DeCursi (1999). Unsteady model of sail
and flow interaction. Journal of Fluids and Structures 13, 37-59.

265



Roberto Nascimbene Sail Modelling for Maximal Speed Optimum Design

Liu, W. K. and B. M. Donning (1998). Meshless methods for shear—deformable
beams and plates. Comput. Methods Appl. Mech. Engrg. 151, 47-T1.

Liu, W. K., E. S. Law, and Y. Belytschko (1986). Resultant—stress degenerated—
shell element. Comput. Methods Appl. Mech. Engrg. 55, 259-300.

Lomov, S. V., G. Huysmans, Y. Luo, R. S. Parnas, A. Prodromou, I. Verpoest,
and F. R. Phelan (2001). Textile composites: modelling strategies. Compos-
ites Part A 32, 1379-1394.

Malkus, D. S. and T. J. R. Hughes (1978). Mixed finite element methods—
reduced and selective integration techniques: a unification of concepts. Com-
put. Methods Appl. Mech. Engrg. 15, 63-81.

Mallick, P. K. (1988). Fiber—Reinforced Composites: Materials, Manufacturing
and Design. New York: Marcel Dekker, Inc.

Malvern, L. E. (1969). Introduction to the Mechanics of a Continuous Medium.
Englewood Cliffs, New Jersey: Prentice-Hall.

Marchaj, C. A. (1964). Sailing theory and practice. New York: Dodd, Mead and
Company.

Marchaj, C. A. (1979). Aero—Hydrodynamics of Sailing. London: Adlard Coles
Nautical.

Marchaj, C. A. (1990). Sail Performance: Technigues to Mazimize Sail Power.
Camden: International Marine.

Marsden, J. E. and T. J. R. Hughes (1983). Mathematical foundations of elas-
ticity. New York: Dover Publications.

Mason, J. (1980). Variational, incremental and energy methods in solid mechan-
ics and shell theory. New York: Elsevier Scientific Publishing Company.

Masters, J. E., R. L. Foye, C. M. Pastore, and Y. A. Gowayed (1993). Mechan-
ical properties of triaxially braided composites: experimental and analytical
results. Journal of Composites Technology & Research 15(2), 112-122.

Maxwell, J. C. (1881). A treatise on electricity and magnetism. Oxford: Claren-
don Press.

McIlhagger, R., B. J. Hill, D. Brown, and L. Limmer (1995). Construction
and analysis of three—dimensional woven composite materials. Composites
Engineering 5(9), 1187-1197.

Meck, H. R. (1980). An accurate polynomial displacement function for finite
ring elements. Comput. Struct. 11, 265-269.

Milgram, J. H. (1968). The analytical design of yacht sails. Trans. SNAME 74,
118-160.

266



CONCLUSIONS AND NUMERICAL RESULTS

Mréz, Z. (1986). Variational approach to shape sensitivity analysis and optimal
design. In J. A. Bennet and M. E. Botkin (Eds.), General Motors Symposium
on the Optimum Shape: Automated Structural Design, New York, pp. 79—
110. Plenum Press.

Muc, A. and W. Gurba (2001). Genetic algorithms and finite element analysis
in optimization of composite structures. Composites Structures 54, 275-281.

Munk, M. M. (1923a). General theory of thin wing sections. NACA Rep. 142,
243-261.

Munk, M. M. (1923b). The minimum induced drag of aerofoils. NACA Rep. 121,
373-390.

Munk, M. M. (1923c). Some new aerodynamical relations. NACA Rep. 121,
129-141.

Murat, F. and L. Tartar (1985). Optimality conditions and homogenization. In
A. Marino (Ed.), Nonlinear Variational Problems, Boston, pp. 1-8. Pitman.

Muttin, F. (1991). Structural analysis of sails. European Journal of Mechanics,
A/Solids 10(5), 517-534.

Nagendra, S., R. T. Haftka, and Z. Giirdal (1993). Design of a blade stiffened
composite panel by a genetic algorithm. In Proceedings of 34" Structures,
Structural Dynamics and Materials Conference, La Jolla, CA.

Naik, N. K. and R. Kuchibhotla (2002). Analytical study of strength and failure
behaviour of plain weave fabric composites made of twisted yarn. Composites
Part A 33, 697-708.

Naomis, S. and P. C. M. Lau (1990). Computational tensor analysis of shell
structures. In C. A. Brebbia and S. A. Orszag (Eds.), Lecture Notes in En-
gineering, New York. Springer Verlag.

Nascimbene, R. (2001). Partial reduced selective integration applied to shell
elements. In AIMETA ’01.

Nascimbene, R. and P. Venini (2002). A new locking—free equilibrium mixed el-
ement for plane elasticity with continuous displacement interpolation. Com-
put. Methods Appl. Mech. Engrg. 191, 1843-1860.

Nguyen, V. H., J. J. Strodiot, and C. Fleury (1987). A mathematical con-
vergence analysis of the convex linearization method for engineering design
optimization. Eng. Opt. 11, 195-216.

Noor, A. K. and J. M. Peters (1981). Mixed models and reduced/selective inte-
gration displacement models for nonlinear analysis of curved beams. Int. J.
Numer. Meth. Engng. 17, 615-631.

267



Roberto Nascimbene Sail Modelling for Maximal Speed Optimum Design

Norman, T. L., P. Allison, J. W. Baldwin, B. K. Gracias, and D. Seesdorf (1993).
Effect of tow alignment on the mechanical performance of 3D woven textile
composites. Composites Manufacturing 4(4), 209-215.

Norman, T. L., C. Anglin, and D. Gaskin (1996). Strength and damage mecha-
nism of notched two—domensional braided textile composites and tape equiv-

alents under tension. Journal of Composites Technology € Research 18(1),
38-46.

Norman, T. L., C. Anglin, D. Gaskin, and M. Patrick (1996). Normal stress dis-
tribution of notched 2D triaxial braided textile composites and tape equiv-
alents under tension. Journal of Composite Materials 30(5), 589-602.

Offshore Racing Council (2002). A handicapping system for cruising/racing
yachts (International Measurement System ed.). Offshore Racing Council.

Olhoff, N., K. A. Lurie, A. V. Cherkaev, and A. Fedorov (1981). Sliding
regimes of anisotropy in optimal design of vibrating plates. Int. J. Solids
Struct. 17(10), 931-948.

Onate, E. and J. Oliver (1986). A finite element formulation for the geometrically
non linear analysis of shells. In T. J. R. Hughes and E. Hinton (Eds.), Finite
Element Methods for Plate and Shell Structures. Volume 2: Formulations
and Algorithms, Swansea, pp. 83-101. Pineridge Press.

Pandian, N., T. V. S. R. AppaRao, and S. Chandra (1989). Studies on perfor-
mance of curved beam finite elements for analysis of thin arches. Comput.
Struct. 31, 997-1002.

Parish, H. (1990). An investigation of a finite rotation four node assumed strain
shell element. Int. J. Numer. Meth. Engng. 30, 127-150.

Pastore, C. M., A. E. Bogdanovich, and Y. A. Gowayed (1993). Applications of
a meso—volume-based analysis for textile composite structures. Composites
Engineering 3(2), 181-194.

Pastore, C. M. and Y. A. Gowayed (1994). A self—consistent fabric geometry
model: modification and application of a fabric geometry model to predict

the elastic properties of textile composites. Journal of Composites Technology
& Research 16(1), 32-36.

Pawsey, S. F. and R. W. Clough (1971). Improved numerical integration of thick
shell finite elements. Int. J. Numer. Meth. Engng. 3, 575-586.

Petrov, E. and M. Géradin (1998). Finite element theory for curved and twisted
beams based on exact solutions for three-dimensional solids, Part I/II. Com-
put. Methods Appl. Mech. Engrg. 165, 43-127.

Pitkaranta, J. (1992). The problem of membrane locking in finite element anal-
ysis of cylindrical shells. Numer. Math. 61, 523-542.

268



CONCLUSIONS AND NUMERICAL RESULTS

Poisson, S. (1822). Second mémoire sur la théorie du magnétisme, Volume 5.
Mem. Acad. France.

Prandtl, L. (1952). FEssentials of Fluid Dynamics with Applications to Hy-
draulics, Aeronautics, Metereology and other Subjects. London: Blackie &
Sons Limited.

Prandtl, L. and O. G. Tietjens (1934). Applied Hydro- and Aeromechanics. New
York: Dover Publications, Inc.

Prathap, G. (1985a). An additional stiffness parameter measure of error of the
second kind in the finite element method. Int. J. Numer. Meth. Engng. 21,
1001-1012.

Prathap, G. (1985b). The curved beam/deep arch/finite ring element revisited.
Int. J. Numer. Meth. Engng. 21, 389-407.

Prathap, G. and C. R. Babu (1986). An isoparametric quadratic thick curved
beam element. Int. J. Numer. Meth. Engng. 23, 1583-1600.

Prathap, G. and G. R. Bhashyam (1982). Reduced integration and the shear—
flexible beam element. Int. J. Numer. Meth. Engng. 18, 195-210.

Prathap, G. and B. P. Naganarayana (1990). Analysis of locking and stress os-
cillations in a general curved beam element. Int. J. Numer. Meth. Engng. 30,
177-200.

Prathap, G. and B. R. Shashirekha (1993). Variationally correct assumed strain
field for the simple curved beam element. Comput. Struct. 47, 1071-1073.

Prathap, G. and S. Viswanath (1983). An optimally integrated four-node
quadrilateral plate bending element. Int. J. Numer. Meth. Engng. 19, 831-
840.

Pugh, E.D. L., E. Hinton, and O. C. Zienkiewicz (1978). A study of quadrilateral
plate bending elements with ‘reduced’ integration. Int. J. Numer. Meth.
FEngng. 12, 1059-1079.

Qun, Z., L. Mu, and K. Wenqi (1998). Geometric non-linear analysis of space
shell structures using generalized conforming flat shell elements—for space
shell structures. Commun. Numer. Meth. Engng. 14, 941-957.

Qun, Z., L. Mu, and K. Wengqi (1999). Application of the generalized conforming
flat shell element to geometrical non-linear analysis for composite stiffened
shell structures. Commun. Numer. Meth. Engng. 15, 399-412.

Ramm, E. (1977). A plate/shell element for large deflection and rotations. In
K.-J. Bathe, J. T. Oden, and W. Wunderlich (Eds.), Formulation and com-
putational algorithms in finite element analysis, Cambridge. MIT Press.

269



Roberto Nascimbene Sail Modelling for Maximal Speed Optimum Design

Rauch, J. and M. Taylor (1975). Potential and scattering theory on wildly per-
turbed domains. J. Funct. Anal. 18, 27-59.

Raveendranath, P., G. Singh, and B. Pradhan (1999). A two—node locking—
free shear flexible curved beam element. Int. J. Numer. Meth. Engng. 44,
265-280.

Raveendranath, P., G. Singh, and G. V. Rao (2001). A threenoded shear—
flexible curved beam element based on coupled displacement field interpola-
tion. Int. J. Numer. Meth. Engng. 51, 85-101.

Rayleigh, J. W. (1892). On the influence of obstacles arranged in rectangular
order upon the properties of a medium. Phil. Mag. 32, 481-491.

Reddy, B. D. and M. B. Volpi (1992). Mixed finite element methods for the
circular arch problem. Comput. Methods Appl. Mech. Engrg. 97, 125-145.

Reddy, J. N. (1984a). Energy and wvariational methods in applied mechanics.
New York: John Wiley & Sons.

Reddy, J. N. (1984b). A simple higher—order theory for laminated composite
plates. Journal of Applied Mechanics 51, T45-752.

Reddy, J. N. (1989). On refined computational models of composite laminates.
International Journal for Numerical Methods in Engineering 27, 361-382.

Reddy, J. N. (1990). On refined theories of composite laminates. Meccanica 25,
230-238.

Reddy, J. N. (1997). Mechanics of Laminated Composite Plates — Theory and
Analysis. New York: CRC Press, Inc.

Reddy, J. N. and M. L. Rasmussen (1982a). Advanced engineering analysis. New
York: John Wiley & Sons.

Reddy, J. N. and M. L. Rasmussen (1982b). Advanced Engineering Analysis.
New York: John Wiley & Sons, Inc.

Reddy, J. N. and D. H. Robbins (1994). Theories and computational models for
composite laminates. Appl. Mech. Rev. 47(6), 147-169.

Rengarajan, G., M. A. Aminpour, and N. F. Knight (1995). Improved assumed—
stress hybrid shell element with drilling degrees of freedom for linear stress
buckling and free vibration analyses. Int. J. Numer. Meth. Engng. 88, 1917—
1943.

Rhiu, J. J. and S. W. Lee (1988). A sixteen node shell element with a matrix
stabilization scheme. Computational Mechanics 3, 99-113.

Richards, P. J., A. Johnson, and A. Stanton (2001). America’s cup downwind
sails—vertical wings or horizontal parachutes? Journal of Wind Engineering
and Industrial Aerodynamics 89, 1565-1577.

270



CONCLUSIONS AND NUMERICAL RESULTS

Roberts, O. T. P. (1995). An explanation of ancient windward sailing—some other
considerations. The International Journal of Nautical Archeology 24(4),
307-315.

Rovati, M. and A. Taliercio (1990). Optimal orientation of the symmetry axes
of orthotropic 3—D materials. In Proceedings of the International Conference
on Engineering Optimization in Design Processes, Karlsruhe.

Rovati, M., A. Taliercio, and C. Cinquini (1991). On maximum stiffness of
orthotropic shells. In S. Hernandez and C. A. Brebbia (Eds.), Optimization
of Structural Systems and Industrial Applications, Southampton, Boston,
pp- 597-604. Computational Mechanics Publications.

Rozvany, G. I. N., M. P. Bendsge, and U. Kirsch (1995). Layout optimization
of structures. Applied Mechanics Reviews 48, 41-119.

SacchiLandriani, G. and M. Rovati (1989). Optimal limit design of fiber rein-
forced orthotropib bodies. In Proceedings of the Course on Computer Aided
Optimal Design of Structures, COMETT, Pavia.

Schlichting, H. (1979). Boundary—Layer Theory. New York: Mc Graw—Hill.

Schmit, L. A. and B. Farshi (1977). Optimum design of laminated fibre com-
posite plates. Int. J. Numer. Meth. Engng. 11, 623—640.

Schoop, H. (1990). Structural and aerodynamic theory of sails. European Journal
of Mechanics, A/Solids 9(1), 37-52.

Schoop, H. and N. Bessert (2001). Instationary aeroelastic computation of yacht
sails. Int. J. Numer. Meth. Engng. 52, 787-803.

Sherman, F. S. (1990). Viscous Flow. New York: Mc Graw—Hill.

Shi, G. and G. Z. Voyiadjis (1991). Simple and efficient shear flexible two—
node arch/beam and four-node cylindrical shell/plate finite elements. Int.
J. Numer. Meth. Engng. 31, 759-776.

Sidhu, R. M. J. S., R. C. Averill, M. Riaz, and F. Pourboghrat (2001). Finite
element analysis of textile composite preform stamping. Composite Struc-
tures 52, 483-497.

Simiu, E. and R. H. Scanlan (1986). Wind effects on structures (Second ed.).
New York: John Wiley & Sons, Inc.

Simo, J. C., F. Armero, and R. L. Taylor (1993). Improved versions of assumed
enhanced strain tri-linear elements for 3D finite deformation problems. Com-
put. Methods Appl. Mech. Engrg. 110, 359-386.

Simo, J. C. and D. D. Fox (1989). On a stress resultant geometrically exact shell
model. part i: formulation and optimal parametrization. Comput. Methods
Appl. Mech. Engrg. 72, 267-304.

271



Roberto Nascimbene Sail Modelling for Maximal Speed Optimum Design

Simo, J. C. and M. S. Rifai (1990). A class of mixed assumed strain method of
incompatible modes. Int. J. Numer. Meth. Engng. 29, 1595-1638.

Sneyd, A. D. and T. Sugimoto (1997). The influence of a yacht’s heeling stability
on optimum sail design. Fluid Dynamic Research 19, 47-63.

Spagnolo, S. (1968). Sulla convergenza di soluzioni di equazioni paraboliche ed
ellettiche. Ann. Sc. Norm. Sup. Pisa 22, 577-597.

Sparenberg, J. A. (1984). Elements of hydrodynamic propulsion. Netherlands:
Martinus Nijhoff Publishers.

Sparenberg, J. A. and A. K. Wiersma (1976). On the maximum thrust of sails
by sailing close to wind. Journal of Ship Research 20(2), 98-106.

Spilker, R. L. and N. I. Munir (1980). A hybrid-stress quadratic serendipity
displacement Mindlin plate bending element. Comput. Struct. 12, 11-21.

Steven, G. P., Q. Li, and Y. M. Xie (2000). Evolutionary topology and shape
design for general physical field problems. Computational Mechanics 26, 129—
139.

Stolarski, H. and T. Belytschko (1982). Membrane locking and reduced integra-
tion for curved elements. J. Appl. Mech. 49, 172-177.

Stolarski, H. and T. Belytschko (1983). Shear and membrane locking in curved
C° elements. Comput. Methods Appl. Mech. Engrg. 41, 279-296.

Sugimoto, T. (1993). A first course in optimum design of yacht sails. Fluid
Dynamic Research 11, 153-170.

Sugimoto, T. (1995). Optimum sail design for small heel and weak wind shear
conditions. Fluid Dynamic Research 15, 75-88.

Sugimoto, T. (1999). A method for optimizing sail design. Sports Engineering 2,
35-48.

Sun, C. T., J. D. Achenbach, and G. Herrmann (1968). Continuum theory for
a laminated medium. Journal of Applied Mechanics 68, 467-475.

Svanberg, K. (1987). The method of moving asymptotes — a new method for
structural optimization. Int. J. Numer. Meth. Engng. 24, 359-373.

Tan, P., L. Tong, and G. P. Steven (1997). Modelling for predicting the me-
chanical properties of textile composites—A review. Composites Part A 28,
903-922.

Tanner, T. (1967). The application of lifting line theory to an upright bermudan
mainsail. J. R. Aeronaut. Soc. 71, 553-558.

Tartar, L. (1986). Remarks on homogenization. In J. L. Ericksen (Ed.), Ho-
mogenization and effective moduli of materials and media, New York, pp.
228-246. Springer.

272



CONCLUSIONS AND NUMERICAL RESULTS

Taylor, R. L., P. J. Beresford, and E. L. Wilson (1976). A non—conforming
element for stress analysis. Int. J. Numer. Meth. Engng. 10, 1211-1219.

Tessler, A. and T. J. R. Hughes (1983). An improved treatment of transverse
shear in the Mindlin—type four-node quadrilateral element. Comput. Meth-
ods Appl. Mech. Engrg. 39, 311-335.

Tessler, A. and L. Spiridigliozzi (1986). Curved beam elements with penalty
relaxation. Int. J. Numer. Meth. Engng. 23, 2245-2262.

Thwaites, B. (1960). Incompressible aerodynamics: An Account of the Theory
and Observation of the Steady Flow of Incompressible Fluid past Aerofoils,
Wings and Other Bodies. New York: Dover Publications, Inc.

Tilley, A. (1994). Sailing to windward in the ancient mediterranean. The Inter-
national Journal of Nautical Archeology 23(4), 309-313.

Timoshenko, S. (1940). Theory of plates and shells. London: McGraw-Hill.

Topping, B. H. V. and M. Papadrakis (1994). Advances in Structural Optimiza-
tion. Edinburgh: CIVIL-COMP Ltd.

Tricomi, F. G. (1957). Integral Equations. New York: Interscience Publishers,
Inc.

Ubertini, F. (1994). Vento e strutture: problemi di interazione. Master’s thesis,
University of Bologna.

Vaidyanathan, R. and Y. A. Gowayed (1996). Optimization of elastic properties
in the design of textile composites. Polymer Composites 17(2), 305-311.
Vanderplaats, G. N. and T. A. Weisshaar (1989). Optimum design of composite

structures. Int. J. Numer. Meth. Engng. 27, 437-448.
Vinh, N. X. (1993). Flight Mechanics of High—Performance Aircraft. Cambridge
University Press.

Wang, Z. Y., E. J. Plate, M. Rau, and R. Keiser (1996). Scale effects in wind
tunnel modelling. Journal of Wind Engineering and Industrial Aerodynam-
ics 61, 113-130.

Washizu, K. (1968). Variational methods in elasticity and plasticity. Oxford:
Pergamon Press.

Watkins, R. I. and A. J. Morris (1987). A multicriteria objective function op-
timization scheme for laminated composites for use in multilevel structural
optimization schemes. Comp. Meth. Appl. Mechs. Eng. 60, 233-251.

Weissinger, J. (1947). The lift distribution of swept-back wings. NACA Tech.
Memorandum 1120, 1-51.

Weissinger, J. (1949). Uber eine erweiterung der prandtlechen theorie der tra-
genden linie. Math. Nachr 2, 46-109.

273



Roberto Nascimbene Sail Modelling for Maximal Speed Optimum Design

Wemper, G., J. T. Oden, and D. Kross (1968). Finite element analysis of thin
shells. Proc. ASCE, J. Eng. Mech. Div. 94, 1273-1294.

Whidden, T. and M. Levitt (1993). L’arte e la Scienza delle Vele. Milano: Mur-
sia.

Whitcomb, J. (1991). Iterative global/local finite element analysis. Computer &
Structures 40(4), 1027-1031.

Whitcomb, J., G. Kondagunta, and K. Woo (1995). Boundary effects in woven
composites. Journal of Composite Materials 29(4), 507—-524.

Whitcomb, J., J. Noh, and C. Chapman (1999). Evaluation of various approx-
imate analyses for plain weave composites. Journal of Composite Materi-
als 83(21), 1958-1980.

Whitcomb, J. and K. Srirengan (1996). Effect of various approximations on
predicted progressive failure in plain weave composites. Composite Struc-
tures 34, 13-20.

Whitcomb, J., K. Srirengan, and C. Chapman (1995). Evaluation of homog-
enization for global/local stress analysis of textile composites. Composite
Structures 31, 137-149.

Whitcomb, J. and K. Woo (1994). Enhanced direct stiffness method for finite
element analysis of textile composites. Composite Structures 28, 385-390.

Whitcomb, J., K. Woo, and S. Gundapaneni (1994). Macro finite element for
analysis of textile composites. Journal of Composite Materials 28(7), 607—
618.

Wiersma, A. K. (1978). On the profit of optimizing the fin—keel of a yacht sailing
close to wind. Journal of Engineering Mathematics 12(4), 357-364.

Wiersma, A. K. (1979). On the optimization of the thrust of a yacht sailing to
windward. Journal of Engineering Mathematics 13(4), 289-316.

Wilson, E. L., R. L. Taylor, W. P. Doherty, and J. Ghaboussi (1973). Incom-
patible displacement models. In S. J. Fenves, N. Perrone, A. R. Robinson,
and W. C. Schnobrich (Eds.), Numerical and Computer Models in Structural
Mechanics, New York, pp. 43-57. Academic Press.

Wohlfahrt, M. (1988). The extended lifting line theory for systems of sails.
In V. Boffi and H. Neunzert (Eds.), Proceedings of the Third German-
Ttalian Symposium: Application of Mathematics in Industry and Technology,
Stuttgart, pp. 77-96. B. G. Teubner.

Woo, K. and J. Whitcomb (1994). Global/local finite element analysis for textile
composites. Journal of Composite Materials 28(14), 1305-1321.

274



REFERENCES

Woo, K. and J. Whitcomb (1996). Three-dimensional failure analysis of plain
weave textile composites using a global/local finite element method. Journal
of Composite Materials 30(9), 984-1003.

Wood, C. J. and S. H. Tan (1978). Towards an optimum yacht sail. J. Fluid
Mech 85(3), 459-477.

Yamamoto, Y. and H. Ohtsubo (1982). A qualitative accuracy consideration on
arch elements. Int. J. Numer. Meth. Engng. 18, 1179-1195.

Yang, H. T. Y., S. Saigal, A. Masud, and R. K. Kapania (2000). A survey of
recent shell finite elements. Int. J. Numer. Meth. Engng. 47, 101-127.

Yang, R. J. and M. E. Botkin (1986). The relationship between the variational
approach and the implicit differentiation approach to shape design sensitiv-
ities. In J. A. Bennet and M. E. Botkin (Eds.), General Motors Symposium
on the Optimum Shape: Automated Structural Design, New York, pp. 61-77.
Plenum Press.

Yeom, C. H. and S. W. Lee (1989). An assumed strain finite element model for
large deformation composite shells. Int. J. Numer. Meth. Engng. 28, 1749—
1768.

Yushanov, S. P. and A. E. Bogdanovich (1998a). Analytical probabilistic mod-
eling of initial failure and reliability of laminated composite structures. Int.
J. Solids Structures 35(7), 665-685.

Yushanov, S. P. and A. E. Bogdanovich (1998b). Stochastic theory of composite
materials with random waviness of the reinforcement. Int. J. Solids Struc-
tures 35(22), 2901-2930.

Zhang, W. H. and C. Fleury (1994). Recent advances in convex approxima-
tion methods for structural optimization. Advances in Structural Optimiza-
tion 24, 83-90.

Zienkiewicz, O. C. and R. L. Taylor (1991). The finite element method, Vol.
I-1I. London: McGraw Hill.

Zienkiewicz, O. C., R. L. Taylor, and J. M. Too (1971). Reduced integration
technique in general analysis of plates and shells. Int. J. Numer. Meth. En-
gng. 3, 275-290.

275



Roberto Nascimbene Sail Modelling for Maximal Speed Optimum Design

276



Appendix A

Yacht’s Nomenclature

A.1 Sail and hull terminology

First—time sailors are faced with a lot of unfamiliar material. The centuries—old
terminology can be bewindering, and at times it may indeed seem as if we are
learning a new language as we incorporate these words.

abaft the beam behind a perpendicular line extending out from the middle

of the boat;
abeam a direction at right angles to the centerline of the boat;
aft toward the stern of the boat; to move aft is to move back;
ahead the front of the boat; toward the front of the boat;
alee the side away from the direction of the wind;
anemometer an instrument for measuring wind speed;

aspect ratio (AR) the ratio between the foot length and the luff length of
a sail;

astern in the direction of, or behind, the stern;
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backstay

ballast

batten

beam

beat

beating
beaufort scale

boom

boom vang

bow

cabin

cabin sole

a wire mast support, leading aft to the deck or another
mast;

heavy material placed in the bottom of a boat to give
stability;

a short flexible strips of wood, plastic or fiberglass com-
monly inserted in the mainsail to support the aft portion,
or roach, so that it will not curl, to keep it taut (see Fig-
ure A.1);

the greatest width of the boat, usually in the middle;

to go to windward in a sailboat by sailing alternate legs,
with the wind first on one side and then on the other

sailing against the wind by tacking;
a table of wind velocity;

the bar to which the bottom, or foot, of the sail is at-
tached; a spar extending from a mast to hold the out-
stretched bottom of a sail;

a system used to hold the boom down, particularly when
boat is sailing downwind, so that the mainsail area facing
the wind is kept to a maximum;

the front, or forward end, of a boat;

an enclosed compartment in a ship, used as shelter or
living quarters;

the bottom surface of the enclosed space under the deck
of a boat;

center of effort (CE) a theoretical point on a boat’s sail plan that repre-

sents the focus or center of the total forces of wind on the
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clew

close—hauled

course

deck

displacement

downwind

draft

drift

fall off
foot

fore

fore—and—aft sail

foremast

foresail

sails;

the lower after corner of a sail, where the foot meets the
leech (see Figure A.1);

sailing close to the wind with sails pulled in (see Fig-
ure 1.21(b));

the direction in which a ship is steering in making her way
from point to point during a voyage or the angle of the
boat in sailing against the wind (see Figure 1.4);

covering of the interior of a boat, like floors in a building;

the weight, in tons, of the water displaced by the boat and
its equipment;

sailing in the same direction as the wind;

the amount of vertical distance from a boats waterline to
the bottom of its keel;

the leeway, or movement of the boat, when not under
power, or when being pushed sideways while under power;

to head a boat away from the direction of the wind;
the lower edge (bottom) of the sail (see Figure A.1);

the front part of a ship; in the direction of or toward the
bow;

sail set in a fore—and—aft line; not square-rigged;
the mast nearest the bow of a ship;

the forward sail;
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Head

Clew

Figure A.1: Parts of the sail.

gale a range of winds from 28 to 47 knots;

genoa also known as genny, usually the biggest jib on the boat;
a headsail that extends from bow to behind the mast;

head the forward part of a boat, including the bow and adja-
cent area; the uppermost corner of a triangular sail (see
Figure A.1);

headsail a sail forward of the mast;

heel the leeward lean of the boat caused by the winds action

on the sails;

helm the device, usually a tiller or wheel attached or connected
to the rudder, by which a boat is steered;

hull the body of the boat;
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hull speed
jib

keel

knot
leech
leeward

leeway

luff

LWL

mainsail

mast
masthead
offshore
offwind
onboard

onshore

the maximum speed a hull can achieve without planning;
a foresail, usually the foremost sail (see Figure A.1);

the fixed underwater fin on the hull which helps provide
stability and prevents the boat from slipping sideways;
usually ballasted, for stability and lateral resistance;

a measurement of speed;

the after edge of a fore—and—aft sail (see Figure A.1);
downwind;

sideways drift of a boat;

the leading, or forward, edge of a fore—and—aft sail; when
this edge shakes in the wind, the sail is luffing (see Fig-
ure A.1);

length of a boat at the waterline;

the main sail of the sail boat set off the mast and main
boom (see Figure A.1);

the vertical spar or pole supporting boom and sails;
the top of the mast;

away from the shore;

any point of sailing away from the wind;

on the boat;

toward the shore;
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pitch
port

port tack

reaching

rig

rigging

roach

rudder

running

sloop
spar

spinnaker

starboard

starboard tack

stern

plunging of a vessel fore and aft (see Figure A.2);
the left side of a boat, looking toward the bow;

when the wind comes over the port side of a boat, and the
sails are on the starboard side;

sailing a course that is neither close-hauled or downwind;
sailing on a tack with the wind roughly abeam; any point
of sailing between close-hauled and running;

arrangements of masts and sails;

collectively, all the ropes and chains used to support and
work the masts, yards, booms and sails of a vessel;

the curved leech of a sail (see Figure A.1);

plate hinged to the stern of the vessel used to steer the
boat by turning the wheel;

(to run downwind) going with the wind, downwind sailing
(see Figure 1.21);

a boat with a single mast set forward;
another term for mast;

large, light foresail set forward of the mainsail when run-
ning before the wind;

the right side of the boat, facing the bow;

sailing with the wind coming from the starboard side, the
sails on the port;

the afterpart of the boat;
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Heaving

% /
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| followed by broaching-to

Figure A.2: Six degrees of freedom of a yacht.
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tack

tacking
tack of a sail
trim

true wind

yaw

windward

to sail to windward by alternating courses, staying as close
to the wind as possible; to zigzag into the wind;

working the windward close-hauled;
forward lower corner of a sail (see Figure A.1);
to adjust angle of the sails to accord with the wind;

wind direction without taking into account the motion of
the boat;

to turn from side to side (see Figure A.2);

upwind, toward the wind.
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Coordinate systems

B.1 Derivatives of vectors in rotating reference
frames

We wish to examine the rate of change of a vector as it is perceived by two
observers, each in a different reference frame rotating with respect to one another.
Let us denote the nonrotating system by (z,, z) and the rotating reference frame
by (Z,7, Z). Let w denote the angular rotation of the barred system with respect
to the unbarred system. In the nonrotating system the basis vectors (e, es,e3)
do not change with time. In the rotating system the basis vectors (€, &2, &3) are
rotating with the angular velocity w. The time derivatives now can be written as:

. A= Aie,-
o for a nonrotating system: dA  dA;
- = Zei
dt dt
A = A4;¢;
e for rotating system: dA  dA:  de:
d = od T
The rate of change d&;/dt is given by:
de; _
d_tl =w X €, (B.1.1)

because the change is brought about by a rigid—body rotation. To an observer in
the rotating frame, however, the basis vectors appear to be constant. Thus we
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write:
de' dA
Sie =) . B.1.2
dat (clt)mt (B.1.2)

The relationship of the time derivatives in the two frames is thus given by:

dA ) ( dA ) - _
—_— = —_— + Az (w X e,')
< dt nonrot dt rot

dA
== A. B.1.
( dt )rot e ( 3)

Consider now the velocity vector as an example. Let the two frames of reference
have the same origin. Then the position vector is given by r = . It follows that:

dr dr
— = — . B.1.4
(dt>nonrot (dt)rot+wxr ( )

The first term on the right side of Equation (B.1.4) is the velocity of a point as it
is perceived by an observer in the rotating system. Thus we write:

(V) V), + W XTI (B.1.5)

nonrot ( rot

If the term (V),,, is zero, then the point in question is fixed with respect to the
rotating system, and the Equation (B.1.5) reduces to the expression of a rotating
rigid body. The acceleration in the two systems can be obtained by applying the

operator
d d
— == B.1.
(dt) nonrot, <dt> rot e ( 6)
to the Equation (B.1.4). We get
dt2 nonrot B dt dt rot dt

—1 ﬁ +wxﬁ+d—wxr
S dt \dt ), dt = dt

= & +w X ﬁ +w X ﬁ +wxr +d—w><r
a dt2 rot dt rot dt rot dt ’

dr dr dw
= —= 2 — — . B.1.
(dt2>rot+ wx(dt>mt+wx(wxr)+dtxr ( 7)

or finally:

Thus the acceleration in the nonrotating frame is made up of four parts:

286



COORDINATE SYSTEMS

d’*r . : .
-0 acceleration relative to rotating reference frame;
dtZ rot
dr - .
2w X | — Coriolis acceleration;
dt rot
w X (wXxr) centripetal (or negative centrifugal) acceleration;
dw .
— Xr angular acceleration.

If the origin of the rotating frame of reference is different from that of the fixed
frame of reference, we have (Reddy and Rasmussen 1982b):

& —d2—R+ & + 2w x dr +wx(wxr)+d—wxr
dt2 nonrot a dt2 dtz rot dt rot dt
(B.1.8)

where R is the position vector of the origin of the rotating frame of reference
with respect to the nonrotating frame of reference, and d?R/dt? is the absolute
acceleration of the origin of the rotating frame of reference. If we regard the result
obtained in Equation (B.1.7), in the context of the Newton’s second law, which
must be written as F = ma in an inertial or nonrotating reference frame, we have:

d’r
F=m -
dt nonrot
centrifugal force

d’r dr 1 dw
=m (E>mt+2mw X <%>mt+mw x (w xr)+mﬁ X T. (B.1.9)
i

Coriolis force
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Appendix C

Beaufort scale of wind speed

In the next page we present the Beaufort scale of wind speed.
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Seaman’s Terms used In Wind Speed Approximate
Beaufort Description of US Weather pressure in
Number Wind Bureau Forecast knots meters pounds per feet?
0 Calm Less than 1 | Less than 0.3 Less than 0.01
1 Light air Light 1+3 0.3+1.5 0.01-+0.06
2 Light Breeze 4+6 1.6+3.3 0.06+0.2
3 Gentle Breeze Gentle 7+10 3.4+-5.4 0.2+0.4
4 Moderate Breeze | Moderate 1116 5.5+8.0 0.4+1.0
5 Fresh Breeze Fresh 17+21 8.1+10.7 1.0+-2.0
6 Strong Breeze 2227 10.8+13.8 2.0+3.0
Moderate Gale Strong . . .
7 (High Wind) 28+33 13.9+17.1 3.0+4.0
8 Fresh Gale 3440 17.2+20.7 4.0+6.0
9 Strong Gale Gale 41+47 20.8+24.4 6.0+9.0
10 Whole Gale 48+55 24.5+28.3 9.0212.0
(Heavy Gale)
Whole Gale
11 Storm 5665 28.4+-33.5 12.0+16.0
12 Hurricane Hurricane Above 65 Above 33.6 Above 16.0
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