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Abstract 
 
 This thesis deals with the identification problem of structural systems 
subjected to dynamic loads. In particular, following a recent stream of the 
research activities in this field, the present study is focused on some numerical 
techniques based on the elaboration of time series functions of input-output  of 
the structure. The time series, for real problems, are obtained from records, 
derived by testing apparatus and are then subjected to data acquisition problems. 
This latter aspect is here not treated, even if it is an active field of research, and 
the characteristic and the nature of the input-output data are assumed known. 
 The main purpose of this study is the development of system identification 
methods based on different principles and the validation of these methods for 
structural engineering applications. Moreover it is pointed out how the choice of  
the system identification technique depends on the specific final purpose of the 
identification. 
 The subject of structural identification techniques has been developed 
considering theoretical formulations and related numerical applications. 
 

 First the system realization theory is used for the identification of a multi-
degree of freedom time-invariant linear system. This time domain technique 
ensures a good approximation of the response of the system, modeled through 
finite dimensional, first order, difference equations. Moreover the technique 
provides a systematic approach to the model order determination using the 
singular value decomposition method applied to the Hankel matrix of the 
Markov parameters of the system. Starting from a realization of the system is 
quite simple to derive its modal parameters, while is not so easy to derive 
mechanical quantities such as damping and stiffness. On the other side, 
realizations of a linear system are models which accurately express the system 
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dynamics, for this reason they are particularly  suitable for control applications, 
as proposed in the following. 
 

 A second approach to the system identification problem utilizes neural 
networks. Neural networks are considered “black box” models. The unknown 
coefficients of the models are called “connection weights” and they are 
determined through an iterative procedure finalized to a minimization of the 
least squared error of the model. Neural networks present the ability to elaborate 
a large amount of data and to realize an associative memory. 
 In the following, multi-layer feedforward neural networks will be used to 
solve damage detection problems. In this context it is proposed to use the 
transfer functions of the structure, evaluated in different, simulated damage 
conditions, as input to the network. 
 The proposed approach to the damage identification problem allows to 
obtain satisfactory results even for complex structures as well as for non linear 
structures and for real time monitoring problems. 
 

 Finally a probabilistic approach to the system identification problem is 
proposed. In this context the potential models, which represent a particular class 
of stochastic models having solution in a probabilistic sense, are introduced. In 
fact the associated reduced Fokker-Planck equation can be solved in closed 
form and then, for this class of equations, the probability density function of the 
response is known. Under appropriate hypothesis (such as stationary and non 
parametric input, time invariant system, probability potential function 
expressible in polynomial form) the structural parameters of the system 
(damping and stiffness) can be derived solving a set of algebraic equations 
having as unknowns the aforementioned parameters and as coefficients the 
statistical moments of some functions related to the response. 
 

 All the presented methods are low influenced by the presence of noises in 
the input-output data. 
 It is opinion of the writer that the effectiveness and the friendly applicability 
of these methods make them useful tools for the solution of the identification 
problem in the structural engineering field. 
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Sommario 
 
 Questa tesi affronta il problema dell’identificazione di sistemi strutturali 
soggetti ad azioni dinamiche. In particolare, in linea con gli attuali interessi 
della ricerca in questo settore, l’attenzione è stata orientata verso quelle tecniche 
identificative basate sull’elaborazione delle serie temporali in ingresso e in 
risposta alla struttura, ottenibili per via sperimentale o attraverso simulazione 
numerica. 
 Le caratteristiche delle serie di input-output sono assunte note; non verranno 
pertanto trattati i problemi relativi all’acquisizione e caratterizzazione dei dati 
che costituiscono oggetto di altri settori di ricerca.  
 Attraverso questo studio, ci si è proposti di sviluppare metodi identificativi, 
basati su principi sostanzialmente diversi, e di appurarne le potenzialità e gli 
effettivi limiti di applicabilità ai sistemi strutturali, mettendo in evidenza come 
la loro scelta sia subordinata allo specifico scopo finale dell’identificazione. 
 Contributi alla ricerca sono presenti sia in termini di applicazioni che di 
sviluppi teorici. 
 

 Si é considerato dapprima il problema dell’identificazione di un sistema 
lineare tempo-invariante a più gradi di libertà. Si è dunque utilizzata la teoria di 
realizzazione dei sistemi che porta, nota la risposta impulsiva della struttura 
(parametri di Markov), alla determinazione delle matrici di stato del sistema. 
Questa tecnica, agendo nel dominio del tempo, consente una buona 
approssimazione della risposta del sistema, modellato attraverso equazioni alle 
differenze finite del primo ordine (rappresentazione in variabili di stato). 
 Il metodo utilizza una decomposizione della matrice di Hankel dei parametri 
di Markov del sistema, basata sul valore singolare, per determinare tra le infinite 
possibili realizzazioni quella di dimensioni minime. 
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 Nota una realizzazione del sistema risulta immediato ricavare i parametri 
modali dello stesso, mentre non è altrettanto facile derivarne i parametri di 
dissipazione e di rigidezza. Per questo motivo le applicazioni a problemi di 
diagnostica strutturale consentono solo in via qualitativa di individuare la 
presenza di danno nella struttura. D’altro canto i modelli di realizzazione 
riproducano accuratamente la dinamica del sistema così da trovare una naturale 
applicazione nei problemi di controllo strutturale, come viene proposto nel 
seguito. 
 

 Un secondo approccio al problema identificativo è quello che prevede 
l’utilizzo di reti neurali. Le reti neurali sono dei modelli, non basati fisicamente, 
in cui i parametri incogniti, pesi di connessione, vengono determinati alla fine di 
un processo iterativo che porta alla minimizzazione dell’errore quadratico 
medio totale della rete. Questi modelli sono in grado di elaborare un numero 
considerevole di dati e sviluppano una memoria associativa che consente loro di 
mettere in relazione serie di dati, aventi caratteristiche intrinseche simili, a 
classi corrispondenti. 
 Nel seguito si utilizzeranno reti neurali, del tipo “feedforward” a più strati, 
per la risoluzione di problemi di diagnostica strutturale. É da sottolineare che 
l’efficacia di questo strumento di calcolo dipende, in parte, dal tipo di dati che 
deve elaborare e dalla loro organizzazione. 
 Nella tesi si propone di utilizzare le funzioni di trasferimento della struttura, 
valutate in diverse (simulate) condizioni di danno, come input alla rete neurale, 
associando a ciascuna funzione di trasferimento una corrispondente classe di 
danno. 
 L’approccio proposto consente di ottenere buoni risultati in campo 
diagnostico anche in presenza di strutture complesse e a comportamento non 
lineare. Esso si presta inoltre ad essere impiegato in problemi di monitoraggio 
in tempo reale. 
 

 Infine si propone un approccio probabilistico al problema identificativo. In 
questo contesto vengono introdotti i modelli a potenziale che costituiscono una 
classe di modelli stocastici aventi soluzione in senso probabilistico. Infatti 
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l’equazione ridotta di Fokker-Planck, associata ai modelli a potenziale, ammette 
soluzione in forma chiusa e dunque per queste equazioni é nota analiticamente 
la funzione densità di probabilità del processo risposta. 
 Utilizzando questi modelli, sotto opportune ipotesi (tra cui input stazionario 
e non parametrico, sistema tempo invariante, potenziale di probabilità 
esprimibile in forma polinomiale), il problema dell’identificazione dei parametri 
caratterizzanti il sistema strutturale (smorzamento e rigidezza) si traduce nella 
risoluzione di un sistema di equazioni algebriche aventi per incognite i 
parametri suddetti e per coefficienti i momenti statistici di alcune funzioni della 
risposta. 
 

 I metodi presentati hanno in comune il pregio di risentire limitatamente della 
presenza di disturbi nei dati utilizzati. É opinione della scrivente che essi siano 
di facile applicabilità, nonché di comprovata efficacia, costituendo strumenti 
fondamentali per la risoluzione del problema identificativo in campo strutturale. 
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Chapter 1 
 
 
 

Introduction 
 
 
 

To identify a structure means essentially to be able to reproduce its behavior 
under an external excitation. This can be achieved by solving a general system 
identification problem or by solving a structural system identification problem. 

The system identification problem is generally stated as the construction of 
mathematical models from observer data which can best fit the input-output 
relations, regardless to physical interpretations, while structural system 
identification involves the determination of the intrinsic structural parameters, 
such as normal modes, mode shapes, stiffness and damping parameters. 

The general subject of system identification originally began in the area of 
electrical engineering and only later it has been extended to the fields of the 
mechanical and civil engineering; here it has become an increasingly important  
area of research because structural identification can be viewed as a first and 
fundamental step in (i) estimating and monitoring the health of an existent 
structure, (ii) in control problems and (iii) to perform reliability analysis of the 
structure. 

A very extensive and diverse literature on the subject is available. Several 
methods have been proposed and they can be grouped in different classes. 
Generally a distinction is made between parametric and non-parametric 
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methods, time domain and frequency domain methods and, in the field of civil 
engineering, also between static and dynamic methods. 

General surveys on  the subject can be found in Ljung (1987), Kozin and 
Natke (1986), Juang (1994), Natke and Campel (1997) and in several review 
papers, Kailath et al. (1979), Eikhoff (1981), Isermann (1981), Imai et al.(1989), 
among others. 

It is not the aim of this work to present a comprehensive survey of 
achievements in this field and of the state of art.  

Among the various methods only three will be treated in the detail:  the first, 
based on the system realization theory, is applicable to linear systems, the 
second and the third, based respectively on neural networks and on potential 
systems theory, are applicable to linear and non-linear systems. 

In the follows, to each of  these methods a chapter will be dedicated. 
Of course the aforementioned methods are not unconditionally applicable to 

every identification problem, on the contrary they have strong limitations and 
must be used appropriately. The general  considerations reported in the 
following, and schematized in fig.(1.1), could help to define a correct approach 
to the problem and to choose the more adequate system identification technique.  

 

• First it is important to have in mind the purposes of the system 
identification procedure, in fact different purpose may need a different 
identification process to perform a system identification task. If one deals with 
control problems, such as control of large aerospace structures, the final goal 
could be the development of a control strategy. The identification task is then to 
find a model of the structure which adequately will describe the input and 
output map. On the other hand, if monitoring and damage detection in a 
structure are the purposes of the study, the system identification task could be to 
identify the properties of the dynamic system such as stiffness, damping 
frequencies and their changes in time. Finally, if the final goal of the study is to 
develop a vulnerability analysis of the structure during its operating time, the 
applied system identification technique should be able to capture the 
modifications of characteristic functional of the structure and use it to 
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determine the probability of failure of the structure. 
 

• The second concept that is important to outline regards the selection of a 
set of models. To give a broad definition, a model of a system is a framework 
describing the relationship among the system variables in terms of mathematical 
expressions like integral or differential equations. The selection of a model, in a 
system identification problem, directly depends on the purpose of the 
identification and influences the choice of the identification technique. Usually 
physical based models (the ones containing the parameters of the system) lead 
to parametric system identification, while black box models imply non-
parametric identification. Moreover the model may be deterministic or 
stochastic depending of the type of the external forces and on the characteristics 
of the structure under investigation. 

 
Figure 1.1:  System identification procedure scheme. 
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For a given system, the choice of a correct model is of fundamental 
importance, but, very often, really difficult. Real structural systems are 
generally large in size and complex in behavior so that their accurate 
mathematical idealization is not an easy task; the options for input-output 
observational data are usually limited and the measured data could contain 
noises; finally in case of damage the system behavior may be highly non-linear. 
From these considerations one can see that with the model the first inaccuracies 
are introduced into the problem. Model inaccuracies effect the accuracy of the 
prediction.  
 

• To reduce the uncertainties a validation of the model is necessary. This 
involves various procedures to assess how the model relates to the observed 
data, if available, or to simulated data in other cases; in fact in such contexts 
data generated according to some well-defined mathematical rules are assumed 
as true, which, of course, is an idealization. 
 
 The present work is primarily aimed to the development and validation of 
system and structural system identification techniques. The practical 
applications in structural engineering problems is also stressed. A particular 
attention is devoted to those techniques based on the elaboration of measured 
input-output data. In this context three totally different approaches to the 
problem will be developed showing how each of these is particularly suitable to 
solve a specific problem such as damage detection, control and monitoring of 
the structure.  
 The large amount of literature existing on this subject makes necessary to 
give some guidelines about the effective potentiality of the various methods in 
the field of structural engineering. 
 New research contributions are presented through numerical applications, in 
the second and third chapters, and through theoretical developments in the 
fourth chapter. 
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1.1  Outline of the dissertation 
 
The content of the present thesis is organized as follows: 
The second chapter deals with the identification of a multi-degree of 

freedom linear system by means of the eigensystem realization theory. 
Throughout the chapter will be shown how the realization of the system, 
combined with the observer Kalman filter theory, leads to the formulation of a 
systematic and stable procedure for the identification of the dynamics of the 
system. These informations will be used to treat the damage detection problem 
in a structural system and, together with an implemented control law, to control 
the dynamic system behavior. 

Chapter three deals with the problems of monitoring and damage assessment 
in a structure using the neural network approach. Multi-degree of freedom, 
linear and non-linear systems will be analyzed. Particular attention will be given 
to the feedforward, multi-layers network type. As learning set for the network 
the transfer functions of the structure, evaluated in different damage conditions, 
will be used. The chapter provides also several numerical applications. 

Chapter four shows a probabilistic approach to the system identification 
problem. To this end a particular class of potential systems will be introduced 
and it will be shown how the parameters of the system can be identified solving 
a set of algebraic equations having as coefficients the statistical moments of the 
system response and as unknowns the parameters itself. 

Single and multi-degree of freedom stochastic models will be studied. 
Finally chapter five contains the general conclusions and some remarks for  

further research. 
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Chapter 2 
 
 
 

Eigensystem Realization Theory for System 
Identification 
 
 
 

2.1  Introduction 
 

In structural, mechanical and aerospace engineering fields, a large number of 
system identification techniques are available in order to develop a 
mathematical model of the system using experimental data. Furthermore for 
linear systems, numerous algorithms are based on the state-space representation 
of the system. 

This chapter deals with the identification of the parameters of the state-space 
model of the system, starting from given input-output data. These parameters 
may then be used to solve specific problems such as damage identification and 
control of a structural system. 

The theoretical framework of the system realization theory is founded on the 
works of Kalman (1963) and Ho and Kalman (1965). Among the infinite 
number of possible realizations of a system, with the same degree of accuracy, 
there is one that has minimum order. Minimum realization means a model with 
the smallest state-space dimension. Ho and Kalman showed that the minimum 
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realization problem is equivalent to a representation problem involving 
sequences of matrices containing the Markov parameters of the system; being 
the Markov parameters the pulse response of the discrete time system. 

This technique was combined with the singular value decomposition 
technique by Zieger and McEwen (1974), for the treatment of noisy data. The 
evolutions of the research in this direction resulted in the development of the 
Eigensystem Realization Algorithm (ERA) by Juang and Pappa (1985). The 
ERA algorithm provides modal parameter estimation and a modal reduction of 
the dynamic system. 

The analysis in the time domain, for obtaining Markov parameters of the 
system from the input and output data, usually presents the drawback of 
inverting an input matrix, which becomes particularly large for lightly damped 
systems. For this reason, rather than identify the system Markov parameters, 
which may exhibit very slow convergence, one can use an asymptotically stable 
observer so that a stable discrete state space model for the system is identified. 
This concept is implemented in the so-called Observer/Kalman filter 
identification algorithm (OKID), Juang (1992). A fundamental innovation in 
this approach lies in the presence of the observer that allows an artificial 
compression of the data and as a consequence an improvement of the 
identification analysis. The method can be regarded as an adaptive filtering 
approach, which does not require prior statistical information and does not rely 
on sample correlation or covariance calculations. Moreover, one can assign the 
desired poles for the observer so that it is possible to specify the decay rate of 
the observer Markov parameters to be determined from the data. 

The uniqueness and invertibility of the transformation from the observer 
Markov parameters to the system Markov parameters are also ensured by a 
matrix formulation, Phan et al. (1992). Once the observer Markov parameters 
are obtained, OKID uses the eigensystem realization algorithm to realize the 
state space model from the observer and the system Markov parameters.  

This approach makes identification possible not only for the open-loop 
system, but also for an associated observer that can be used in controller design. 
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Beside the observer/Kalman filter identifier an equivalent state-space 
frequency-domain method has been developed, for the cases in which frequency 
response data are available instead of  time histories. The method involves 
directly the frequency response function to estimate the Markov parameters 
using a rational matrix description to fit the frequency data and then recalls 
ERA to obtain the state space model from the Markov parameters. In this way 
the problems connected with the aliasing effects, introduced during the inverse 
discrete Fourier transform of the frequency response function, are avoided. 

Another interesting aspect, from a structural engineering point of view, is 
that it is possible to transform the system state-space based realization model 
into the corresponding physical coordinate based structural model, (Alvin and 
Park, 1994). Furthermore it can be shown that it is possible to carry out a unique 
set of structural parameters from an infinite set of equivalent realization models. 
The existence of this link between the two classes of system identification 
techniques, (the one based on the state-space representation and the other on the 
second order structural dynamic equation) makes the methods based on the state 
space representation more attractive due to their simplicity and robustness. 

In the following the problem of  damage detection and subsequent 
restoration of a structural system will be treated by means of the system 
realization theory. To this end a control algorithm, based on the assignment of 
the poles, is also implemented. To clarify the adopted procedure, some 
fundamental concepts regarding the state-space representation of a structural 
system, the singular value decomposition, as well as the Kalman filter theory 
and the poles assigned control law will be reviewed. 

 
 

2.2   Equivalent representations for structural dynamic 
    systems 

 
Models in the time domain as well as in the frequency domain may be used 

to represent a linear dynamic system. The models are said equivalent when they 
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reproduce the same input-output mapping. The necessity to have different 
representations of the same system is due to the fact that some models are more 
suitable for computation than others. 

In the following a brief resume of equivalent representations for a linear 
dynamic structure will be  presented. Starting from the equation of motion, the 
transformation into the state space form and a representation as weighting 
sequence will be reported. 

 
2.2.1  Second order differential equation 
 
Typically a linear, time-invariant dynamic system, which may represent a 

real structure in a discrete form, having a finite dimension, say p, is described 
by a set of p second order differential equations expressed in matrix form as: 

 
 ),()()()( tttt qFKqqCqM 0 =++     (2.2.1.1) 

 
where the familiar symbols M, C0 and K are the p-order square matrices of 
mass, damping and stiffness respectively; )( and )( ),( ttt qqq are vectors of 
acceleration, velocity and displacement, while F(q, t) is the forcing vector 
function.  
 
 2.2.2  The state-space representation 
 
The above set of second order differential equations may be transformed into a 
first order system of differential equations by means of the following 
definitions: 

 

; 
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 ; ˆ 







= − BM

0
B 1  )(ˆ),( tt uBqF = ; (2.2.2.1 c-d) 

 

where the product )(ˆ tuB  represents the forcing function being B̂  the (pxm) 
influence matrix, with m the number of inputs, and u(t) the input force vector. 
 Then denoting with A the (nxn) state matrix of the system, with n = 2p, and 

denoting with x nR∈  the state vector of the system, a more compact form of 
the system is given by: 
 

)()()( ttt BuAxx += . (2.2.2.2) 

 
  If  r structural responses are available then a matrix output equation can be 
written in the form: 
 

)()()( ttt DuCxy += . (2.2.2.3) 

 
Here rR∈y  is the output variable, C is an (rxn) output influence matrix for 

the state vector x, including only velocity and displacement, and D is an (rxm) 
direct transmission matrix. The matrix D is the output influence matrix for the 
acceleration and disappears when accelerations are not measured in output. 

Equations (2.2.2.2) and (2.2.2.3) constitute a continuous time state space 
model of the structural system. Formally the same equations can be written in 
the discrete case, when the input-output data are available in discrete form. 

In this case, eqs.(2.2.2.2) and (2.2.2.3) are described by difference equations 
instead of differential equations, as: 

 
)()()1( kkk dd uBxAx +=+  (2.2.2.4) 

   

)()()( kkk dd uDxCy +=  (2.2.2.5) 
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x(k) means the vector x computed at the discrete time k⋅∆t, where ∆t indicates 
the sampling time interval. The notation d refers to the discrete representation of 
the system. The discrete time matrices may be computed by the following series 
expansion of the corresponding matrices in continuos time: 

 

......    )(
!3

1)(
!2

1 32 +∆+∆+∆+== ∆ ttte t
d AAAIA A  (2.2.2.6) 

 

BAAIBB A ⋅



 +∆+∆+∆=⋅τ= ∫

∆
τ ......    )(

!3
1)(

!2
1 d 322

0

ttte
t

d . (2.2.2.7) 

 
These series converge if the matrix A is asymptotically stable. Equations 

(2.2.2.6) and (2.2.2.7) allow switching from the continuous to the discrete time 
formulation. 

As will appear clear in the following, if an observer is introduced into the 
system then the eigenvalues of the new state matrix can be moved in a way that 
their real parts are negative. 

In the following for simplicity, the system matrices in the discrete form will 
be denoted without the subscription d, the use of difference or differential 
equations will make clear if they refer to the discrete or to the continuos model. 

 
2.2.3   Representation  of  the  system  through  Markov 
         parameters 
 
As already introduced, the Markov parameters of a system constitute the unit 

pulse response sample of the system. They can be easily obtained, for given 
initial conditions, by solving eqs.(2.2.2.4) and (2.2.2.5) in terms of previous 
input u(i), i= 0, …, k.  
For x(0) = 0 the solution for the output y(k) is given by: 
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∑
=

−=
k

i
iikk

0
)()()( uYy   (2.2.3.1) 

 
where the constant matrices in the summation are the Markov parameters 
defined as: 

 
BCAYCABYCBYDY 1)(       , )2(      , )1(     , )0( −==== kk . (2.2.3.2) 

 
 Equation (2.2.3.1) can be written in matrix form as: 
 

UYy  =  (2.2.3.3) 

 

with UYy    and,  having dimensions (rxk), (rxmk) and (mkxk) respectively. 

 From eq.(2.2.3.1) it can be seen that the output of a linear system can be 
expressed through a weighted sum of the applied input, with the weights being 
the Markov parameters of the system. Thus the Markov parameters characterize 
the unit impulse input-output relationships of the system and as thus they are 
unique for the system. Any equivalent realization of the system must preserve 
the Markov parameters. 
 Moreover the solution of eq.(2.2.2.4) has the form: 
 

  ∑
=

−=
k

i

i- ikk
1

1 )( )( uB Ax . (2.2.3.4) 

 
It is easy to show that any system has an infinite number of possible 

realizations, as in fact if a generic transformation of the state vector is 
introduced, say x=Tz, with T being a non-singular square matrix, eqs.(2.2.2.4) 
and (2.2.2.5) can be rewritten as: 

 

)( )( )1( 11 kkk uBTzATTz −− +=+  (2.2.3.5)   
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)( )(  )( kkk uDzTCy += . (2.2.3.6) 

 
 From this new set of equations it can be noted that the effect of the input 
u(k) on the output y(k) has not changed, so the new set of matrices T-1AT, T-1B 
and CT as well as A, B, C (D is not affected by the transformation) represent a 
realization of the system.  
 The coordinate transformation T is called a similarity transformation 
because the eigenvalues λ of A are invariant under this transformation. Because 
of this, the two matrices A and T-1AT are said to be similar. Moreover all the 
similarity transformations preserve the Markov parameters of the system. 
Referring to eq.(2.2.3.2) the Markov parameters are given by: 

 

. )( )(

    )0(

1111

  

BCABT TATTCY

DY

−−−− ==

=

kkk
 (2.2.3.7) 

 
 Another important property of the similarity transformation is that it 
preserves the transfer functions H from u to y. In fact applying the Laplace 
transform to eqs.(2.2.3.5) and (2.2.3.6) one obtains: 
 

 
.   )(          
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 (2.2.3.8) 

 
where s is the Laplace variable. 
 Due to the fact that no restriction has been introduced in the choice of T it is 
therefore proved that there are an infinite number of equivalent state-space 
representations that produce the same input-output relationship. 
 A realization problem starts from the knowledge of the Markov parameters 
and can be stated as follows: 
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given a sequence of Markov parameters Y(k) of the system, determine a 
realization [A, B, C] which best approximates the given Markov sequence 
according to some measure of accuracy : 
 
 )()()1( kkk uBA +=+ xx  (2.2.3.9) 

   

 )()( )( kkk uy DC += x  (2.2.3.10) 

 
such that : 
 

 
BCA

D

1)(

   )0(
   

−≈

=

kkY

Y
 (2.2.3.11) 

 
where x is the resultant state vector. 
 The order of the realization is related to the number of inputs and outputs 
regardless to the order of the physical system and this, in some sense, is an 
advantage. On the other hand care should be taken to ensure that there is a 
sufficient amount of information in order to entirely reproduce the behavior of 
the system; as will be shown an optimal compromise can be reached. 
Solution of the realization problem concerns issues such as model order, 
uniqueness, noise, model measures to be fitted, etc. 
 
 

2.3  Eigensystem Realization Algorithm 
 
 As previously stated, the problem of a system realization consists of finding 
a set of constant matrices A, B, C from the Markov parameters for which 
equations (2.2.2.4) and (2.2.2.5) are satisfied. Among the infinite solutions the 
one with minimum order is obviously the most attractive.  



Aurora Pisano Structural System Identification: Advanced Approaches and Applications

 16

 Ho and Kalman (1965) introduced the principles of the minimum realization 
theory for which from the infinite number of realizations for a system it can be 
extracted a class that has minimum order. All the minimum realizations have 
the same set of eigenvalues. This concept allowed the development of a 
technique that provides a systematic approach to model order determination, for 
given accuracy, and the derivation of the discrete state space model.  
 The algorithm developed by Ho and Kalman uses the discrete-time shift of 
the Markov parameters, which are used to form a Hankel matrix, defined as 
follows: 
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H . (2.3.1) 

 
Juang and Pappa (1985) introduced the use of the singular value 

decomposition (SVD) of the Hankel matrix to generalize the Ho-Kalman 
algorithm to structural system identification. The new algorithm, known as 
Eigensystem Realization Algorithm, ERA, expresses the measured Hankel 
matrix as: 

 

∑
=

αβ ==
max

1

T )(
N

i

T
iiisk zrSRH Σ  (2.3.2) 

 
where R and S are orthonormal (αxα) and (βxβ) matrices, composed of column 
vectors ri and zi respectively, and Σ is an (αxβ) matrix with the singular values si 
of  Hαβ(k) on the main diagonal and zero elsewhere; Nmax is the minimum of α 
and β. 
 Minimum model order is determined by minimizing the matrix norm 
between the measured and realized Hankel matrix Hαβ(k) and )(ˆ kαβH , so that: 
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  )(ˆ)(  min kk αβαβ − HH . (2.3.3) 

 

 The realized Hankel matrix )(ˆ kαβH  can be determined by truncating the 

SVD series expansion at a suitable order N < Nmax such that sN+1 < ε ≅ 0. 
Therefore using the measured Hankel matrix Hαβ(0) the realized Hankel matrix 

)0(ˆ
αβH is: 

 

 T)0(ˆ
NNN SRH Σ=αβ  (2.3.4) 

 
where ΣN  is a diagonal (NxN) matrix whose diagonal elements are the singular 
values up to order N of Hαβ(0) decreasing ordered; while RN and SN are in 
general rectangular matrices (αxN) and (βxN) respectively, they are still 
orthonormal such as RT

N RN  = ST
N SN = I and are obtained by extracting the first 

N columns of R and S respectively. On the other hand the Hankel matrix can be 
directly expressed by means of the state matrix A, the controllability Pα and 
observability Qβ matrices by means of: 

 
 βααβ = QAH kk P)(  (2.3.5) 

 
where 

[ ]

[ ].         ....
 

 ;          ....

12

T12

BABAABBQ

CACACAC

−β
β

−α
α

=

=P
 (2.3.6) 

 For k = 0 and assuming the new order N for the system, making a 
comparison between eqs.(2.3.4) and (2.3.5) a relationship between RN , SN , ΣN   

and Pα and Qβ can be found. One possible choice is the following: 
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 T2/12/1           ; NNNN SQR ΣΣ == βαP . (2.3.7) 

 
whit this choice Pα and Qβ have an equal distribution of the singular values of 
Hαβ(0), and in fact it is easy to show that the controllability and observability 
grammians are equal and diagonal, which implies an internally balanced 
realization, therefore the realized system is observable and controllable. 
 Using eqs.(2.3.7) for k = 1 eq.(2.3.5) becomes: 
 

   T2/12/1  ˆ )1( NNNN SARH ΣΣ=αβ  (2.3.8) 

 
from which a minimum order realization can be obtained as: 
 

 2/1T2/1  )1( ˆ −
αβ

−= NNNN ΣΣ SHRA  ,               mNN ESB T2/1ˆ Σ=  (2.3.9.a,b) 

 

 2/1Tˆ
NNr ΣREC = ,                                      )0(ˆ YD =  (2.3.10.a,b) 

 
where ]   ...      [T

mmmm OOIE =  and ]   ...      [T
rrrr OOIE = . The symbol Im 

denotes the (mxm) identity matrix, Om the (mxm) null matrix and m and r  
respectively the dimension of input and output. 
 When, for a given set of  Markov parameters, a minimum realization is 
found, from the identified state matrix it is possible to derive its eigenvalues and 
eigenvectors. The eigen-quantities can be used to produce a modal 
representation of the system. The modal realization is specified by the matrices 

 ˆ , -1BΨΛ and ΨĈ , being Λ a diagonal matrix containing the eigenvalues λi of 
the state matrix and Ψ the corresponding eigenvectors matrix. The real part of 
Λ, into the continuous time model, gives the modal damping rates, while the 
imaginary part gives the damped natural frequencies.   
 As specified above this kind of realization is internally balanced and the 
singular value decomposition of the Hankel matrix ensures, in some sense, the 
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exclusion of possible noises in the data and in fact the degree of observability 
and controllability of the system decreases with the amplitude of the singular 
values. Juang and Pappa (1986) studied the effect of the noise on modal 
parameters estimation by ERA, establishing some relationship between the 
singular values and the characteristic of the noise. The modal amplitude 
coherence (MAC) and the mode singular value (MSV) are quantities that allow  
the accuracy of the identified system to be established. The calculation of these 
quantities are then included in the ERA algorithm, and if these indicators 
determine a reduction of the order of the model the program returns to the 
representation (2.2.3.2), re-evaluates the Markov parameters and repeats the 
procedure. More details on the MAC and MSV factors can be found in 
appendix (2.A). 
 The flowchart shown in fig.(2.1) summarizes the primary steps of the system 
realization algorithm. 
 The advantages in using this particular realization, over others based on the 
Hankel matrix decomposition approach, are that it is a minimal order realization 
in absence of noise and for a defined accuracy, as shown above, and because it 
is a balanced realization.  
 The Markov parameters of the system can be obtained through discrete 
Fourier transforms and spectral analysis (see appendix 2.B) or they can be 
directly derived in the time domain, using ARMA models, with a benefit of 
providing filter gains of an asymptotically stable observer model, as will be 
specified in the following sections.  
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Figure 2.1: Flowchart for the ERA 

After Juang J.N. (1994) ‘Applied System Identification’. 
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2.4  Kalman filter 
 

The discrete time-domain model introduced by eqs.(2.2.2.4) and (2.2.2.5) 
does not account for the possibility of model inaccuracy and the presence of 
noise in the measured data. However these quantities may be included in the 
model which assumes the form: 

 
 )()( )( )1( 1 kkkk euBxAx ++=+  (2.4.1) 
   

)()( )( )( 2 kkkk euDxCy ++=  (2.4.2) 

 
where the two new vectors e1(k) and e2(k) represent the processes of noise due 
to disturbances and modeling inaccuracies and the measurement noise due to 
the inaccuracy of the sensors. Classically these processes are modeled as zero-
mean and Gaussian, therefore they are assumed independent each other.  
 By minimizing the state estimation error )(ˆ)()( kkk xxe −= between the 
estimate state and the real state, one arrives to define a Kalman filter. 
 Suppose now that the estimated state can be written in recursive form as: 
 
 )( )()( )()(ˆ )()1(ˆ kkkkkkk yuxFx KH ++=+  (2.4.3) 

 
where F(k), H(k) and K(k) are respectively (nxn), (nxr) and (nxm) time variant 
matrices, to be determined in a way that the estimation error has zero mean 
value and is minimum. 
 The estimation error e(k+1) can be written as: 
 

 
;  )( ] )([)( ])( )([            

)(ˆ ])( )([)1(ˆ)1()1(
kkkkk
kkkkkk
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−+−−+
+−−=+−+=+

  (2.4.4) 

 
then the expected value of e(k+1) will be equal to zero only if: 
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.)]0([E)0(ˆ    ; )(  )(    ; )(  )( 0xxDBCAF ==−=−= kkkk KHK  (2.4.5) 

 
From the above positions the following Kalman filter derives: 

 
)( )( ][)(ˆ ][)1(ˆ kkkk yuDBxCAx KKK +−+−=+  (2.4.6) 

 

)()( )(ˆ )( kkkk ε++= uDxCy . (2.4.7) 

 
Define: 
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then eq.(2.4.6) can be replaced by the following: 
 
  )( )(ˆ )1(ˆ kkk vBxAx +=+ . (2.4.9) 

 
 Then, indicated with ε(k) the residual, defined as the difference between the 
real and the estimated measurement, given by: 
 

)(ˆ)()( kkk yy −=ε  (2.4.10) 

 
the Kalman filter can be rewritten in terms of estimated quantities as: 

 
)( )( )(ˆ )1(ˆ kkkk εK++=+ uBxAx  (2.4.11) 

 

)( )(ˆ )(ˆ kkk uDxCy += . (2.4.12)

 
 The matrix K is named the Kalman filter gain and must be determined to 
minimize the estimation error. When the system reaches the steady state 
condition, the Kalman filter gain is a constant (nxr) matrix, having the form:   
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 [ ] 1T
2

T −
+= CPCEAPCK  (2.4.13) 

 
E2 being the covariance matrix of the process e2(k) and P the covariance matrix 
associated with the residual process and fulfilling the Riccati equation: 
 

 [ ] 1
T1T

2
TT  ECPACPCEAPCAPAP ++−=

−  (2.4.14) 

 
E1 being the covariance matrix of the error process e1(k). For more details the 
reader can refer to appendix (2.C). 
 The Kalman filter is essentially a method of sequential least square 
estimation. In the last decades extensive work has been done on this subject 
because, at steady state, the Kalman filter presents the attractive quality of 
having a closed form solution, the Riccati equation, for its gain matrix. 
However it presents the drawback that the covariance of the input and the 
output measurements must be known. These quantities are difficult to evaluate. 
 In the following sections, under appropriate hypothesis, an important 
relationship between the Kalman filter gain and the matrix gain of an observer 
identifier will be evidenced, showing that an optimal realization can be obtained 
for an observer identifier having a Kalman gain matrix. 
 
 

2.5  The Observer Kalman filter 
 
 The procedure described in section (2.3) and implemented in the ERA 
algorithm is practically useful if the order of the Markov parameters involved in 
the problem is relatively low. However, for lightly damped systems, the order k 
for which  Ak ≅ 0 is really large which makes impossible to derive the Markov 
parameters from eq.(2.2.3.3); the matrix U  becomes ill conditioned. In order to 
overcome this problem  the damping of the system is artificially increased by 
inserting an observer in the system with the purpose of making the system as 
stable as desired. 
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 The discrete time state-space observer model of a dynamic system has the 
form: 
 

  )( )( )1( kkk vBxAx +=+  (2.5.1) 

 
 )( )( )( kkk uDxCy +=  (2.5.2) 

 
where the following definitions have been adopted: 
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 In the above, G is an arbitrary (nxr) matrix, known as gain matrix, which 
allows the eigenvalues of the state matrix to move, as is evident from the first of 
eq.(2.5.3), making A  asymptotically stable. The observer Markov parameters 
of the system given in eq.(2.5.1) can be used, as the corresponding system 
without observer, to describe the input-output map. So, similarly to eq.(2.2.3.3), 
the following relationship holds: 
 

 VYy  0=  (2.5.4) 
 

where: 
 
 1)]-(    ...  )2(  (1)  )0([ kyyyyy =  →  ( r x k ) (2.5.5) 

 
 ]    ...        [ 2

0 BACBACBCDY −= k  →  r x [( r + m)(k-1) + m ]  (2.5.6) 
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The observer Markov parameters are then obtained as: 
 
 1TT

0 ][ −= VVVyY   (2.5.8) 

 
if  1T ][ −VV  exists, otherwise 1TT ][ −VVV  is replaced by the a pseudo-inverse 

matrix +V  defined as VVVV =+ . 
 Methods to define G correctly are discussed in Phan et al.(1992), where it is 
also outlined how the discrete time observer model given by eqs.(2.5.1) and 
(2.5.2) is formally identical to a steady state Kalman filter when G = - K and 
ε(k) = 0. This implies that also their Markov parameters are equal. This is an 
important concept due to the stability of the Kalman filter. 
 From the latter, it can be concluded that any observer satisfying eq.(2.5.8) 
produces the same input-output map of a Kalman filter if the data length is 
sufficiently long and the order of the observer sufficiently large so that the 
truncation error is negligible. Therefore, when reduced to the system order, the 
identified observer has to be a Kalman filter, that implies G = - K. 
 The concepts expressed in this section have been used in the so called 
Observer/Kalman filter and implemented in a program Observer Kalman Filter 
Identifier (OKID). Once a reduced model for the system has been identified, 
using the observer equations, the eigensystem realization theory, as described in 
section (2.3), is applied to find a realization of a state-space model and the 
corresponding eigensolution. 
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2.6  A Practical Application 
 
 2.6.1  Preliminary considerations 
  
 System identification techniques can be repetitively applied for damage 
assessment and structural control (Faravelli et al. 1996). In the following 
numerical application the eigen-characteristics of a typical space structure, 
modeled through a finite element technique, are identified before and after 
damage using the eigensystem realization theory. 
 The action of linear piezoelectric actuators is also modeled with the double 
purpose of allowing a correct identification of the structure, during standard 
operational requirements, and controlling the structural behavior in a damaged 
state, in order to partially maintain its overall functionality until a restoring 
intervention is achievable.  
 The problem is addressed in two steps: first the system identification 
technique is used for damage assessment and then a suitable control law is 
applied in order to achieve a dynamic response of the damaged structure  
slightly different from that of the undamaged structure. For the purpose of the 
present application, a truss structure properly equipped with sensors (for the 
output monitoring) and actuators (for force inputs) is considered. 
 

 The problem can be stated as follows: 
 

1.  choose the locations of actuators to excite the structural modes of interest 
and place the sensors to measure these modes. An external random 
excitation is also considered; 

2.  identify a state-space able to adequately describe the input-output properties 
of the intact structure; 

3.  simulate a severe damage in the structure by removing one or more rods; 
4.  identify a state-space model for the damaged system; 
5.  control the system by means of an output feedback strategy. 
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 The identification procedure is not intended to locate the damage in the truss, 
but to ascertain that the damage has occurred and to identify the system 
dynamics in the damaged case. 
 
 2.6.2  The implemented procedure 
  
 In the present study, the intact structure has been identified through OKID 
with a state-space model in the following form: 
 

uBxAx   +=  (2.6.2.1) 
   

uDxCy   +=  (2.6.2.2) 

 
where x ∈ Rn denotes the state of the system, u ∈ Rm indicates the input (or 
control) variable and y ∈ Rr is the output variable. All x, u, y are functions of 
time t. Moreover, without loss of generality, it has been assumed that m < r < n. 
 When the input are forces the outputs are displacements (as in this case), the 
matrix D is zero and eq.(2.6.2.2) assumes the form: 
 
  xCy  = . (2.6.2.3) 

 
 It is important to note that the physical meaning of the state is not known, 
because the OKID algorithm only chooses the set of matrices A, B, C and D 
which best correlate the input with the output data. This difficulty can be 
avoided as shown in the following. Two cases are possible. First, suppose that 
the order of the system is equal to the number of outputs. In this case the matrix 
C is square and can be inverted. Introduce the following state transformation: 
 
 xCz  =  (2.6.2.4) 
 

to obtain: 
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 uBzAz  ~ ~
+=  (2.6.2.5) 

 

 zy =  (2.6.2.6) 
 

where: 
 

 -1CACA =
~  (2.6.2.7) 

  

 CBB =
~ . (2.6.2.8) 

 
 Due to this transformation, the state variables have now a clear physical 
meaning, since the system outputs coincide with the displacements at the nodes 
of the structure.  
 However, when the order of the system is larger than the one of measured 
outputs (n > r) C becomes rectangular and therefore is not invertible.  
 To proceed as above, it is first necessary a partition of the state vector as: 
 

  







=

l

r

x
x

x  (2.6.2.9) 

 
with xr ∈ Rr , xl ∈ Rl and l = n - r in a way that : 
 

 [ ] 







=

l

r

x
x

CCy      21 . (2.6.2.10) 

 
Next, it is introduced an augmented output vector as: 
 

 







=








=

l

r
a

l
a x

x
C

x
y

y         (2.6.2.11) 

 

where: 
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 







=

l
a I0

CC
C 21  . (2.6.2.12) 

 
 After this artificial extension of the outputs, the state-space model can be  
transformed as follows: 
 
 xCz a=  (2.6.2.13) 

 
which now is of the form of eq.(2.6.2.3).  
 Following the above procedure the system representation becomes: 
 

 uBzAz  ~ ~
+=  (2.6.2.14) 

 

 zCy  ~
=  (2.6.2.15) 

 

being: 
 

 1~ −= aa ACCA  (2.6.2.16) 
    

 BCB a=
~  (2.6.2.17) 

 

 [ ]0IC r=
~ . (2.6.2.18) 

 
 Note that now the state variable transformation of eq.(2.6.2.13) allows one to 
give a clear physical meaning to the identified state-space system. And then, by 
applying the same kind of transformation to the state-space models of the 
undamaged and of the damaged structure a comparison can be made; the 
meaning of the state variables being the same. In the present study system 
identification techniques have been used to detect the state of the structure 
during the life time. This has been done by applying independent and time 
varying forces through the actuators, which could be built with piezoelectric 
elements, and by considering an external disturbance also applied to the 
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structure. The first identification might be used  to assess and refine the quality 
of the finite element model of the structure. Successive identifications of  the 
system, showing changes in the low frequency modes of the structure, can point 
out that damage, intended as stiffness reduction, has occurred in the structure. 
This would lead to the decision of replacement/refurbishment of the structure 
during its service life. 
 
 2.6.3  The control law 
 
 Suppose now that at a certain instant the procedure described in the previous 
paragraph shows that a structural damage is occurred. The problem is how to 
restore, at least partially, the dynamic behavior of the structure so as to fit it 
with the corresponding one of the intact truss. 
 The procedure is as follows. Assume that the vibration of the truss is 
constrained to keep its low frequency characteristics in the presence of  a 
structural damage. A control strategy can be obtained to guarantee that the main 
operational specifications are satisfied. To this end, the intact and the damaged 
structure are first identified and the corresponding state-space model are 
transformed using eqs.(2.6.2.5)-(2.6.2.18). In general the intact and the 
damaged structures show a different dynamic behavior due to the different 
eigen-structure of the two systems. In order to recover the dynamics of the 
damaged structure, the latter is forced to behave like the intact one by means of 
a static output feedback controller. In particular, the chosen controller strategy 
is to match the identifiable eigenvalues and corresponding right eigenvectors of 
the intact structure to the corresponding ones of the damaged structure. 
 It is recalled the well known theorem (Szinathkumar et al., 1978):  
 

given a controllable and observable system and the assumptions that the matrices B 
and C are of full rank, then max (m, r) closed loop eigenvalues can be assigned 
and max (m, r) eigenvectors (are reciprocal vectors by duality) can be partially 
assigned with min (m, r) entries in each vector arbitrarily chosen using gain output 
feedback, i.e., with a control law: 
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 ySu  −= . (2.6.3.1) 
 

 The gain matrix S can be evaluated according to the method by Andry et al. 
(1983). In particular for each eigenvalue  λi, the achievable eigenvector νi

a is 
given by: 
 
 d

iii
a
i νν   += LL  (2.6.3.2) 

 
where νi

d is the desired eigenvector while Li is defined as: 
 

 BAIL ~ )~( 1
i

−−λ=i  (2.6.3.3) 

 
and (.)+ denotes the appropriate pseudo-inverse of (.). Finally the feedback 
matrix can be computed by the following relation: 
 

  )~(  1−= VCUS  (2.6.3.4) 

 
where V is the matrix whose columns are the achievable eigenvectors and U the 
matrix whose columns are related to the achievable eigenvalues and 
eigenvectors (Andry, Shapiro and Chung, 1982). 
 Note that, according to the Srinatkrumar’s result, in general it is not possible 
to assign completely the right eigenvectors of the controlled system. Instead the 
above procedure tends to guarantee that the desired eigenvectors are best 
approximated in a least square sense. 
 It must be stressed that care must be taken in the evaluation of the pseudo-
inverse of Li because this matrix is ill conditioned. To avoid numerical 
difficulties, a singular value decomposition has been used, where the singular 
values that are smaller than a fixed minimum value have been neglected. 
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 2.6.4  A numerical example 
 
 For numerical purposes, a 9-bay truss structure was chosen, as shown in 
fig.(2.2). The truss structure is composed of 46 graphite/epoxy beams and is 
clamped at one end, precisely at nodes 1 and 20. The beams have a hull circular 
cross section with an inner radius of  0.033 m and an outer radius of 0.035 m. 
Each non-diagonal element is a 1.50 m long truss. The finite element analysis of 
the dynamical behavior of the structure was obtained by means of ABAQUS 5.4 
software.  
 At the upper right end node of the structure, node 11 in the figure, is applied 
an external excitation normal to the longitudinal axis of the truss. The excitation 
is modeled as a Gaussian white noise to simulate the action of an external 
disturbance. 
 

 
Figure 2.2: Nine-bay truss structure. 

 
 Actuators are supposed to be located as beams between nodes 1 and 2, 
between nodes 5 and 16 and between nodes 17 and 3. The placed of the 
actuators was based upon simplified controllability considerations (singular 
value analysis). In the numerical analysis of the model it was assumed that the 
stiffness of the actuators is equivalent to that of the beam elements of the truss. 
The displacements in a direction normal to the longitudinal axis of the truss 
were recorded at nodes 3, 5, 8, 11, 14 and 17 for the purpose of implementing 
the control strategy; subsequently the displacements at the upper right end node 
of the truss were recorded to compare the behavior of the intact, damaged and 
controlled structure. 
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 A state-space model of the intact truss was obtained with the previously 
described identification techniques. The order of the identified state-space 
model  of the structure is 14. The actual output at the sensors’ locations ,i.e., the 
response of the structure as obtained through finite element analysis, is 
practically coincident with the response of the identified model, as can be seen 
in fig.(2.3). 
 The values of the first three lower modes of the intact structure as obtained 
by the finite element analysis and by OKID are compared on table (2.1). Hence 
the high accuracy of the identification is confirmed. The presence of structural 
damage has been simulated for several different cases by completely removing 
one or two beams from the structure. In the following the results from four 
different possible damaged conditions of the structure are reported. Precisely, in 
the first case is analyzed the behavior of the structure when the beams between 
node 17 and 18 and between 19 and 20 are removed. In a second case the beams 
between node 2 and 19 and between node 3 and 18 are removed. The third and 
the fourth cases investigate respectively the situations in which just one beam is 
assumed damaged and precisely the one between node 1 and 19 and the one 
between node 4 and 16 respectively. 
 In appendix (2.D) the matrices A, B, C obtained by OKID in the undamaged 
condition are reported together with the corresponding matrices, obtained 
considering the damaged condition determined in case 1. The control matrix S 
is also reported. 
 Figures (2.4-2.11) report the response, in terms of displacement, of the 
damaged structure (darker line), together with the corresponding controlled 
response (lighter line) in (a) and with the response of the intact structure (lighter 
line) in (b), under the same external excitations. 
 This comparison is repeated for all the four above mentioned cases and 
considering the effects on two nodes of the truss. The first positioned at the free 
extreme of the truss, (node 11) and the second positioned in the middle of the 
truss (node 5). The results reported in the figures prove the effectiveness of the 
adopted strategy. In fact, for these cases and for others, following the control 
strategy outlined in the previous paragraph, the application of an output 
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feedback control law was simulated in such a way that the first three complex 
eigenvalues, corresponding to structural modes below 100 Hz, and the 
components of the right eigenvectors of the undamaged structure can be 
assigned to the damaged structure to restore the dynamic behavior of the truss. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.3:        Response of the structure using the FEM model; 
              Response of the structure using OKID 

 
The proposed approach gave successful results for all of the cases presented. 
 For the identification of the truss the forces applied at node 11 have been 
modeled as white noises. 
 The action of the controller restores the dynamic behavior of the truss. The 
displacement time history of the controlled structure is very similar to that of 
the intact structure, while the displacement history of the damaged structure is 
quite different from it except for the response at node 5 in the third case, fig. 
(2.9.a). 
 However it should be reminded that the main goal of the control strategy 
adopted was to restore the three lower modes of the truss, rather than to exactly 
maintain a certain displacement history at some fixed point of the truss. 
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Mode 

 
FEM 

 
OKID 

   
I 9.5 9.5 
II 53.2 53.7 
III 81.9 83.8 

 
Table 2.1: Lower modes of the truss [Hz]. 

 
 

 
 
 
               
   
 
 
 
 
                   
 
 
 
    
 
                                                                                                                       
 
 
   

Figure 2.4:  (case 1)  
(a) Response of the damaged (dark line) and of the controlled (light line) structure. 
(b) Response of the damaged (dark line) and of the intact (light line) structure. 
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Figure 2.5:  (case 1)  
(a)  Response of the damaged (dark line) and of the controlled (light line) structure. 

    (b)  Response of the damaged (dark line) and of the intact (light line) structure. 
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Figure 2.6:  (case 2)  
(a)  Response of the damaged (dark line) and of the controlled (light line) structure. 
(c) Response of the damaged (dark line) and of the intact (light line) structure. 
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Figure 2.7:  (case 2)  

(a)  Response of the damaged (dark line) and of the controlled (light line) structure. 
    (b)  Response of the damaged (dark line) and of the intact (light line) structure. 
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Figure 2.8  (case 3)  
(a)  Response of the damaged (dark line) and of the controlled (light line) structure. 
(b) Response of the damaged (dark line) and of the intact (light line) structure. 
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Figure 2.9:  (case 3)  
(a)  Response of the damaged (dark line) and of the controlled (light line) structure. 

    (b)  Response of the damaged (dark line) and of the intact (light line) structure. 
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Figure 2.10:  (case 4)  
(a)  Response of the damaged (dark line) and of the controlled (light line) structure. 

    (b)  Response of the damaged (dark line) and of the intact (light line) structure. 
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Figure 2.11:  (case 4)  
(a)  Response of the damaged (dark line) and of the controlled (light line) structure. 

    (b)  Response of the damaged (dark line) and of the intact (light line) structure. 
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2.7  Conclusion  
 
 In this chapter some fundamental concepts regarding the system realization 
theory have been reviewed. The theory has been implemented in order to have a 
state variables vector with a clear physical meaning and used, together with a 
pole assigned law, for damage detection and control in a truss structure. 
Moreover the observe-Kalman filter identification technique was used to 
simulate the behavior of a truss structure for state monitoring and damage 
recovery. The action of linear actuators was model to excite the truss, in order to 
identify a state-space model of the structure under a known force input, and to 
restore the dynamic behavior of the structure once the damage has occured.  
 An output feedback control law has been determined through an eigen-
structure assignment algorithm in such a way that the control strategy imposes 
the lower frequency modes of the intact structure to be recovered, thus partially 
restoring the dynamic behavior of the damaged truss. The study outlines the 
highly effective results that can be obtained through a combined use of system 
identification / eigen-structure assignment technique. 
 The method described is simple to handle and the effectiveness of the 
procedure is clear from the reported results. It should be noted that for the 
simple truss examined  the assignment of the first three modes was sufficient. 
However, care must be taken when trying to extrapolate the results to other 
configurations. In more complicated structures and for specific combinations of 
loads, problem such as spillover, here  not present, may appear and make the 
problem more complicated. 
 
 
 
 
 
 
 
 



  

 
 
 
 
 
Chapter 3 
 
 
 

The Neural Network Approach for Damage 
Assessment and Safety Analysis 
 
 
 

3.1  Introduction 
 

Artificial neural networks have been studied for more than three decades and 
are rapidly expanding areas of research across many disciplines. They provide a 
useful tool for their ability to learn from experience, extracting from previous 
examples conclusions for the new ones and to select from available data the 
essential characteristic, neglecting irrelevant data.  

Neural networks are used for classification (Faravelli, 1994), pattern 
matching (Chen, 1991), pattern completion, noise removal, linear and non-
linear optimization (Tank and Hopfield, 1986), control (Casciati and Faravelli, 
1995, Zak et al., 1990), reliability problem (Casciati, Faravelli and Pisano, 
1997) and many other problems. 

The structure of artificial neural networks can be considered, in a rough 
manner, similar to that of the brain system. They consist of a number of 
processing elements (PE), neurons, each of which can have many inputs but 
only one output. A non simple connection between different neurons is possible 
through a connection law. Connections serve the specific purpose to determine 

45 
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the direction of information flow. The weight associated with each connection is 
an adjustable value, which modulates the amount of output signal passing from 
one processing element to the adjacent one and changes through a learning 
process. If the sum of the inputs to a given neuron exceeds a certain threshold, 
determined by a differential equation, the neuron “fires” and sends a signal to 
another neuron.  

The neural network models can be classified according to various criteria 
such as their learning methods (supervised versus unsupervised), and 
architectures (feedforward versus recurrent, output types, node types, 
connections weight, and so on).  

The architecture of the network is determined on how the internal neuron 
connection are arranged and by the nature of the connection. How the weights 
of the connections are adjusted or trained to achieve  a desired behavior of the 
network is governed by its learning algorithm. There are networks that can 
generate dynamically their architecture during the learning process (Adeli and 
Hung, 1995), but, in general, every network is set up to solve a specific problem 
and the network architecture is not adaptive.  

In a feedforward network the neurons are generally grouped into layers, the 
signal flow from the input layer to the output layer via unidirectional 
connections. The number of hidden layers and the number of neurons in each 
layer depend on the problem. Usually error back-propagation algorithm is used 
for supervised learning of multi-layer feedforward networks, (Rumelhart, 
Hinton and Williams, 1986). The method consists in a generalization of the 
least-squared scheme. Using this algorithm the error signal between the desired 
and the actual system output is propagated back through the network to adjust 
the weights of the processing elements in the various layers. This is just one of 
the several algorithms following the development of the neural network theory. 
More details are given in next sections and in appendix (3.A).  

A very extensive and recent literature can be found on the subject of neural 
networks also for the specific applications in the field on mechanics and 
structural engineering. Review papers, Simpson (1992) and Zeng (1998) 
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provide a synthesis of the developments and applications of neural networks as 
well as an important font of references. 

Recently neural networks are used for diagnostic problems. An earlier work 
is due to Wu, Gabussi and Garrett (1992) who used a feedforward neural 
network to localize damage in a shear type frame. The damage was simulated as 
local stiffness reduction. To train the network the Fourier spectrum of the 
system response was used. Povich and Lin (1994), following a similar 
approach, tried to identify the damage in the structure by means of a 
feedforward neural network trained by the responses in terms of acceleration of 
the structure subjected to dynamic loads. 

Another recent work is due to Ceravolo and De Stefano (1995) who 
proposed the neural network approach for damage localization in a supported 
beam training the network with the natural frequencies of the structure 
identified in different damage conditions. 

In the following a three layer feedforward neural network will be used for 
damage detection in a structural system. As proposed by Faravelli and Pisano 
(1997) the network will be trained using the transfer functions of the structure in 
different damage conditions. 

In the following sections a brief review of fundamental concepts regarding 
the choice of the network architecture and size, the learning rule and the preset 
parameters, as well as some fundamental definitions, are discussed. The use of a 
neural network for damage detection and safety problems will be also presented. 
In particular it will be shown how the adopted neural network is able to work 
either for linear or non-linear structures, either for simple or complex structures. 

 
 

3.2  The Network Architecture 
 

 The architecture of a neural network is defined by its layers and connections; 
one or more layers can be present between the input and output layers. Usually 
each unit receives input from all the units in the next layer and no 
communication is allowed between units in the same layer. Although in a 
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recurrent network this condition can be different. A multi-layer neural network 
presents a strong map ability also for non-linear problems. A typical example of 
such neural network architecture is shown in fig.(3.1), where the directions of 
the activation propagation and of the error propagation are also evidenced.  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.1: Typical scheme of Multilayer Neural Network. 
 
 The behavior of a feedforward neural network depends also on the number 
of layers and nodes in its architecture. So a natural question arising during the 
construction of a multi-layered neural network is, how many hidden layers and 
how many neurons in each layer have to be used to achieve the desired 
mapping.  
 Based on the Kolmogorov theorem which states that: 
 

 any continuous functions f (x1, ..xn) defined in In (n ≥ 2) can be represented 
in the form: 
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where χj are continuous functions of one variable and ψij are monotone 
functions not dependent of f and I  the unit closed interval [0,1];  Hecht-Nielsen 
(1987) proved the following Kolmogorov’s mapping neural network existence 
theorem : 
 any continuos function of ϕ : In to Rm, Y = ϕ (X), can be implemented 
exactly by a multilayer neural network, which have n neurons in the input layer 
(the input vector X), 2n+1 neurons in the hidden layer and m neurons in the 
output layer (the output vector Y).  
 

 The theorem of Hecht-Nielsen theoretically proves that any continuos 
function can be reproduced by a three-layer neural network.  
 With reference to the Rumelhart-Hinton-Williams multilayer network 
Funahashi (1989) proved that: 
 

 any continuos mapping  f : K → Rm  defined by  
))(.... )(() ... ( m1n1 xxx ffxx →=  can be approximated in the sense of uniform 

topology on K by input-output mappings of k-layers networks whose output 
functions for the hidden layers are non-constant, bounded and monotone 
increasing continuos functions (i.e. sigmoid) and whose output functions for 
input and output layers are linear. 
 

 Where K is a compact subset of Rn and k is an integer ≥ 3.  
 The starting point of the proof for the one hidden layer case is an integral 
formula proposed by Irie-Miyake (1988) and from this the proof of the theorem 
can be generalized to the case of any number of hidden layers by induction. The 
Funahashi theorem has been extended by Harmik et al.(1989) to the case of non 
continuous activation function. The proposed results evidenced how standard 
multilayer feedforward neural networks are capable of approximating any 
measurable function to any desired degree of accuracy. From this derives that 
this kind of networks are universal approximators. 

  

 However, despite the Hecht-Nielsen and the Funahashi existence theorems, 
it has been pointed out (Flood et al.,1994) that there are many solution surfaces 
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that are extremely difficult to model using a network with just one hidden layer. 
In these cases a two hidden layers network is recommended. 
 Beside the problem of establishing the number of the hidden layers there is 
also the one concerning the choice of the number of neurons and of input data to 
utilize to train the network. It could appear obvious that increasing the number 
of the neurons provides better results. In practice, can happen that this implies a 
deviation from the trend of the solution surface. Similar considerations are valid 
also with regard to the amount of input data presented to the network.   
 One practical solution is to consider a range of different configurations and 
try until the best results are obtained. Although, instead of using a so generic 
approach, one could find more attractive to adopt a specific rule, taking in mind 
that a general solution to the problem does not exist.   
 One suggestion (Rogers, 1994) is represented by the following relationship: 
 
 1)/mm(nh 1p +++=  (3.2.1) 

 
where n and m have the meaning specified above, while p is the number of 
training pairs and h is the number of hidden nodes. The equality expressed by 
eq.(3.2.1) implies the network to be determined; the number of equations 
equating the number of the unknown weights. Otherwise if p is greater or less 
than the value from eq.(3.2.1) the network is over or under determined. 
 In conclusion, it has been remarked that the architecture of the network 
includes also the kind of connection existing between the neurons in each layer. 
Several different networks have been developed in the last decade for different 
types of applications. For the purpose of this work only a multilayer 
feedforward neural network will be analyzed with major detail, while, among 
the remaining networks only some notices will given in appendix (3.A). 
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3.3  Learning Algorithms 
 
 In a broad sense the definition learning for a neural network means to 
change the weight connection values between different neurons until the 
optimal performance of the network is reached. This essentially means to 
minimize the output error between the network output and the target output for 
a specific set of input patterns. 
 Several procedures are available for changing the values of the connection 
weights; the back-propagation learning rule, in its different versions, the 
Hebbian learning rules and its derivatives, the principal component learning, the 
competitive learning, the stochastic learning etc. are such of examples.  
 In the following particular attention will be reserved to the back-propagation 
learning rule, while a brief review of the most common learning rules is 
summarily reported in appendix (3.B). 
 
 3.3.1  The back-propagation learning rule 
 
 The back-propagation learning rule is the one most in use to train non-linear, 
multi-layered networks to perform function approximation, pattern association 
and pattern classification. The rule allows to minimize the sum-squared error of 
the network and this is done by changing the values of the network weights and 
biases in the direction of the steepest descent path with respect to the error; in 
this way the network is able to establish the desired mapping between input and 
output vectors. At the beginning the network uses the input vectors or random 
vectors to produce a first set of output vectors and then compares these with the 
target output.  
 Let us consider first the case with no hidden layers. If differences are 
detected, then the network starts to adjust the weights of the connections by 
means of the following rule: 
 
 ijji lr  p pp i w δ=∆  (3.3.1.1) 
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where lr indicates the so-called learning rate and is a constant value, δpj 
represents the difference between the target input for j-th component of the 
output pattern for pattern p, say tj, and the j-th element of the actual output 
pattern produced by the presentation of the input pattern p, say oj, ii is the  i-th 
element of the input pattern.  
 To derive eq.(3.3.1.1) the approach followed by Rumlhart et al.(1986), will 
be adopted. For linear units, it mainly consists in showing that eq.(3.3.1.1) 
minimizes the total error of the network. To this end it is shown that the 
derivative of the error measure with respect to each weight is proportional to the 
weight change given by the delta rule (with negative constant of 
proportionality). This corresponds to performing steepest descent path on a 
surface in weight space whose height, at any point, is equal to the error 
measure. 
 The error measure between the expected and the actual outputs on input-
output pattern p is defined as: 
 

   ∑ −=
j

jj
2

 p pp )ot(
2
1E  (3.3.1.2) 

 
 Let E = Σ Ep be the total measured error. The following relation holds true: 
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 (3.3.1.3) 

 
  It must be shown that the following equality fulfilled: 
 

 jj
ji

 p p
p i

w
E

⋅δ=
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∂
−  (3.3.1.4) 
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and in fact, being the right hand side of eq.(3.3.1.4) proportional to the weights 
change, this equality ensures that the change of the weights results in 
minimizing the error E. 
 The left hand side of equation (3.3.1.4) can be re-written in the form: 
 

 
ji

j

jji w
o

 
o
E

w
E  p

 p

pp

∂

∂

∂

∂
=

∂

∂
 (3.3.1.5) 

 
 The first part on the right hand side of eq.(3.3.1.5) gives the error changes 
with the output of the j-th unit and in explicit form has the expression: 

 jjj
j

-  p p p
 p

p  )o(t  
o
E

δ−=−=
∂

∂
 (3.3.1.6) 

 
while the second part tells how the output changes with the weights.  
 Because of the linearity hypothesis i

i
jij  p p iwo ∑= , one gets: 

 

 i
ji

j
 p

 p i
w
o

 =
∂

∂
 (3.3.1.7) 

 
 Substituting eqs.(3.3.1.6) and (3.3.1.7) in eq.(3.3.1.5) the relation (3.3.1.4) is 
proved. 
 The back-propagation learning rule can be easily generalized to the cases in 
which the units are not linear and the hidden layers are present between the 
input and the output layer.  
 In this case it is required that the following relationship holds: 
 

 ji
ji

w
w
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∂
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− . (3.3.1.8) 
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 Making the same steps as above one writes: 
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with i

i
jijnet  p p ow∑=  and oi = ii  if unit i is an input unit and for non linear 

activation functions:  
 
 )(o  p p jji netf=  (3.3.1.10) 

 
then the second factor of eq.(3.3.1.9) assumes the form: 
 

  i
k

kjk
jiji

jnet
 p p

 p oow
ww

=
∂
∂

=
∂

∂
∑ . (3.3.1.11) 

 
 Defining: 
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then equ.(3.3.1.9) gives the desired relationship. 
 To compute δpj  one observes that: 
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from which using eqs. (3.3.1.10) and (3.3.1.6) one derives: 
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for any output unit uj. If uj is a hidden unit, with a similar procedure, the 
following expression for δp j  can be derived: 
 
 ∑δ=δ

k
kjpkjjj netf w)(   p

'
 p  (3.3.1.15) 

 
 Through eqs.(3.3.1.14) and (3.3.1.15) the δp j  are obtained for all kind of 
units in a recursive way. Starting from this point the weights of the network can 
be derived by means of an equation formally equal to eq.(3.3.1.1).  
 The same quantities δpj are used to evaluate the changes of the threshold 
values by means of the following relationship: 
 
 jj lr  pp  δ=θ∆  (3.3.1.16) 

 
 3.3.2  The modified back-propagation algorithm 
 
 Pure back-propagation presents some drawbacks especially when, using a 
non-linear network, the error surface assumes a complicate shape. Problems 
related to the stability of the algorithm could appear and the solution of the 
network training becomes trapped in a local minimum of the error surface.  
 Also the choice of the learning rate size is problematic. The learning rate 
specifies the amount of changes that are made in the weights and in the biases at 
each iteration. Small learning rates may guarantee a stable training but they 
make the learning slow. Rumelhart et al.(1986) state that for the most rapid 
learning, lr should be as large as possible without leading to oscillation. Even in 
the unlikely case that one value of lr is optimal at one stage of the learning, 
there is no guarantee that the same value of lr will be appropriate to any other 
stage of the learning process. 
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 From the above considerations it comes out the necessity to introduce some 
improvements to the back-propagation algorithm in order to speed up the 
training of the network and to ensure its convergence. 
 Following a work of Volg et al. (1988), the following modifications are 
considered: 
 

1.  Update the network weights after all the patterns to be learned have been 
presented to the network instead to update these values after each pattern is 
presented to the network, as implemented in the classical back-propagation 
algorithm. That is because the reduction of the network error with respect to 
only one pattern will not, in general, ensure a reduction of the error with 
respect to all the other patterns which the system is to learn. 

 

2.  Make the learning rate lr dynamically changing, so that the algorithm 
utilizes a near-optimum lr, as determined by the local optimization 
topography, instead of keeping the learning rate constant during all the 
training. 

 

3.  Introduce a momentum factor allowing the network to respond not only to 
the local gradient but also to the recent trends in the error surface. Acting 
like a low pass filter, momentum allows the network to neglect small 
features in the error surface and to escape the problem of local minima. 

 
 Introducing these variations into the Rumelhart algorithm, eq.(3.3.1.1) 
changes into: 
 
 )(w   o   )1(w

p
 p p mlrm jiijji ∆α+δ=+∆ ∑  (3.3.2.1) 

 
where m indicates the iteration number, since the weights are updated only one 
per iteration through all the patterns, as evident from the summation over p 
present in the formula. 
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 The learning rate lr is no more a constant value, its variation is determined 
on whether or not an iteration decreases the total error for all patterns. 
Practically if the new error exceeds the old one by more than a prefixed ratio, 
typically 1.04, then the new weights, biases and outputs are discarded; in 
addition the learning rate is decreasing, typically using a factor 0.7. On the other 
hand, if the new error is less of the old one, the learning rate is increasing, 
typically by a factor 1.05. 
 Practically this procedure increases the learning rate, saving time, but only if 
the network can learn without large error increase; when the learning rate is too 
high to guarantee a decrease of the error its value is decreased until stable 
learning resumes. 
 The same philosophy is adopted to set up the value of the momentum α. 
Momentum is introduced in eq.(3.3.2.1) to adding to the weight’s changes, used 
the simple back-propagation rule, a quantity proportional to the weights 
calculated in a previous iteration. 
 If during the training the network produces a total error greater than the 
prefixed value, the step is repeated and α is set equal to zero. Then the weights 
are re-arranged using the gradient rule, changing, if necessary, the learning rate. 
When a successful step is taken α is reset to its original value, typically 0.95. 
Following this strategy as long as the topography of the error surface is 
relatively uniform and smooth the memory, implicit in α, will aid convergence. 
If, however, a step results in a degradation of the performance of the system, 
then clearly a change in the direction of the optimization is required and the 
implicit knowledge of α could be misleading.    
 

  In the next section a feedforward neural network, trained using the back-
propagation algorithm, modified with adaptive learning rate and momentum, is 
implemented for damage detection problems. 
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3.4  The proposed approach to the damage detection  
       problem 
 
 In the present section the validity of the neural network approach for 
structural damage identification will be carry out. The proposed procedure will 
be tested through different numerical examples including the case in which the 
non-linear behavior of the structure is considered. 
 The detection of damage in complex structures presents, in general, serious 
difficulties related to the low sensitivity of the system parameters to the 
presence of structural defects. The problem becomes even more complicate 
when one looks for the non-linear behavior of the structure. 
 The monitoring of the structure is generally realized by comparing some 
characteristics quantities of the system at various stages of its life. As it is well 
known, a unique solution of the system identification “inverse problem” does 
not in general exist. In most cases, it is rather difficult to identify, for an 
assigned structure, one or more functionals depending on the severity and on the 
location of the damage, due to the fact that the dynamic behavior of the 
structure can change even significantly when damage is present. 
 The idea is to have a tool able to monitor the structure starting from the 
elaboration of easily acquirable data, i.e, the response of the structure, in terms 
of acceleration, measured in suitable points. In the following, damage is 
detecting by using of the transfer functions of the structure as characteristic 
functions and a feedforward neural network is trained to recognize the actual 
state among the undamaged and different possible damaged conditions in the 
structure. 
 
 3.4.1  The damage characteristic function 
 
 As already outlined in the general introduction, one of the major difficulties 
in the damage detection problem consists in the identification of a characteristic 
function that can be determined easily and shows good sensitivity to structural 
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modifications. For structures under dynamic loads the transfer functions 
between a given load and the response of the system can be adopted. 
 So if a series of experiments or simulations of the structural response to a 
known input is performed, in different damage conditions, the transfer functions 
can be easily built by applying the Fourier analysis. Changes of these functions 
can be related with damage evidence in the structure.  
 Physical reasoning leads to the following definition of the transfer function. 
Let Y(t) be the vector of the measured output and U(t) the vector of the applied 
input, then the well known relationship between the two vectors holds: 
 
    )( )(  )( sss UHY =  (3.4.1.1) 

 
where s represents the Laplace variable, Y(s) and U(s) the Laplace transform of 
the corresponding vectors Y(t) and U(t) and H(s) is the transfer matrix of the 
system. Each column of H(s) being the transfer function between a specific 
input signal and a corresponding output. 
 The transfer function matrix can be expressed as function of the 
characteristic matrices of the system through the following: 
 
 DBAICH +−= −  )(  )( 1ss  (3.4.1.2) 

 
where the matrices A, B, C and D are respectively the state matrix of the 
system, the input influence matrix and the output influence matrices, as already 
specified in section (2.2.2), while I denotes the identity matrix. The 
representation given by eq.(3.4.1.2) outlines how any structural modification, 
determining a change of the state matrix, is immediately reflected into the 
transfer function of the system. 
 The concept appears even more clear if one looks to the polynomial 
representation of the transfer function, and in fact: 
 



Aurora Pisano Structural System Identification: Advanced Approaches and Applications 

 60

    
)(
)(

  )(H n
1i

m
1i

i

i

ps
zs

s
−Π
−Π

=
=

= . (3.4.1.3) 

 
 The real and the imaginary parts of the poles pi give respectively the 
damping and the frequencies of the system; quantities that change when the 
mechanical characteristic of the structure are modified.  
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Figure 3.2:  The damage detection approach. 
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 The transfer function can be assumed as characteristic of the behavior of the 
structure even when the hypothesis of linearity is removed. The last of the 
examples reported in this chapter will make evident how the transfer functions 
of the structure change significantly when one or more plastic hinges  are 
present, so that different transfer functions can be related to a different number 
of plastic hinges in the structure.  
 The differences of the transfer functions are elaborated by a neural network 
to reproduce the relationship between the transfer function and the condition of 
damage in the structure. 

 The flowchart of fig.(3.2) schematizes the proposed approach to the 
damage detection problem. 

 
 3.4.2  Numerical Applications 
 
 In the following section three numerical examples will be reported. Each 
example has the purpose to revel different potentialities of the neural network 
tool. The first two examples only deal with the damage detection problem, but 
analyze structures of different complexity showing how a simple neural network 
is not able to perform the desired pattern association if has to elaborate an 
excessive amount of data. In this case, corresponding to the study of a complex 
structure, arises the necessity to utilize network hierarchically organized. In 
both the studied cases the behavior of the structure is supposed to be elastic 
during all the analyses. In the third example the hypothesis of linearity for the 
structure is removed and the final goal of the study is to show the validity of the 
neural network approach also in this case and to develop a vulnerability analysis 
scheme based on real-time monitoring. 
 
 3.4.3  Example 1 
 
 As first example the four stories frame of fig.(3.3) is considered. In the 
figure the geometrical and mechanical characteristics, for each structural 
element, are reported together with the type of profile and the permanent loads. 
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   Property Value   
   
   Material steel 
                                        12 m Density 7.85E-09 t/cm3 
   Young’s Modulus 2.1E03 t/cm2 
   Vertical Element HEA240 
   Horizontal Element HEB240                                          
                                              4 m Diagonal Element L 60x60x3  

 Permanent Load 1.2 t/m     
                                           
                     6 m 
       

Figure 3.3:  Structural model (example 1). 
 
 The dimensions of the structure are chosen so that, after a seismic event of 
given characteristic, the breaking of one of the diagonal elements is admissible. 
 Using Abaqus 5.5 the dynamic analysis of the structure is carried out. 
Different accelerograms are applied at the base of the structure while the 
responses, also in terms of acceleration, are evaluated at the last floor. The 
analyses are repeated in different conditions, first considering the structure 
undamaged and then considering each time one diagonal element damaged. 
That was necessary to create different kinds of structural responses for the 
network and to teach it to recognize the differences. 
 For the training stage, the first three accelerograms from the following 
Italian stations were considered, while the last one was utilized at the end to test 
the network behavior. 
 

1. Station of Feltre   15/9/76  – Component NS 
2. Station of Villetta Barrea    11/5/84 – Component NS 
3. Station of Maiano   11/6/76 – Component NS 
4. Station of Cassina Sant’Elia  7/5/84 – Component NS. 
 

The records were scaled to have the same peach acceleration of 280 cm/sec2. 
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 Some preliminary remarks on the input accelerations are required. The 
seismic acceleration records were selected from the databank SMCAT. 
 As a preliminary step all the data were processed to correct the instrument 
errors introduced in the data during their record. The program PROX, (Casciati 
et al. 1994) which produces a filtering of the seismic registration in the 
frequency domain was used for this purpose. 
 Once the inputs are ready and the responses of the structure calculated, the 
transfer functions of the structure can be easily built, as specified in section 
(3.4.1). Each transfer function is associated to each possible considered damage 
condition. In the present study five possible conditions are hypothesized for the 
structure: no damage, damage in the first, second, third and fourth floor. 
Therefore there are five possible state conditions for each of the three inputs, so 
that the network is activated with an input consisting of 15 vectors each of one 
contains 125 points of  the corresponding transfer function. Figures (3.4 a-d) 
show the differences between the transfer function obtained when the structure 
does not present damage with the transfer function obtained when one of the 
four damaged conditions presented above appears. 
 The three layer feedforward neural network utilized to solve the damage 
detection problem was chosen after several attempts necessary to define an 
optimal network configuration. The two hidden layers contain 30 and 15 
neurons respectively and process the data using a log-sigmoidal activation 
function. Although in the output layer a linear activation function has proved  
better results. 
 The target output of the network is represented by a five elements vector 
contained values from 0 to 4 corresponding to the five possible state conditions 
of the structure. Precisely 0 corresponds to the undamaged condition, 1, 2, 3 and 
4 correspond to the cases with damage in the first, second, third and forth floor.   
 The network problem is now to realize the association between the transfer 
functions in input and the target output. Beyond the definition of the neurons 
number in each layer, a preliminary study was carried out in order to define the 
optimal value for the learning rate. 
                                                       





 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
                 
 
 

                                                  
 
 
 
 
 

                                                        Figure 3.4: Comparison between the transfer functions of the intact and the damaged structure.
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 Maintaining invariant all the other characteristics of the network, this was 
first trained for different values of lr. The network was set up to stop its training 
if one of the following conditions holds: 
 

1) the number of iterations exceeds 20000; 
2) the desired lower value for the total error of the network is reached; 
3) an upper value for the total error of the network is exceeded. 

 

 The last condition means instability of the algorithm. 
 First it was considered the simple back-propagation method. The lower 
threshold value for the network error was fixed in 0.02, while the upper value in 
1E+20. The learning rate was changed in a range from 0.05 to 0.005 as reported 
in table (3.1). In the same table the number of iterations, the training time and 
the final value of the total error of the network are also reported. From these 
values derives that only with lr equal to 0.006 the network reaches the final 
goal. Figures (3.5) and (3.6) give the trend of the total error of the network 
versus number of iterations. They show two typical situations that can be 
verified when the simple back-propagation algorithm is utilized. Figure (3.5) 
outlines how the network can fall in a local minimum of the error surface, while 
fig.(3.6) evidences how a too large learning rate can create instability and in fact 
the total error increases rapidly with each iteration. 
 The same set of tests was repeated using the previous network trained by the 
modified back-propagation learning rule, as introduced in section (3.3.2). The 
results reported in table (3.2) revels the sensible improvement of the network 
efficiency. The admissible network error was fixed in 0.0002 and it was reached 
very quickly in all the examined cases. Figures (3.7 a,b) and (3.8 a,b) show the 
trend of the total error of the network and of the corresponding learning rate 
starting from an initial value for lr of 0.05 and 0.005 respectively.  
 It should be pointed out that also the modified back propagation, for given 
initial condition, can have the problem to fall in a local minimum during the 
training. When the desired behavior for the network has been reached its 
weights and biases are saved. At this point the network represents a model of 
the system able to reproduce its behavior. The network can then be tested using 
the fourth accelerogram of the above list. Table (3.3) reports the output of the 
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network trained with BP for different values of lr. The target values are also 
reported (in bold). Likewise table (3.4) reports the output of the network trained 
with MBP.  

As appears evident from these numbers the results coming out from the 
example are satisfactory and the network is always able to identify the damage 
and its position in the structure. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figures (3.5-3.6):   Trend of the sum-squared error of the network versus  
number of iterations using BP method. 

 
 

Back-propagation Method 
 

    lr    Epochs          c.p.u time Final value of  
   second the total error 
 

 0.05 20000 610.82 7.52 
 0.03 20000 593.03 20.0 
 0.02 20000 592.65 2.0 
 0.006 253 9.22 0.02 
 0.005 20000 593.85 2.0 
 

Table 3.1: Training values using BP method. 
 

Number of iterations

1E-2

0.1

1

1E+1

1E+2

1E+3

1E+4

Su
m

-s
qu

ar
ed

 e
rr

or

0 500 1000 20000

2E-2
Target error

lr = 0.02

1 2 3 4 5 6 7 8

Number of iterations

2E-2
Target error

1E+20

1E+9

lr = 0.5



Chapter 3 The Neural Network Approach for Damage Assessment and Safety Analysis  

 67

 
Back-propagation Method 

 
    lr    Epochs          c.p.u time Final value of  
   second the total error 
 

 0.05 122 5.71 0.0002 
 0.03 112 5.33 0.0002 
 0.02 91 4.78 0.0002 
 0.006 92 5.27 0.0002 
 0.005 94 4.83 0.0002 
 

 

Table 3.2:  Training values using BP method. 
 
 

Back-propagation Method 
 

  lr 0.05 0.03 0.02 0.006 0.005 
 
  0 0.712 1.500 0.000 0.050 0.000 
  1 1.249 1.500 1.500 1.003 1.500 
  2 1.249 1.500 1.500 1.996 1.500 
  3 3.478 1.500 3.000 2.951 3.000 
  4 3.509 4.000 4.000 4.002 4.000 
 

Table 3.3:  Target and NN output using BP method. 
 
 

Modified Back-propagation Method 
 
  lr 0.05 0.03 0.02 0.006 0.005 
 
  0 0.001 0.000 0.000 0.000 0.001 
  1 0.999 0.994 1.000 1.003 0.999 
  2 2.003 2.004 1.998 2.001 1.998 
  3 3.003 3.000 2.997 2.994 2.993 
  4 4.003 4.000 3.996 4.000 3.998 
 

Table 3.4:  Target and NN output using MBP method. 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 

                                                                Figures (3.7 a,b - 3.8 a,b):  Network error and learning rate versus number of iterations.
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3.4.4  Example 2 
  
 The second example deals with the problem of damage detection in a multi-
bay  planar truss having the same structural scheme and characteristics of the 
one introduced in section (2.6.4). Following the strategy adopted in the previous 
example all the possible damage conditions of the structure are considered. 
Although, in this case, due to the major number of elements in the structure a 
major number of possible damage conditions has to be assumed. 
 If the network has to classify many patterns then overlapping between 
different classes is possible. For this reason, in the present study, instead of 
using a single network, four sub-networks were trained to identify damage in 
the entire structure. Referring to fig.(2.6.4) the classes of longerons, diagonals 
and battens are considered. The classes are denoted as B, C, and D respectively. 
For each class a three layers feedforward neural network, trained using the 
back-propagation algorithm, modified with adaptive learning rate and 
momentum, is considered. The input neurons correspond to the transfer function 
ordinates arising from the analysis of the structure for which a single element 
within that class is damaged. 
 A fourth neural network , denoted as  A, is trained to distinguish between: 
 

a)  Undamaged  structure 
b)  Structure with damage in class B 
c)  Structure with damage in class C 
d)  Structure with damage in class D 
 

 The flowchart of fig.(3.9)  shows and clarifies  the adopted strategy . 
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Figure 3.9:  Flowchart of the global neural network. 
 
 
  The structure is considered subjected to white noise excitation, applied at 
node 11 in  direction y. At the same node two sensors are located to measure the 
displacement response of the structure in the directions x and y. First the 
dynamical  behavior of the structure  is simulated using F.E. analysis by the 
above mentioned code Abaqus 5.5, then for each possible damage situation, the 
transfer functions are built considering  for the displacements along the 
directions x and y. 
 In perfect analogy with the first example, fig.(3.10) shows the changes  of 
the transfer functions due to the damage in the structure. 
 In order to train the network, four load conditions were considered. For each 
of them 2n transfer functions are available, (where n is the number of elements 
in the truss structure). Using the output in  direction y it is easily to understand 
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how the transfer functions of the structure, when the upper longitudinal element 
is removed, are the same of the one obtained removing the lower longitudinal 
element for fixed bay. The same happens when diagonal elements are removed.  
 Hence the procedure adopted for damage detection does not lose generality 
if one considers the symmetry of the structure.  The geometrical  conditions of 
the structure allows the reduction of the number of damaged situations from 46 
to 27. 
 For example, if attention is focused on  network B, the training is performed 
using the transfer functions of the structure when the elements from 1 to 9 are 
removed one by one. 
 The amount of data is reduced, but on the other side the network does not 
locate uniquely the damage, because the outputs can be associated to two 
possible damage conditions. To avoid this problem the transfer functions in the 
direction x are also considered. Figure (3.11) shows that in this case transfer 
functions are no longer symmetric. The flowchart of fig.(3.9) maintains its 
validity but another step has been taken to distinguish which element is 
damaged between the two candidates.  
 The characteristics of each neural network are the same of the one utilizes in 
the first example. And for each of them the same general considerations can be 
repeated. 
 

  Time [ sec] Epochs Efficiency
Network A 1.883 20.000 100% 
Network B 2.070 20.000 90% 
Network C 903 8.897 100% 
Network D 432 4492 100% 

 
Table 3.5:  Neural Networks data.. 

 
 Table (3.5) shows the time training for each network  and its efficiency  in 
damage detection. The results show  that  the network A was fully efficient in 
the classification of the damaged class. Networks C and D worked as well as 
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network A and were able to exactly indicate the damaged element. Only  
network B presents some ambiguity in detecting the damaged elements between  
two near longerons,  such as elements 2 and 3 or  21 and 22. 
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Figure 3.10:  Transfer functions for damaged and  
undamaged structure. 
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Figure 3.11:  Transfer Functions of two symmetric elements. 
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 3.4.5  Example 3 
  
 In the previous two examples the efficiency of using a neural network 
trained by the transfer functions of the structure was proved for damage 
detection either in a simple frame or in a multi-bay truss. In both cases the 
hypothesis of linear elastic behavior of the structure was made and the damage 
was simulated removing an element.  
 The following example deals with two problems: the non material linear 
behavior and the fragility analysis of the structure. Considering again the 
transfer functions of the structure, the results show that they change 
significantly when one or more plastic hinges are activated. The network 
recognizes the differences between the transfer functions and establish the 
degree of damage present in the structure, this information can be used to 
update the probability of local failure of the structure through fragility curves, 
independently evaluated via simulation. 
 To make the reader familiar with the safety analysis problem, some 
fundamental concepts on the subject will be presented in the next section. 

 
 3.4.5.1  Reliability of the structure via fragility curve     
 

 In the safety analysis of complicate structural systems it is often convenient 
to distinguish between uncertainty on input loads and uncertainty on system 
proprieties. In particular in seismic risk, uncertainty on earthquake loads is 
typically represented through a hazard function HS(s), which gives the rate at 
which an appropriately defined site intensity parameter S exceed the value s. 
The other component of the global uncertainty cover the system behavior and 
resistance and it is generally modeled by a random vector X = (x1,  … xn)T  or a 
random process x(t). The conditional failure  probability or  fragility  function   
pf (s) is the probability of system failure given that  S = s. The functions HS(s) 
and pf (s) can be combined into: 
 

 ( ) ( )∫
+∞

∞−

= dss psv fSf  H   (3.4.5.1.1) 
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to assess the structural reliability (Casciati and Faravelli, 1991).  
 The fragility of such a system may depend on one or more limit state 
functions gi (x, τ), being  τ ={τ1, .. τn}T  a parameter vector ( for example time).  
 If one or more of these functions are negative for some fixed vector τ, the 
structure will fail for such a system state.  
 The fragility of the structure can then be expressed as: 
 

 ( )
( )
∫

≤

=
0 

 
τ

τ
 g

f d, fp
x,

x xx  (3.4.5.1.2) 

 
where for fixed τ , fx (x, τ) is the probability density function (p.d.f.) of the 
random basic variable vector X and  g (x, τ)  is  an  appropriate  envelope  of  
the gi (x, τ).  
 In studying the structure of limit state functions, we often encounter the 
problem that these functions are not known explicitly. Another problem is also 
the mathematical computation of failure probabilities. 
 Beside the Monte Carlo method, several approximation methods were 
proposed under the assumption that the limit state function is known in 
analytical form. Many authors (Hohenbickler & Rackwitz, 1981; Breitung 
1984; Der Kiureghian, 1989; Madsen, Krenk & Lind, 1986) proposed to 
estimate the reliability by means of the so-called reliability indices. The basic 
idea of these methods, presented in a paper by Hasofer and Lind (Hasofer & 
Lind, 1974), is to identify in the failure domain the point or the points where the 
probability density is maximum and then to approximate the failure probability 
by an integral of the p.d.f. over a domain which is bounded by a hyperplane or a 
quadratic surface obtained by a suitable Taylor expansion in these points. 
Originally this method was developed for standard normal random vectors. In 
this case the points with larger values of the p.d.f. in the failure domain are the 
points with minimal distance to the origin. After this minimal distance is found, 
the limit state function is replaced by a first or second order Taylor expansion. 
Let β  be this minimal distance, the probability is given by: 
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( )β−Φ≅fp  (3.4.5.1.3) 

 
where Φ(⋅) represents the cumulative Gaussian distribution. The methods based 
on the linearization of the limit state function are known as FORM (First Order 
real Methods). Methods using quadratic expansions at the minimal distance 
points are called SORM (Second Order Reliability Methods). 
 When the analytical form for the limit state function is not available a 
polynomial approximation can be derived from the results of numerical 
experiments appropriately planned (response surface technique (Faravelli, 
1989). The fragility analysis of the structure under investigation is defined as in 
the following. 
 

 Structural elements undergo progressive deterioration when subjected to 
intense cyclic loading. The damage of the structure is assumed to be localized 
and identified by the procedure defined above. 
 The limit events are the achievement of excessive inelastic rotation in a 
single section and the activation of the collapse mechanism. These events are 
combined to provide: 
 

1) the fragility of the undamaged structure for the progressive activation of 
excessive inelastic rotations and eventually for the activation of a collapse 
mechanism; 

2) the fragility of the structure for different initial levels of damage.  
 

 The structural fragility in terms of local rupture is characterized by:   
 
  iLi ϑ≥ϑ   (3.4.5.1.4) 

 
where ϑi is the inelastic rotation and ϑLi its limit value. The latter one is 
assumed to be random, while the inelastic rotation turns out to be random due to 
the stochastic nature of the external excitation. 
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 Using the probabilities of local failure, obtained for each section and for 
different initial levels of damage in the structure it is possible to build some 
fragility curves for the system under investigation. 
  The total probability of failure, given a seismic intensity, is evaluated in 
terms of mode failure probabilities as: 
 

 
( ) ( ) ( ) ( ) ( )
( ) ( ) ;  .....    FFFPFFP       

FFP FPFFPFPFP

32132

3132121

+∩∩+∩−

∩−+∩−+=fp
  (3.4.5.1.5) 

 
where Fi denotes the event of occurrence of the i-th local rupture and P(Fi) the 
corresponding probability of occurrence. The event (Fi ∩ Fj) means that the 
local failure simultaneously occurs in both the i-th and j-th plastic hinge. Given 
the matrix of covariance function between the inelastic rotations, one can 
calculate the matrix of covariance of the local modes and evaluate pf  by second 
order bounds (Ditlevsen and Madsen, 1996).  
 
 3.4.5.2  Application and results 
 

The non linear dynamic analyses of a plane frame is developed by using the 
finite element code DRAIN-2D which assumes that each beam element behaves 
elastically and that plastic hinges might be form only at the two extreme 
sections. The constitutive law between the bending moment and the hinge 
rotation is assumed to be elastic perfectly  plastic. 
 
 
 2 3  4 
 

 
  400 cm 
 
   
 1 600 cm  5 

 
 

Figure 3.13:  Structural scheme. 
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 The numerical calculations were developed with reference to the simple 
frame of fig.(3.12), where the sections of interest, in which plastic rotation can 
potentially develop, are pointed out. The geometry and material properties are 
given in Table (3.6). 
 This numerical example consists of two parts: the first one deals with the 
network training, for damage identification purposes; the second part deals with 
the reliability analysis. 
 

       239.800   column      for  themoment    Yield 
   646.800          beam  for  themoment    Yield 

0.01                        ratio   hardeningStrain   
/    6 2.1E                            Modulus  sYoung' 

                  Value                                             Property  
2

cm kg
cm kg

cmkg
 

 
Table 3.6: Numerical values adopted in the numerical example. 

 
 Five seismic acceleration records were selected from the databank SMCAT. 
All the time histories present the characteristic of being significant over a time 
of 20 second. The selected accelerograms were scaled to produce different level 
of damage in the structure, the damage being the activation of a plastic hinge in 
any section of the structure. 
 Starting from the undamaged condition, and using one of the selected 
accelerograms, five seismic intensities, Sj (j = 0, 1, 2, 3, 4) were identified to 
provide an elastic behavior of the structure and the activation of one, two, three 
and four plastic hinges, respectively. 
 Using DRAIN 2D, the response in terms of acceleration at node 4 was 
calculated for each of the five accelerograms described above. Using  Fourier 
analysis the transfer functions corresponding to each time response were 
derived. Figure (3.14) shows the transfer functions of the system for different 
levels of damage. Other analyses, using a different accelerogram, properly 
scaled, prove that these functions are invariant for given number of plastic 
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hinges and given level of limit plastic rotation. This allows one to use the 
transfer functions as characteristic functions also in this case. 
 In order to distinguish between the five resulting shapes of transfer function 
a feedforward neural network was trained to associate each transfer function 
with a Boolean vector of five elements corresponding to the five sections of 
interest along the frame. The elements of the Boolean vector have value 0 if the 
corresponding section does not present a plastic rotation, 1 otherwise. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Figure 3.14:  Transfer functions of the structure 
  for different levels of damage Dj. 
  
 The network has two hidden layers having respectively 100 and 50 neurons 
and was programmed with a learning rate variable in a range of 2% and a 
tolerance error of  0.01. After its training, the network was tested using the 
transfer functions of the structure obtained starting from different damaged 
conditions for different accelerograms scaled to given values of intensity.  
 The results of this test are presented in table (3.7), where the output of the 
network, during a test, are compared with the target ones (in bold). 
 The trained network can now be considered as an effective tool to identify 
the number of plastic hinges in the structure. 
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Table 3.7: Example of neural network output. 
 

 The second part of this study concerns the probability analysis.  
To obtain the fragility curves of the system, it was necessary to produce the 
statistics of the inelastic rotations ϑi  for each section of interest in the structure 
and for assigned initial damaged condition. The distribution of these variable is 
assumed to be Gaussian and numerical simulations were developed to assess 
their means and standard deviations. 
 The limit value of the inelastic rotation ϑLi, is characterized on the basis of 
experimental values obtained from laboratory tests (Casciati and Faravelli, 
1989): the mean is set equal to 0.032 and the coefficient of variation  to 0.2.  

                                                                                         

0.0040
0076.0

0031.0
0046.0

0008.0
0005.0

0.0
0.0

0.0
0.0

 
0.0071
0.0272

0.0049
0.0247

 
0.0053
0.0143

0.0065
0.0100

 
0.0040
0.0029

0059.0
0198.0

0048.0
0195.0

0070.0
0151.0

0060.0
0098.0

0027.0
0028.0

0040.0
0075.0

0031.0
0046.0

0009.0
0006.0

0.0
0.0

0.0
0.0

    

    
  5  

  4  
    
 

   2  

     
      1     

           4     3     2     1      0     
 

  

 

SSSSS
Section
Intensity

 

 

Table 3.8:  Mean and variance of the four maximum 
inelastic rotations from a sample of 5 accelerations. 

0.0034 0 0.0164 0 0.0094 0 0.0284 0 0.9671
0.0342 0 0.9770 1 0.9787 1 0.9821 1 0.9940
0.0038 0 0.0044 0 0.0108 0 0.0045 0 0.0010
0.0229 0 0.0267 0 0.9658 1 0.9908 1 0.9872
0.0112 0 0.0095 0 0.0316 0 0.9721 1 0.9826



Aurora Pisano Structural System Identification: Advanced Approaches and Applications

 80

 Two different conditions were analyzed: the undamaged structure was first 
considered and the statistics calculated using different earthquakes scaled by 
five different factors.  
 Table (3.8) reports the statistics of the maximum inelastic rotations 
computed as sample of five accelerograms.  

 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 3.15: Fragility vs damage for intensity 
 S0 of the occurring seismic event. 
 

 In table (3.8) Si indicate the seismic intensity parameter.      
Once the means and the standard deviations of the inelastic rotation were 
assessed, for each section, the limit state function given in eq.( 3.4.5.1.4) and 
the corresponding probability of failure, eq.(3.4.5.1.3), gives rise to the updated 
curves in figures (3.15-3.19). 
 The combined use of neural network and fragility curves provides a 
systematic approach to define a probability of local failure of the structure 
during its operating life. Of course the method presents the non-negligible 
defect to require a priori studies of the structure to define the fragility curves 
either for given initial damage either for given earthquake intensity. On the 
other hand, the proposed approach represents a practical way to associate, in 
real time, the presence of damage to a probability of failure of the structure. 
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 The preliminary numerical results show a promising accuracy of the method. 
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Table 3.9:  Mean and variance of the four maximum 
 inelastic rotations for detected initial damage D1. 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

Figure 3.16: Fragility vs damage for intensity 
 S1 of the occurring seismic event. 
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Table 3.10:  Mean and variance of the four maximum 
 inelastic rotations for detected initial damage D2. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.17: Fragility vs damage for intensity 
 S2 of the occurring seismic event. 
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Table 3.11:  Mean and variance of the four maximum 
 inelastic rotations for detected initial damage D3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.18: Fragility vs damage for intensity 
 S3 of the occurring seismic event. 
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Table 3.12:  Mean and variance of the four maximum 
 inelastic rotations for detected initial damage D4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.19: Fragility vs damage for intensity 
 S4 of the occurring seismic event. 
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3.5  Conclusion 
 
 This chapter has dealt with the damage detection problem in a structural 
system by means of a feedforward neural network. It has pointed out that the 
transfer functions of the structure, derived from dynamic analyses, starting from 
different damage conditions, contain all the information about the mechanical 
behavior of the structure and then can be regarded as characteristic functions. 
Moreover this property is also maintained in the non-linear field. 
 Throughout the numerical applications have been evidenced how a three 
layer feedforward neural network, appropriately organized, can identify 
correctly the damage in a simple structure. 
 Moreover it has been shown how the same problem can be successful treated 
also in complex structures using a set of network each of one has to solve a sub-
problem in a sub-structure. 
 Finally the proposed approach, combined with the knowledge of the fragility 
curves of the structure, has been applied to evaluate the probability of local 
failure of the structure.     
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Chapter 4 
 
 
 

Potential Systems for System Identification 
 
 
 

4.1  Introduction 
 

Real systems have random nature. Their stochastic behavior can be related 
either to the statistical variation of the materials or to the randomness of the 
external excitation. Modeling the dynamic behavior even for a simply 
deterministic structure subject to random forces is not a trivial problem, 
especially when the non-linear behavior is investigated.  

Mathematically exact solutions are available only under appropriate basic 
hypothesis. When the random excitation can be modeled as a Gaussian white 
noise process, so that the response of the structure is a Markov process, then the 
probability density function of the system response can be evaluated in a closed 
form by solving the so called Fokker Planck equation. The latter shows how the 
probability of the response of the structure evolves in time. 

For non-linear systems complete analytical solution of the Fokker Planck 
equation are known only for some special first order system (Caughey, 1971; 
Gardiner, 1983). Then to solve the problem different attempts of numerical 
procedure approaches have been proposed for higher order cases (Naess and 
Johnsen, 1983; Spencer and Bergman, 1993). 
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For higher order non-linear systems analytical solutions are found in 
literature only for the reduced Fokker Planck equation in which the time 
derivative term is assumed equal to zero. The resolution of this equation brings 
to the knowledge of the unconditional probability density function of the system 
response when it reaches the state of the statistical stationarity.  A stationary 
solution of the system is obtainable only under some conditions (Lin and Cai, 
1995) namely: 

 

- the random  excitations applied on the system are stationary processes (that 
is the case for the stationary Gaussian white noise); 

- the system parameters are time invariant; 
- the energy input from the random excitations is statistically balanced by 

energy output from dissipation, if any dissipation energy exist in the 
system. 

 

 The advantages of knowing the exact stationary solution are evident. For 
this reason much research effort has been devoted to the identification of such 
class of systems whose analytical probabilistic response could be obtained in a 
closed form. 

Potential systems are interesting since: 
1)  they are able to reproduce different types of non linearity; 
2)  they represent a class of systems from which the probability 

density  function of the response is known.  
Both these characteristics make potential systems useful also for 

identification problems, as it will appear clear in the following.  
A general definition of potential system is first due to Lin and Cai (1988); 

the response of these systems is characterized by a probability density function 
having an exponential form. This class of system, known as generalized 
stationary potential, includes all the particular classes of system having 
analytical solution, obtained by other authors in previous research studies, and 
allows also to consider the action of parametric forces. Moreover the results 
obtained by Lin and Cai were further generalized by To and Li (1991). 
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In the following sections only some fundamental properties of the potential 
systems will be reported; for a more extensive treatment of the subject the 
reader can refer to (Lin and Cai, 1995). 

The main part of this chapter is devoted to the presentation of a particular 
class of potential system whose analytical properties make them versatile to be 
used for identification purposes. Moreover, using the concept of equivalent non 
linearization, systems not included in the potential class can be identified 
through them, this is because they share the same response probability 
distribution. 

 
 

4.2  The Fokker Planck equation 
 

Analytical solutions for non linear systems subjected to random excitations 
are mainly based on the assumption that the system response can be modeled as 
a Markov stochastic process. Reminding that if X(t) is a random process a 
sufficient condition to be a Markov process is that its increments are 
independent in any two non-overlapping time increments. Markov processes are 
just a mathematical approximation of a physical process, justified only by the 
fact that increments of random processes, in non-overlapping time, can be 
assumed stochastically independent. 

The conditional probability Prob[X(t) ≤ x  X(t0) = x0] of a Markov process 
X(t) is known as transition probability distribution function and its derivative, if 
exists, gives the transition probability density function defined as: 
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while the higher order probability densities assume the form: 
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showing how the behavior of a Markov process at several instants can be 
obtained from the initial probability density and the transition probability 
density. 

If the initial state of a Markov process is known then equation (4.2.1) alone 
characterizes the stochastic process. Making a limit for t-t0 →∞ the stationary 
probability density can be derived : 
 
  ),  ,(lim)( 00

0
ttqp

tt
xxx

∞→−
= . (4.2.3) 

 
Equation (4.2.3) represents the unconditional probability density function of 

the process X(t) because when t goes to infinity the influence of the initial 
condition will disappear.  The higher order probability densities at the stationary 
state can be written as: 
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 The evolution in time of the transition probability density of a Markov 
process is governed by the well-known Fokker Planck equation : 
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 (4.2.5) 

 
where the symbols aj, bjk and cjkl represent the derivative moments of the Markov 
process : 
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If the process is also Gaussian then the Fokker Planck equation assumes the 

reduced form: 
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with the derivative cumulants of order higher than two being equal to zero. 

For non-linear oscillators exact solutions are known in the stationary 
condition when q is independent of time, then equation (4.2.9) is reduced to the 
form: 
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Another important property to outline is that an one-to-one correspondence 

between the Fokker Planck equation, describing the probability density function 
of a Markov process, and the Itô stochastic differential equation, describing the 
process, exists.  
 The Markov process X(t), following the Itô theory, must satisfy the 
following differential equation: 
 
 BtXttXmtX d ),(d ),()(d σ+=  (4.2.11) 
 
where B(t) is a unit Wiener process such as: 
 

 [ ]




=
≠

=
t =    d

     0
)(d )(d

21

21
21 ttt

tt
tBtBE  (4.2.12) 



Aurora Pisano Structural System Identification: Advanced Approaches and Applications

 92

while m and σ  are called respectively drift and diffusion coefficients and are 
related to the coefficients of the reduced Fokker Planck equation by means of : 
 
 [ ] xXtXmtxa == ),(),(  (4.2.13) 
 
 [ ] xXtXtxb =σ= ),(),( 2  (4.2.14) 
 

Equations (4.2.13) and (4.2.14) make possible to pass from the drift and 
diffusion coefficients of the Itô differential equation to the first and second 
derivative moments of the Fokker Planck equation by simple replacing the 
random process X(t) with the state variable x. 

Analogous relationship can be written considering an n-dimensional Markov 
process. The advantages in working with the Itô differential equations consist in 
the fact that any arbitrary function of a Markov process can be derived quite 
simply using the Itô differential rules. 

For sake of completeness it must be reminded that there are other type of 
differential equations able to represent a Markov process like the Stratonovich 
type stochastic differential equations. But they will not be used in the following. 
 
 

4.3  Generalized stationary potential 
 
 Let consider a non-linear system, whose associated reduced Fokker Planck 
equation can be written in the form: 
 

 0=
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j
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with: 
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the function Gj  is called probability flow in the j-th direction. 

Suppose now that the probability flow vanishes for any direction j, then the 
stochastic system under investigation is said to belong to the class of  stationary 
potential systems (Stratonovich, 1963). 

For this class of systems the stationary probability function can be expressed 
in exponential form: 
 
 ( )xx φ−=Cep )(  (4.3.3) 
 
where C is a non negative normalization constant while φ is an appropriate 
probability potential function. By substituting eq.(4.3.3) in eq.(4.3.1) one 
obtains: 
 

 jjk
kk

jk ab
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which represents a system of n partial differential equations. 

The stochastic system is said belonging to the class of a stationary potential 
systems if there exists a consistent function φ  that satisfies all these equations. 
It can be shown that this is possible if the matrix containing all the diffusion 
coefficients bjk is invertible. To extend the class of systems for which eq.(4.3.1) 
has a solution Cai and Li proposed to split the drift and the diffusion 
coefficients in two parts: 
 
 21
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where aj
1 represents a portion of the drift in the j-th direction which is required to 

balance the differential diffusion and maintain equal to zero the probability flow 
in the j-th direction, while aj

2 is a portion of the drift related to the circularity 
flow. 

Substituting eqs.(4.3.3), (4.3.5) and (4.3.6) in eq.(4.3.1) it can be shown that 
this equation can be satisfied if  the following conditions hold: 

 
1
j

j
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kk
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Equation (4.3.7) is related to the vanishing probability flow, while eq.(4.3.8) 

with the circulatory flow. The problem is solvable if a consistent φ  function can 
be obtained from these equations. 

If a given system with  the spitting of the drift and of the diffusion 
coefficients satisfies  eqs.(4.3.7) and (4.3.8) then the system is said to belong to 
the class of generalized potential systems. It is important to note that these two 
last equations reproduce a relationship existing between the system parameters 
and the spectral level of the excitation. These equations are adopted to develop 
an exact solution technique of the Fokker Planck equation (Cai and Lin, 1995).  

The class of generalized stationary potential is the more general among the 
classes of potential system and allows treating systems with non-linear damping 
and subjected to multiplicative excitations.  

 
 

 4.4  A reduced class of potential systems  
 
In the following section a particular class of potential models will be 

presented. This class can be thought as a particular case of the more general 
model proposed by To and Li (1991) and for this reason is called Reduced 
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Potential Model (MPR), Cavaleri (1998). The reason to look at a less general 
class of models lies in the fact that the MPR are really simple to treat 
mathematically and moreover they allow to model the behavior of a wide class 
of real non-linear systems. 

 

In the following the capital letter will be used to refer to a random process, 
while the corresponding small letter indicates its domain. 

 
Let consider the stochastic system: 
 

)..... 2, ,1(              ),(),( niWXXfXXlX ii ==+   (4.4.1) 
 

where l  and  fi  are, in general, non linear functions, while Wi  are Gaussian white 
noises having delta type correlation function: 

 
[ ] )(2)( )( τδπ=τ+ ijii KtWtWE  (4.4.2) 

 
Kij  being the spectrum matrix components of the vector process W. 

According to To and Li, (1991) the system (4.4.1) belongs to a class of 
potential systems if the following condition is verified: 
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where g(x) and λ  are positive arbitrary functions, while λy, λx, λyy, are obtained 
from the relationship between the probability potential φ and the coefficients of 
the reduced Fokker Planck equation associated to the system (4.4.1) written in 
the state variable representation. 

Assume now that: 
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i) i xxf i         ;1),( ∀=  (4.4.4) 
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Condition i) means that the system is subjected only to external excitations; 

ii) r(x) indicates the restoring force so that eq.(4.4.5) gives the total energy of 
the system; therefore iii) means that we only deal with the class of potential 
systems in which the potential function is given in polynomial form.  

If moreover the function g is assumed equal to zero over all its domain of 
definition, then the function (4.4.3) can be rewritten as: 

 

)(
d

)(d)( xrxK
h
hQxx,l ij +=  . (4.4.7) 

 
Considering the equations given above the governing equation of the 

stochastic system can be written as: 
 

jij WXr
H
HQKXX =+
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that represents the class of reduced potential models under study. For this class 
of models the expression of the probability density function is known : 

 
( ))(exp),( hQCxxp XX −= . (4.4.9) 
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4.5  Some fundamental properties 
 
To focus the attention on some fundamental properties of the MPR systems, 

let us consider a one degree of freedom non linear system having the governing 
equation: 

 

WXr
H
HQKXX =+
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)(d  (4.5.1) 

 
with Q(h) expressible as a potential series of h such as: 
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Making the substitution XY =1  and  XY =2  equation (4.5.1) can be written 

in the state variable form as: 
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that in the Itô representation becomes : 
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Using the classical rules of the differential stochastic calculus applied to the 
function H(Y1,Y2) one obtains: 
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and neglecting the higher order infinitesimal in dt follows: 
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where for sake of brevity the dependence on time of the variables H, Y, dB, is 
omitted.  

In stationary conditions taking the expected value and dividing by dt 
eq.(4.5.6) becomes: 
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where s is the intensity level of the white noise W. 

Reapplying the same Itô rule to the process Hi(Y1,Y2) and repeating the same 
steps that have brought to eqs.(4.5.6) and (4.5.7) the following relationship 
holds: 
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If eq.(4.4.5) is inserted in eq.(4.5.8) this assumes the form: 
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For i=1, 2, … k eq.(4.5.9) gives a set of equations in the unknown 

parameters aj. The applicability of eq.(4.5.9) is restricted by the fact that it is 
necessary to calculate double integrals of the type: 
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This drawback can be overcame every time is possible to split the double 

integral in the product of two simple integrals.  
An example is reported in To and Li (1991) for the particular case in which 

the restoring force has the expression: 
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in this case it can be shown that the fundamental relationship holds: 
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in particular α is equal to one if ν is set equal to one; moreover from a 
numerical study results that eq.(4.5.12) is true for polynomial form of r(X). 

From this result, eq.(4.5.9) can be replaced by the following: 
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Using the differential stochastic calculus some important characteristics of 

the moment’s response can be derived. 
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First it is important to remind that the response acceleration 2Y  process of 
any system subjected to a white noise input is itself a white noise, although the 
mean values of the product processes  21YY and 22YY  are finite numbers. 

Recalling the Itô differential equation for a general dynamic system one can 
write: 

 
)(d )(d )()(d tB,tgt,tft YYY +=  (4.5.14) 

 
where Y is a vector having components [Y1(t) Y2(t)]T. 

For t = t1 eq.(4.5.14) becomes : 
 

 ( ) )(d )(d )(d 11111 tB,tgt,tft YYY += . (4.5.15) 
 

 Now multiplying right and left members of eq.(4.5.15) by Y(t2), using the 
Kronecker algebra and taking the expected value follows: 
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being [ ] 0)()(d ),( 211 =⊗ ttBtgE YY  for the not-anticipative property of the 
Wiener process B. 

It must be noted that in stationary conditions the left hand side of eq.(4.5.16) 
gives the right derivative of the Y correlation function 
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while the right hand side of eq.(4.5.16), written in extended form, returns: 
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(4.5.18) 
 
For t = t1= t2 making a comparison between the right hand side of 

eqs.(4.5.17) and (4.5.18) and reminding that in stationary condition 
0][ 21 =kHYYE , from the last two equations the fundamental relationships can 

be derived: 
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On the other hand specializing eq.(4.5.13) for i =1 results: 
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and then 
 

[ ] 022 2
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 Attention must be given to eqs.(4.5.19) and (4.5.22); the first gives the 
relationship existent between the moment response of the structure and the 
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restoring force parameters while the second links some moment response of the 
structure with the intensity level of the external excitation which can be 
unknown in the identification problem. 
 
 

4.6  Identification of SDOF non-linear systems 
 
 4.6.1  Identification of the stiffness parameters 
 
The concepts introduced in the previous sections will be utilizes  to identify 

non-linear system belonging to the class of reduced potential systems. The 
proposed identification procedure consists in successive steps and different 
cases can be distinguished. 

Suppose, for example, that the restoring force is linear and in the classical 
form: 

 

1
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1 )( YfYr =  (4.6.1.1) 
 

where f is the natural frequency of the system; in this case eq.(4.5.19) becomes: 

 [ ] [ ]2
1

2
12 )()( YEftYtYE −=

 (4.6.1.2) 

 
from which the parameter f, directly connected to the stiffness of the system, 
can be derived if the system response is known in terms of displacement and 
acceleration.  
 In a more general case a polynomial form can be assumed for the restoring 
force: 
 

 ∑
=

−=
m

i

i
iYbYr

1

12
11 )(  (4.6.1.3) 

 



Chapter 4 Potential Systems for System Identification  

 103

in this case to identify the m stiffness parameters bi the scalar eq.(4.6.1.2) is not 
enough. 

Other relationships could be derived as in the following. With the position 
(4.6.1.3) the Itô representation of the system in the form of eq.(4.5.4) can be 
replaced by: 
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 On the other hand if the process 2

12
1 YY n−  is differentiated, using the Itô 

differential rule and the substitution made in (4.6.1.4), one obtains: 
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Dividing by dt eq.(4.6.1.5) and taking the expected value results in: 
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where the not-anticipative property of the Wiener process has to be taken into 
account together with the stationary condition property  

. ,  0  ][ 2
2

22
1 m nHYYE mn ∀=−  

For n= 1, 2, …m eq.(4.6.1.6) gives a set of independent equations needed to 
identify the m bi parameters. 
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4.6.2  Identification of the damping parameters 
 
Also for the identification of the damping parameters different situations can 

be distinguished. If the power level of the white noise input to the system is 
known, for i=1,2, …k a set of k independent equations in the unknown 
parameters ai can be derived from eq.(4.5.13). Otherwise, if the power level of 
the input is unknown as first step is necessary to identify it. This can be done by 
means of eq.(4.5.22). This procedure will be explained through the following 
numerical application. 

 
4.6.3  Numerical application 
 
Let consider the single degree of freedom system: 
 

WXfXHaaX =+++ 2
21 )(  (4.6.3.1) 

 
where W is a white noise having assigned power spectral level; moreover 
assume for the system parameters the following value:  
a1 = 0.02 sec-1,  a2 = 0.002 cm-2sec,  f  = 1.4 sec-1. 

Because experimental data are not available, the kinematics of the system 
will be derived by numerical integration of eq.(4.6.3.1).  

Starting from the knowledge of the velocity and the displacement of the 
system, eq.(4.5.22) is applied to derive the level of the external excitation. 
Figure (4.1) shows how the correct value is reached asymptotically with 
increasing sample length. This because we are assuming to work in ergodic 
condition. 
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To identify the stiffness parameter eq.(4.5.19) as well as eq.(4.6.1.6) could 
be used. From the application of the first equation one obtains the result shown 
in fig.(4.2), again the correct value is reached asymptotically.  
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Figure 4.2:  Trend of the identified stiffness parameter. 
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Figure 4.1:  Trend of the identified damping parameter. 
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As a second case the shape of the restoring force is assumed polynomial 
 
 5

13
3

1211)( YbYbYbYr ++=  (4.6.3.2) 
 

with bi (i=1,2,3) constant. Then the set of resolving equation becomes: 
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from which the following values for b1 , b2, b3 are derived: 
b1 = 1.4;   b2 = 0;    b3 = 0. 

As a second step the dissipation parameters are derived applying eq.(4.5.13) 
evaluated for i = 1 and for i = 2. 
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from which the system returns a1 = 0.017;   a2 = 0.0026. 

Also in this case it can be assumed unknown the number k of the αi 

parameters and m ≥ k equations can be inserted in the system (4.6.3.4). In this 
case, as for the stiffness parameters estimation, the system will return only k 
parameters different from zero. 

From this simple example can be seen how versatile the presented system 
identification technique is. 



Chapter 4 Potential Systems for System Identification  

 107

Moreover some considerations are necessary: 
- one limitation of the method lies on the fact that the type of the external 

excitation must be known (white noise), in order to have a response 
system modeled as a Markov process; 

- the method is valid only for systems belonging to the class of reduced 
potential system;  

- the level of the external excitation, as well as the observed time, 
influence the accuracy of the procedure. Especially the damping 
coefficients undergo the influence of two factors as shown in table (4.1). 

 
 
      Time [sec] a1 a2 b1 k0 

                   

 300 -0.020 0.097 1.396 1 
 600  0.005 0.067 1.396 1 
 900  0.020 0.022 1.401 1 
 

 300 -0.035 0.0062 1.398 10 
 600  0.022 0.0030 1.397 10 
 900  0.021 0.0028 1.404 10 
 

 300 -0.090 0.0041 1.405 30 
 600  0.035 0.0032 1.400 30 
 900  0.017 0.0026 1.400 30  
  

 Table 4.1:  System parameters estimation. 
 
 

4.7  Error effected data 
 
 As specified in the previous sections, the presented system identification 

technique needs the knowledge of the input-output signals of the system. As for 
any dynamic based identification technique, this makes the procedure easily 
applicable in real case. Nevertheless  real signals are influenced by noises. 
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The reason of this lies either in the adopted equipment for the data 
acquisition or in the adopted procedure for the data processing. Starting by 
saying that environmental noises cannot be totally eliminated from real data, it 
is important to verify that the chosen identification technique is robust, that 
means that the parameter estimation of the system are slightly effected by 
noises. 

Suppose to have a set of different sensors, then their acquisition is classically 
modeled by a sum of a real measure (displacement, velocity, acceleration or 
other)  plus an error. The errors associated to different measures are modeled as 
independent, zero mean, white noise (Jazwinski, 1970). 

As a consequence eqs.(4.5.13), (4.5.22) and (4.6.1.6) respectively become: 
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where: 
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and e1, e2, e3 are the three independent white noises associated respectively to 

the displacement, velocity and acceleration of the system. Using eqs.(4.7.1), 
(4.7.2) and (4.7.3) the previous example is repeated. The intensity of e1, e2, e3  
has be chosen equal to the 5% of the maximum value of the associated 
processes. The results, reported in table (4.2), show how the identification 
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technique remains efficient. The system parameters are just little influenced by 
the noise introduced during their estimation. 

 
 
     Time  a1 a1 a2 a2  b1  b1  k0 
        [sec] 5% noise 10% noise 5% noise 10% noise 5% noise  10% noise 
                   

 300 -0.020 -0.015 0.096 0.084 1.396 1.391 1 
 600  0.005  0.006 0.066 0.059 1.396 1.390 1 
 900  0.019  0.020 0.022 0.020 1.402 1.396 1 
 

 300 -0.034 -0.027 0.0062 0.0050 1.397 1.3889 10 
 600  0.022  0.024 0.0030 0.0029 1.395 1.386 10 
 900  0.025  0.027 0.0027 0.0026 1.402 1.393 10 
 

 300 -0.090 -0.075 0.0040 0.0040 1.404 1.395 30 
 600  0.033  0.025 0.0032 0.0031 1.398 1.392 30 
 900  0.013  0.010 0.0028 0.0026 1.404 1.398 30 
   

Table 4.2:  System parameters estimation with noisily data. 
 
 
An interesting result comes out from eq.(4.7.2) as in fact: 
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because from the hypotheses of zero mean, independent disturbances follows: 
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From eq.(4.7.5) follows that the level estimation of the input is not 
influenced by noise in the measurements.  

 
 

4.8   Identification of MDOF system 
 

The above described procedure can be extended to the case of multi-degree 
of freedom system.  

Let X(t) be an n-vector of stochastic processes, obtained by solving  the 
following set of differential equations: 

 

WXr
H
HKXX =+



π+ )(

d
)(dQ  (4.8.1) 

 
being W  the n-vector of white noise processes whose correlation matrix is 
given in the form: 
 
 [ ] )()( )( 2121 ttttE −δπ= KWW  (4.8.2) 
 
and r(X) is a vector of non-linear functions of X (non-linear stiffness). It will be 
noted that the damping vector term is related to the strength of the white noise 
and on the scalar function Q of the total energy of the whole system. 
 If the differential equations are given in the form (4.8.1), then the stationary 
probability density function is given in a closed form solution as follows: 
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  ( ))),((exp),( xxxxXX hQqp −= . (4.8.3) 

 
 The total energy H of the system has the form: 
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 The first step for the identification procedure consists in the approximation 
of the original non-linear system through the following expression: 
 
              ),()()( WXXfXrXCX =+++  (4.8.5) 

 
with a non-linear system belonging to the class of potential systems given in 
eq.(4.8.1). In eq.(4.8.5) C is the damping matrix and  ),( XXf is a non-linear 

vector. The error ε obtained in substituting the original system (4.8.5) with the 
equivalent non-linear system (4.8.1) has the form: 
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 If K is a non singular matrix, then the appropriate cost function to be 
minimized in order to find the parameters in the function Q(H) is : 
 
 [ ] [ ]εεε -1T  )( ΚEE =ϕ  (4.8.7) 
 
and if Q(H) is given in polynomial form, such as: 
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the cost function has to be minimized with respect to the parameters aj of the 
function Q(H). 
 By performing the derivatives of  ϕ (ε) with respect to the unknown 
parameters aj the following linear system is obtained: 
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being B equal to: 
 

 [ ] XXX,fX C T
)(B += . (4.8.10) 

 
 In compact form the system (4.8.9) can be written as: 
 
 baA = . (4.8.11) 
 
 At this stage the method of stochastic non-linearization requires a 
tremendous computation effort, being the procedure iterative since the various 
entries of the matrix A  depend on the unknown parameters aj. So that starting 
from a set of coefficients aj a stochastic average has to be computed by the 
realtion: 
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 However a fundamental relationship similar to that of a single degree of 
freedom system (eq.(4.5.12)) is valid, such as: 

 [ ] [ ]1T   +γ= jj HEHE XKX  (4.8.13) 

 Using eq.(4.8.13), eq.(4.8.9) can be written in the form: 
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since H(t) is a scalar process, then the various entries of the matrix A  can be 
computed by performing an integral of the type: 
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instead of multiple integrals of the type of eq.(3.8.12). 
 The probability density function pH (h) can be evaluated in a closed form by 
means of eq.(4.8.3). 
Once the first row of the matrix A  is evaluated, all the other rows can be 
computed by means of the recursive relationship: 
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The identification procedure of a SDOF system, just described in section 
(4.7), remains  still applicable for the case of  the MDOF system. 

 
 

4.9   Conclusion 
 
In this chapter a probabilistic approach to the structural identification 

problem has been presented. To solve the problem a particular class of potential 
system has been considered. This class of models is called “reduced potential 
system” (MPR). The MPR models are characterized by a polynomial potential 
function and are suitable to model non-linear structure. 

For the case of white noise input, applying the rules of the differential 
stochastic calculus, an identification algorithm has been derived. 

Using this algorithm the unknown parameters of the structure (damping and 
stiffness) have been identified solving sets of algebraic equations involving the 
statistical moments of some functions related to the response of the structure. 

It has also been shown that the presented procedure is slightly effected by 
the presence of noises in the data.   
 
 
 
 
 
 
 

 
 
 
 
 
 
 



 

 115

 
 
 
 
 

Chapter 5 
 
 
 

Conclusions and Remarks 
 
 
 

This thesis has treated the identification problem of structural systems, 
starting from the knowledge of input-output series functions. 

It has been evidenced how the choice of the system identification procedure 
and of the system model depends on the specific purpose of the identification. 

These preliminary choices are essential and effect the final results. 
Identification represents the first step to solve classical problems, in the 

structural engineering field, as control problems, monitoring and damage 
detection problems and structural reliability problems. 

 Throughout the thesis three different approaches to the problem have been 
developed and the obtained results can be summarized as follows: 

 

- for time-invariant, multi-degree of freedom linear systems, the system 
realization procedure has shown good potential in reproducing the dynamic 
response of the structure. The method, starting from the Markov 
parameters of the system, has allowed to obtain a realization of the system 
with the smallest state-space dimension. Moreover the introduction of an 
“observer” has ensured the stability of the identification algorithm. 
Using the identified state-space model, the modal parameters of the 
structure, which are used for qualitative damage identification, have been 
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determined. This kind of approach has resulted particularly useful in 
control applications. To this end the procedure has been implemented 
together with an assignment control law, to control the modes (under 100 
Hz) of a typical space structure. For the purposes of the application, a truss 
structure equipped with piezoelectric elements has been considered. The 
piezoelectric elements have had the double function to act as sensors (for 
the output monitoring) and as actuators (to give the necessary control 
loads). In order to obtain, from the identified model, outputs having a clear 
physical meaning a transformation of the state variables has been 
introduced. The study has outlined the highly effective results that can be 
achieved through the combined use of system identification and 
eigenstructure assignment technique.  
In further researches some other aspects of the problem could be explored. 
One aspect regards the possibility to have a systematic approach in 
transforming  the state-space realization model into the corresponding 
second order structural model. Another point that should be investigated in 
major details regards the stability of the control algorithm. In fact for 
complicated structures and for particular combinations of loads, problems, 
such as spillover, may be present. 

 

- neural networks, appropriately trained, have been successfully used in 
multi-degree of freedom linear and non-linear systems. It has been shown 
that a feedforward, multi-layer neural network is able to uniquely associate 
to a given function, depending on the structural response, informations 
about the state of the structure.  
The transfer functions of the structure have been used as input to the 
network, being the transfer functions characteristic of the dynamic system 
behavior. The same choice has been adopted for the damage identification 
in a simple shear type structure having a non material linear behavior. In 
this case the ability of the neural network in recognizing the presence and 
the position of one or more plastic hinges in the structure has been shown. 
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This information has been used to update the probability of local failure of 
the structure through fragility curves, independently evaluated via 
simulation. 
This last problem is open for further researches, since the prospective to 
have an efficient tool to evaluate the probability of failure of a structure in 
real time is really attractive. 

 
- to give a probabilistic approach to the system identification problem, the 

class of reduced potential systems has been studied. This class of models 
has been extracted from the class of stationary potential systems under the 
hypotheses of non-parametric and Gaussian input and a potential function 
expressible in polynomial form. It has been shown that, in stationary 
conditions, the mechanical parameters of the structure can be identified 
solving a set of algebraic equations whose coefficients are given by the 
statistical moments of some functions of the response of the structure. 
The procedure has maintained its validity also when the errors associated 
to the different data, introduced into the model, have been considered. 
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Appendices 
 
 
 

Appendix 2.A 
 
 
 
 2.1 A  The Mode Singular Value (MSV)  
 
 As specified in section (2.2.3), for a linear system, the map from input u to 
output y can be fully described by the Markov parameter sequence: 
 
 ]              [ 2BCBCCBDY −= lΛΛ  (2.1.1 A) 

 
where l is the number of Markov parameters and Λ the diagonal eigenvalue 
matrix. This sequence is co-ordinate independent and unique.  
 Let the input and output matrices be partitioned as: 
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where n is the number of modal co-ordinates. Each Markov parameter can then 
be written as a linear combination of n components each of one gives the 
contribute of a different mode, for example: 
 

 ∑
=

==
n

ii bλc
1i

i   )2( BCY Λ . (2.1.3 A) 

 
 Therefore each co-ordinate has a sequence of Markov parameters described 
as following: 

 [ ] ;... 1,2,       ...  )( 2
 n ibλcbλcbci i

l
iiiiiii == −Y  (2.1.4 A) 

and the total Markov parameter sequence becomes: 
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 From the representation (2.1.5 A) it is immediate to understand that each 
modal co-ordinate contributes to the pulse response sample by the individual 
modal sequence Y(i), which can be quantified by taking its maximum singular 
value, i.e.: 
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where the approximation is valid if λiis less than 1 and l is sufficiently large. 
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 The MSV is a method of characterizing the contribution of each identified 
mode to the identified model pulse response history. And in fact, is reasonable 
that a mode that has larger contribution to the identified model’s pulse response 
has a large contribution to the system’s pulse response. 
 
 

   2.2 A The Modal Amplitude Coherence (MAC) 
 
 Define the sequence: 

 [ ] ;... 1,2,       ...  2 n ibλbλb i
l
iiiii == −q  (2.2.1 A) 

which represents the time history reconstructed from the identified eigenvalue 
λi and the row vector bi. The sequence qi is called the modal amplitude time 
history of the i-th mode because it represents the temporal contribution of the i-
th mode associated with the output matrix ci to the Markov parameter sequence 
Y. 
 The MAC factor is defined as in the following: 
 

 
       

   
MAC
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iiii

ii
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qqqq

qq
=  (2.2.2 A) 

 
where  iq has the same meaning of iq  but is calculated in presence of noise 
data. The apex (*) indicates the complex conjugate. If MACi is equal to one then 
the two vectors  iq and iq coincide and the model reproduces the pulse 
response data. 
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Appendix  2.B 
 
 
 

 2.1 B The Markov parameters of the system 
 
 The Markov parameters of the system can be derived using the spectral 
analysis. Given pairs of input-output signals, u(t) and y(t), the auto spectral and 
cross spectral densities functions can be derived using the Fourier transform.  
 The one-side spectral density functions have the following form: 
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where the operator E denotes averaging of the spectral densities over multiple 
test trials and Ui(fk, N) and Yi(fk, N) are the discrete Fourier transforms  of ui(t) 
and yi(t). The apex (*) indicates the complex conjugate. 
 From the auto and cross spectral density functions the frequency response 
functions (FRFs) and the coherence functions are computed as: 
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 The model estimation problem may be solved ether in the frequency domain, 
using the discrete FRFs as defined above, or  in the time domain. In this last 
case, the FRFs must be transformed using an inverse Fourier transformer into 
the discrete impulse response functions, otherwise known as Markov 
parameters. 
 The Markov parameters are then given by: 
 
 ))(()( kn jIFFTt ω= Hh  (2.1.4 B) 
 
where IFFT symbolizes the inverse of the discrete fast Fourier transform as 
implemented using the FFT-based algorithm. 
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Appendix  2.C 
 
 
 

 2.1 C   The Kalman Filter  
 
 Recalling the notations introduced in section (2.4) a dynamic system with 
noise may be mathematically described, in the discrete time domain, by the 
following equations: 
 

)()( )( )1( 1 kkkk euBxAx ++=+  (2.1.1 C) 

 
)()( )( )( 2 kkkk euDxCy ++=  (2.1.2 C) 

 
while the estimated state can be described by the following Kalman filter: 
 

)( )( ][)(ˆ ][)1(ˆ kkkk yuDBxCAx KKK +−+−=+  (2.1.3 C) 

 
)()( )(ˆ )( kkkk ε++= uDxCy , (2.1.4 C) 

 
where the present symbols have the meaning already introduced in section (2.4). 
 The state estimation error is defined as the difference between the real and 
the estimated state, such as: 
  
 )(ˆ)()( kkk xxe −=  (2.1.5 C) 

 
and has to be minimized to give an optimal estimation of x(k), given y(k) and 
u(k). 
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 The estimation error at time k+1 can be obtained, combining eqs.(2.1.1 C-
2.1.4 C) and the residual  )(ˆ)()( kkk yy −=ε , by the expression: 

 
 [ ] ( )kkkkkk 12 )()()1(ˆ)1()1( eeCAxxe +−−=+−+=+ KK . (2.1.6 C) 

 
 From eq.(2.1.6 C) derives that the error e(k+1) at the time step k+1 depends 
on the previous error e(k) and on the noises e1(k) and e2(k). However, under the 
assumption of independence between the current error and the current noises 
and the assumption of independence between the noises, the following 
relationships hold: 

 [ ] [ ] [ ]     ;0)( )(E    ;0)( )(E    ;0)( )(E T
21

T
2

T
1 === kkkkkk eeeeee  (2.1.7 C) 

  
Taking the expected value of eq.(2.1.6 C) yields: 
 
 [ ] [ ] [ ])(E )()1(E kkk eCAe K−=+  (2.1.8 C) 

 
with e1(k) and e2(k) having zero mean. 
 Equation (2.1.8 C) allows to write E[e(k)] as function of the expected value 
in previous steps: 
 
 [ ] [ ][ ] [ ] [ ])0(E )0( ... )2( )1()(E eCACACAe KKK −−−−−= kkk  (2.1.9 C) 

 
 If  now  is assumed a zero initial condition, such as 0)0(ˆ)0( == xx  eq.(2.1.9 
C) returns E[e(0)]=0, that means that the estimation error has zero mean. 
 Starting from eq.(2.1.8 C) the error covariance dynamic can be derived as: 
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 Define the covariances of the noises as E1 and E2, then the above equation 
assumes the form: 
 
 [ ] [ ] 1

T
2

T )(   )(   )( )(   )(1)( EECAPCAP ++−−=+ kkkkkk KKKK . (2.1.11 C) 

 
 In order to obtain an optimal estimation for the state, one criterion for 
choosing K(k) is to minimize the expected value of the squared norm of e(k). 

 [ ] [ ]  )()( )(E T ktracekkJ k Pee ==  (2.1.12 C) 

 To obtain the minimum of Jk with respect to K(k) the following equality 
must be satisfied: 
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 (2.1.13 C) 

 
 
 Solving with respect to K(k) one obtains: 

 [ ] 1TT   )(  )( )( −+= CPCRCPA kkkK   (2.1.14 C) 

 that gives the Kalman filter gain matrix. 
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  2.2 C   The Riccati equation 
 
 Substituting eq.(2.1.14 C) into (2.1.11 C) and observing that P(k) = P(k)T, 
the following relationship can be derived: 
 
 [ ] 1

T1T
2

TT  )(    )(  )(  )( 1)( EAPCCPCECPAAPAP ++−=+ − kkkkk . (2.2.1 C) 

 
known as discrete Riccati equation. 
 If the time-variant error covariance P(k) reaches a steady value then can be 
considered a constant P. In this case the Riccati equation is an algebraic 
equation given by: 
 

 [ ] 1
T1T

2
TT  ECPACPCEAPCAPAP ++−=

− . (2.2.2 C) 

 
 Here the steady state Kalman filter gain matrix becomes constant. 
  
 
 
 
 
 
 
 
 
 
 



 

 

 

 
Appendix  2.D 

 
 
 

State matrix A, undamaged condition: 
 

 
       0.9956    0.0550   -0.0067   -0.0021   -0.0007   -0.0001    0.0003  -0.0006    0.0000    0.0002    0.0000     0.0001    0.0000    0.0000 
    -0.0674    0.9979   -0.0074   -0.0421    0.0053   -0.0062   -0.0001  -0.0002    0.0012    0.0006    0.0001    0.0002    0.0002   -0.0001 
      0.0057    0.0366    0.9508    0.3184   -0.0096    0.0132    0.0000    0.0013   -0.0023   -0.0015   -0.0002   -0.0005   -0.0004    0.0003 
     0.0111    0.0416   -0.3307    0.9374    0.0099   -0.0072   -0.0018    0.0029    0.0013   -0.0003    0.0002   -0.0003    0.0001    0.0000 
    -0.0166   -0.0200    0.0008    0.0278    0.6930    0.6863   -0.0003    0.0026   -0.0074   -0.0046   -0.0006   -0.0015   -0.0014    0.0009 
    -0.0035   -0.0044   -0.0255    0.0177   -0.7135    0.6986   -0.0197    0.0320    0.0063   -0.0038    0.0019   -0.0040    0.0002    0.0006 
     0.0128    0.0031   -0.0113   -0.0146    0.0167    0.0171    0.6234    0.7751   -0.0360   -0.0215   -0.0030   -0.0067   -0.0066    0.0037 
      0.0028    0.0062    0.0032   -0.0105    0.0282   -0.0186   -0.7812    0.6137   -0.0916   -0.0429   -0.0096   -0.0087   -0.0147    0.0081 
      0.0099    0.0084   -0.0007   -0.0158    0.0209    0.0289   -0.0504    0.0734    0.6113    0.7591   -0.0455    0.1531    0.0172   -0.0278 
    -0.0139    0.0012    0.0135    0.0118   -0.0156   -0.0244    0.0215   -0.0275   -0.7574    0.6457    0.0585   -0.0562    0.0158    0.0027 
    -0.0018    0.0000    0.0020   -0.0008   -0.0018   -0.0062   -0.0075   0.0124   -0.0085   -0.0435    0.8515    0.5035    0.0327   -0.0293 
    -0.0011   -0.0049   -0.0038    0.0060   -0.0075   -0.0012    0.0116   -0.0045   -0.1514   -0.0752   -0.5068    0.8290    0.1641   -0.0711 
     0.0141    0.0025   -0.0122   -0.0144    0.0113    0.0303   -0.0070    0.0018   -0.0005   -0.0245    0.0439   -0.1661    0.6968   -0.6889 
      0.0068   -0.0144   -0.0163    0.0055   -0.0045    0.0066    0.0049    0.0135    0.0369   -0.0062    0.0293   -0.0547    0.7109    0.7154 
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State matrix A damaged condition (case 1): 
 
 
      0.9956    0.0549   -0.0063   -0.0025    0.0000    0.0001   -0.0006    0.0008    0.0000    0.0002    0.0000    0.0003    0.0000    0.0000 
    -0.0676    0.9980   -0.0043   -0.0437    0.0073   -0.0071   -0.0001   0.0002    0.0003    0.0000    0.0015    0.0007    0.0000    0.0000 
     0.0064    0.0323    0.9483    0.3203   -0.0127    0.0148    0.0006  -0.0016   -0.0008   -0.0003   -0.0027   -0.0017   -0.0001   -0.0001 
     0.0125    0.0424   -0.3331    0.9378    0.0056   -0.0081    0.0034   -0.0044    0.0005   -0.0009    0.0012   -0.0007    0.0000    0.0000 
  -0.0115   -0.0331   -0.0129    0.0401    0.6814    0.7082    0.0050  -0.0033   -0.0011   -0.0010   -0.0032   -0.0026   -0.0002   -0.0002 
    -0.0063    0.0133   -0.0149    0.0025   -0.7310    0.6808    0.0406  -0.0507    0.0031   -0.0099    0.0027   -0.0093   -0.0001   -0.0004 
    -0.0109   -0.0108    0.0027    0.0186   -0.0276   -0.0178    0.6488    0.7480    0.0077    0.0052    0.0199    0.0108    0.0010    0.0009 
   -0.0014   -0.0096   -0.0070    0.0157   -0.0390    0.0436   -0.7559    0.6433    0.0444   -0.0027    0.0958    0.0422    0.0050    0.0034 
     0.0003    0.0003   -0.0008   -0.0019   -0.0013   -0.0022    0.0227   -0.0362    0.8745    0.4689    0.0129    0.0395    0.0004    0.0028 
    -0.0002   -0.0028   -0.0014    0.0029   -0.0057    0.0064   -0.0100   -0.0017   -0.4788    0.8637    0.1525    0.0602    0.0079    0.0038 
     0.0051    0.0063    0.0034   -0.0106    0.0118    0.0136    0.0644    -0.0689    0.0326   -0.1469    0.6486    0.7360    0.0066    0.0080 
    -0.0020    0.0075    0.0040   -0.0044   -0.0145    0.0068   -0.0255    0.0340   -0.0507    0.0546   -0.7391    0.6698    0.0082    0.0068 
    -0.0070   -0.0001    0.0051    0.0040   -0.0162   -0.0164    0.0000   -0.0169   -0.0038   -0.0190   -0.0032   -0.0115    0.6483    0.6890 
   -0.0034    0.0022    0.0047   -0.0003   -0.0073   -0.0058   -0.0009   -0.0049   -0.0078   -0.0018    0.0027    0.0056   -0.6705    0.6930 
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Matrix B, undamaged case:           Matrix B, damaged case: 
 

 
 1.0e-004*   1.0e-004*  
    0.0000    0.2218    0.0057    0.0018   0.0000    0.2221    0.0057    0.0018 
    0.0000    0.2205    0.0017   -0.0004  0.0000    0.2224    0.0012   -0.0010 
     0.0001   -0.1547    0.0207    0.0146  0.0002   -0.1479    0.0209    0.0155 
    -0.0001   -0.3040    0.0199    0.0168 -0.0008   -0.3057    0.0173    0.0171 
   -0.0004    0.5447    0.0861    0.0263 -0.0021    0.5637    0.0861    0.0433 
    0.0013    0.1767    0.0281    0.0154  0.0049    0.0771    0.0115    0.0146 
     0.0022   -0.2763   -0.0334    0.0553 -0.0020    0.3180    0.1031   -0.0308 
   -0.0005   -0.1089   -0.0146   -0.0357  0.0069    0.1113    0.0079   -0.0054 
   -0.0081   -0.2909   -0.0662    0.0299  0.1026   -0.0183    0.3494    0.0798 
      0.0049    0.2614    0.0400   -0.0154  0.0312    0.0265    0.0931    0.0151 
     0.1056    0.0256    0.3099    0.1834  0.0313   -0.1783   -0.0378    0.0230 
    -0.0096    0.0731   -0.0227   -0.0257 -0.0050   -0.0371    0.0432    0.0268 
    0.0162   -0.3042    0.0557    0.0244 -0.0750    0.1339    0.3414   -0.0540 
      0.0064    0.0138    0.0085    0.0027 -0.0221    0.0420    0.0985   -0.0706 
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Matrix C, undamaged case: 
 

    0.0078   -0.0083    0.0027   -0.0013    0.0001   -0.0002    0.0000   0.0001    0.0000   -0.0001    0.0000    0.0000    0.0000    0.0000 
    0.0283   -0.0261   -0.0084    0.0016    0.0005   -0.0002   -0.0001   0.0001    0.0001    0.0000    0.0000    0.0000    0.0000    0.0000 
    0.0006   -0.0008    0.0007   -0.0003    0.0003   -0.0001   -0.0001   0.0001    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000 
    0.0047   -0.0052    0.0026   -0.0011    0.0005   -0.0003   -0.0001   0.0001    0.0001   -0.0001    0.0000    0.0000    0.0000    0.0000 
     0.0197   -0.0189   -0.0024    0.0000   -0.0006    0.0001    0.0000  -0.0001   -0.0001    0.0000    0.0000    0.0000    0.0000    0.0000 
     0.0154   -0.0153    0.0001   -0.0007   -0.0007    0.0001    0.0001  -0.0001   -0.0001    0.0000    0.0000    0.0000    0.0000    0.0000 
 
     

 Matrix C, damaged case: 
 

     0.0006   -0.0008    0.0007   -0.0003    0.0002   -0.0002    0.0001   -0.0001    0.0000    0.0000    0.0000    0.0000    0.0000    0.0000 
     0.0047   -0.0052    0.0026   -0.0011    0.0004   -0.0004    0.0001   -0.0002    0.0000    0.0000    0.0001    0.0000    0.0000    0.0000 
     0.0078   -0.0083    0.0027   -0.0013    0.0000   -0.0002    0.0000   -0.0001    0.0000    0.0000    0.0001   -0.0001    0.0000    0.0000 
     0.0284   -0.0261   -0.0085    0.0013    0.0004   -0.0004    0.0002   -0.0001    0.0000    0.0000    0.0001    0.0001    0.0000    0.0000 
     0.0197   -0.0189   -0.0024   -0.0002   -0.0006    0.0001   -0.0001    0.0001    0.0000    0.0000   -0.0001    0.0000    0.0000    0.0000 
     0.0154   -0.0153    0.0001   -0.0008   -0.0006    0.0002   -0.0002    0.0001    0.0000    0.0000   -0.0001   -0.0001    0.0000    0.0000 

 
Matrix S 
 

          1.0e+010 * 
 -0.8423   -1.3260    1.8624    0.0485    0.2095   -0.8638 
      1.9458    3.0954   -4.3661   -0.1253   -0.4686    2.0274 
      0.1922    0.3309   -0.4816   -0.0241   -0.0360    0.223 
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Appendix 3.A 
 
 
 
3.1 A  Foundations of Neural Networks  
 

The perceptron is one of the early attempts to build intelligent and self-
learning systems using simple components. It was derived from the brain 
neuron and introduced by McCulloch-Pitts (1943).  

Figure (3.1 A) shows a typical structure of a perceptron, modeled by the 
following mathematical equation: 

 
( )∑ θ−+= iijiji sxw1y . (3.1.1 A) 

 
In eq.(3.1.1 A) 1(u) represents the unit step function having value 1 if u >1 

and zero otherwise, xi is the input signal coming from the output of another 
neuron, si represents the outside input, wij are the connection weights, ui denotes 
the internal state of the neuron, θi the threshold value, finally fi and yi are 
respectively the activation function and the neuron output. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.1 A:  The McCulloch-Pitts neuron model. 
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The connection weights are adjusted during the learning process. Connection 
weights that are positive valued are excitatory while those with negative values 
are inhibitory. If a connection weight is zero this is equivalent as not having a 
connection present. 

The McCulloch-Pitts model is a discrete model and the neuron output can 
have only the states 0 or 1. A development of this model is given by the 
Hopfield (1982) neuron having a time dependent activation function. 

The activation function has the specific purpose to map the neuron output 
from a possible infinite domain to a pre-specified range. Theoretically 
activation functions can have any form, but usually the ones employed by the 
majority of neural networks are: linear functions, step and ramp functions, 
sigmoids, logsigmoids and Gaussian functions. A part the linear function all the 
others introduce a non-linearity in the network. Figure (3.2 A) reports the above 
mentioned functions. 

Because a single neuron can act only in a simple way, the power of neural 
network computation comes from connecting neurons into networks.  
Neurons with simple properties and interacting according to simple rules can 
perform complex functions. This is the reason why the neural networks are also 
defined as massively parallel devices. It has been shown that the way in which 
the neurons are connected and the number of layers can influence the capability 
of a network as well as its stability and convergence. 
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 Linear function Step function 
 f (x) = αx  f (x) = (β if x ≥θ; -δ if x< θ) 
 

 
 
 
 
 
 

 
 Sigmoid function Ramp function 
 f (x) = 1/(1+exp(-αx))  α >0  f (x) = γ if x≥γ; x if |x|<γ; -γ if x≤-γ 
 
 
 

 
 

 
 
 
 
 Log-sigmoid function Gaussian function 
 f (x) = log(1/(1+exp(-αx)) α >0)  f (x) = exp(-x2/ν)   ν >0 

 
 

Figure 3.2 A:   Example of activation functions. 
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3.2 A  Schemes of  Neural Networks 
 
 In the following a brief review of the networks commonly used in practical 
applications is reported. 

 
 Hopfield network: this is a typical recurrent network having signal layer of 
neurons, each connected to all the others. The weights of the network are 
assigned as follows: 
 

 







=

≠
= ∑

=

ji                     0

ji       xx
N
1

w 1

P

c

c
j

c
i

ij  (3.2.1 A) 

 
where xi

c is the i-th component of the training input pattern for class c, P the 
number of classes an N the number of neurons, xi

c can assumes value +1 or –1.  
Figure (3.3 A) shows a Hopfield network. 
 

 
 
 
 
 
 
 
 
 
 

Figure 3.3 A  A Hopfield network. 
 

 Starting from an initial condition given by the inputs, the network produces 
an output which is then feedback to become the new input. The network stops 
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its iterations when the output vector converges to one of the design equilibrium 
point vectors by means of the following law: 
  

  N1         )(yw 1)(y
N

1

<<







=+ ∑

=

ikfk
j

iiji  (3.2.2 A) 

 
being f (x) a step function defined assuming value 1 if f (x) is greater than zero, 
-1 otherwise. 
 
 Elman and Jordan network: both these networks are feedback networks 
due to the presence of an additional hidden layer called context or state layer 
that receives feedback signals. Figures (3.4 A) and (3.5 A) show the scheme of 
an Elman net and a Jordan net respectively. As is evident from these figures, the 
differences between the two networks lies in the fact that in the Elman net the 
feedback signal comes from an ordinary hidden layer, while in a  Jordan net the 
feedback signal comes from the output layer. With both nets, the outputs of 
neurons in the state layer are feedforward the hidden layer 

 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 3.4 A:  Scheme of an Elman network. 
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Figure 3.5 A:  Scheme of a Jordan network. 
 

 The recurrent connection allows the Elman network to both detect and 
generate time varying patterns, the only requirement is that the hidden layer 
must have enough neurons. 
A sufficient number of neurons can reproduce any complex function. 
 
 Kohonen network: this is a self organizing or competitive network. The 
neurons learn to recognize groups of similar input vectors in such a way that 
neurons physically close together in the neuron layer respond to similar input 
vectors. The output vector can contain only 1 or 0 values. To determine the 
winner neuron the Euclidean distance between a reference vector and the input 
vector is used. The reference vector contains all the weights of the connections 
with the given output neuron. The winning output neuron is the one (or more 
than one) whose reference vector is closest to the input pattern. Only the 
winning neuron’s weights get updated. Thus the neuron whose weight vectors 
are closest to the input vector is updated to be even closer. As a result the 
winning neuron is more likely to win the competition the next time a similar 
vector is presented and less likely to win when a very different input vector is 
presented. A drawback of this logic is that some neurons may not always be 
activated, some neuron weight vectors may start so far from any input vectors 
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and never win the competition. This problem has been overcome in advances 
competitive network, using biases to give neurons which are rarely winning an 
advantage over neurons which win very often. Figure (3.6 A) shows a scheme 
of a Kohonen network. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.6 A:  Scheme of a Kohonen network. 
 
 Linear vector quantization network (LVQ): LVQ is a method for training 
competitive layers in a supervised manner (Pham and Oztemel, 1994); on the 
other hand LVQ networks learn to classify input vectors into defined target 
classes. The network is characterized to have an hidden layer consistent of 
Kohonen neurons. When an input pattern is supplied to the network, the hidden 
neuron whose reference vector is closest to the input pattern wins the 
competition for being activated. The output neuron connected closer to the 
winning neuron will produce a “1” output, “0” all the others. LVQ networks can 
classify any set of input vectors, this is an advantage with respect to the 
perceptron neurons. The only requirement is that the competitive layer must 
have enough neurons. 
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 Many others networks of different architecture are present in literature; 
among these particularly interesting are the Cerebellar Model Articulation 
Control (CMAC) network that can be considered a supervised feedforward 
network with a fuzzy associative memory; the Group Method of Data Handling 
(GMDH) network that has a structure changing during the training until the 
accuracy of the desired mapping is achieved. Each GMDH neuron is an 
Adaptive Linear Element (Adeline) with non linear processor. 

 
 Multi-Layer Perceptron: the perceptron model was introduced by 
Rosenblatt (1958). Actually perceptron refers to a large class of neural models. 
The core idea of the perceptron is the incorporation of learning into the 
McCulloch-Pitts neuron model. One of the many perceptrons that Rosemblatt 
studied is the back-coupled perceptron that anticipates the currently used back-
propagation model. 
 A scheme of a multi-layer perceptron network is given in figure (3.3). 
Neurons in the hidden layer only act as buffer for distributing the input signals 
to neurons in the hidden layer then each neuron in hidden layer sums up its 
input signals xj after having weighting them with the strengths of the respective 
connections wij from the input layer and computes its output yi as a function of 
this sum, as for examples in eq.(3.2.1). 
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Appendix 3.B 
 
 

 3.1 B  The learning algoritms 
 
 This appendix reviews some of the learning algorithms rule used from the 
networks presented in appendix 3.2 A. 
 
 Hebbian learning: the rule proposed by Hebb (1949), in its simplest 
version, synthesizes the concept for which if a neuron, say A, is active and this 
activity causes the fire of a connected neuron B, then the efficiency of the 
synaptic connection between A and B should be increased, which is described 
in mathematical form by: 
 
  kjki

old
ij

new
ij baww +=  (3.1.1 B) 

 
where wij denotes the weight connections between neurons i and j, while aki and 
bkj, with k=1,2,…m, and j = 1,2,…n, are respectively the input and output 
vectors. The Kohonen network implies this kind of learning rule. The neuron 
output values and the weight connections can be bounded in a suitable range by 
using the following equations: 
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 Equation (3.1.3 B) assigns a binary value to a connection depending on the 
values in input and in output of the neuron. Networks that imply this kind of 
learning rule have the capacity to store a big amount of information. 
 
Differential Hebbian learning: this algorithm can be considered as an 
extension of the previous one to capture the temporal changes that accrue in the 
input and output sequences.  
 
 )1(y)(x)(w)1(w −∆+∆+=+ tttt jiijij  (3.1.4 B) 

  
where ∆xi = xi(t) - xi(t-1) is the change in the i-th input neuron at time t, and    
∆yj = yj(t-1) - yj(t-2) is the change at j-th output neuron at time t-1. 
 
 
 Principal component learning: this kind of rule acts in a way that the 
weights of the network are principal components of the input data patterns. 
These components are found as minimum orthogonal set vectors of the 
covariance matrix. Once the basis set has been found, any vector in the space 
can be obtained by linear combination of the vectors in the basis. Examples of 
principal component learning rules are present in the works of Oja (1982) and 
Sanger (1989) and are expressed by the following equations: 
 
 ( )old
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ij  wbabww β−α+=  (3.1.5 B) 

 
where α and β are non-zero constants, and 
 

 







−γ+= ∑

=

i

h
jhhkjkjkik

old
ij

new
ij

1

wy bbaww  (3.1.6 B) 

 
where γk  is a time-decreasing learning parameters. 
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 Networks implying these kind of rules are limited to have linear processing 
elements. 
 
  Competitive learning: is a two steps procedure that couples the recall 
process with the learning process in a two-layer neural network. This is the rule 
implemented in a competitive network. As a first step the winning PE has to be 
determined and this, as reported in the previous section for the Kohonen 
network, is made possible by determining the reference vector closest to the 
input pattern. Then as a second step the connection values of the winning 
reference vector have to be adjusted; the equation that allows this correction is 
given by: 
 
 ( )old

ijkij
old
ij

new
ij t  way)(ww −α+=  (3.1.7 B) 

 
where α(t) is a non-zero time-decreasing function. This algorithm has been 
modified to give to all neurons the same probability to be a winner. 
 
 Stochastic learning: stochastic learning uses random processes, probability 
and energy relationships to adjust the weight connections. This kind of 
processing learning is employed in multi-layer networks where the outputs of a 
hidden layer are randomly changed. To establish if these changes improve the 
network performance, the network energy is used as indicator. If the energy 
after the change is slower then the change is kept otherwise the change is accept 
according to a pre-chosen probability distribution. This procedure is repeated 
until the network becomes stable and for each pattern pair in the data set, then 
the collected data are used to statistically adjust  the weights. The probabilistic 
acceptance of higher energy state allows the neural network to escape local 
minima. 
  

 
 




